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Abstract: Fractional operators are one of the frequently used tools to obtain new generalizations of
clasical inequalities in recent years and many new fractional operators are defined in the literature.
This development in the field of fractional analysis has led to a new orientation in various branches
of mathematics and in many of the applied sciences. Thanks to this orientation, it has brought a
whole new dimension to the field of inequality theory as well as many other disciplines. In this
study, a new lemma has been proved for the fractional integral operator defined by Atangana and
Baleanu. Later with the help of this lemma and known inequalities such as Young, Jensen, Holder,
new generalizations of Hermite-Hadamard inequality are obtained. Many reduced corollaries about
the main findings are presented for classical integrals.

Keywords: convex function; holder inequality; young inequality; power mean inequality; Atangana-
Baleanu fractional integral operators

1. Introduction

First of all, let us recall the concept of convex function which is the basic concept of
convex analysis.

Definition 1. The function x :
ity holds

[n,v] € R — R, is said to be convex if the following inequal-

K(wx+(1-wly) < wr(x) + (1 - w)x(y) ©)

forall x,y € [u,v] and w € [0,1]. We say that « is concave if (—«) is convex.
There are many inequalities in the literature for convex functions. But among these
inequalities the most take attention of researchers is the Hermite-Hadamard inequality on

which hundreds of studies have been conducted. The clasical Hermite-Hadamard integral
inequalities are as the following.

Theorem 1. Assume that x : I C R — R is a convex mapping defined on the interval I of R
where y < v. The following statement;

K(#;—V)Sviij(x)dxg’w @)

2
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holds and known as Hermite-Hadamard inequality. Both inequalities hold in the reversed direction
if x is concave.

Several new results have been proved related different kinds of convex functions and
associated integral inequalities. In [1], Bakula et al. gave some new integral inequalities of
Hadamard type for m-convex and (&, m)-convex functions. A similar paper has been writ-
ten by Kirmaci et al. for s-convex functions in [2]. Besides, in [3], Kavurmaci et al. proved
some new inequalities for convex functions. In [4], the authors have given several new re-
sults for co-ordinated convexity which is a modification of convexity on the co-ordinates. In
[5], Ozdemir et al. have defined a generalization of convexity and proved some Hadamard
type inequalities. On all of these, in [6], Sarikaya et al. gave a different perspective to the
inequality (2) by using the Riemann-Liouville fractional integral operators as follows:

Theorem 2 ([6]). Let « : [, v] — R be a positive function with 0 < u < vand k € Li[p,v]. Ifx
is a convex function on [y, v], then the following inequalities for fractional integrals hold:

(3) 35

k) + 1 k()] < SLEED)

with « > 0.

In here, ]ﬁ+ and Ji_ are respectly right and left side of Riemann-Liouville fractional
integral operators, as follows:

Definition 2. Let x € L[y, v]. The Riemann-Liouville fractional integrals ]§+ and J7;_ of order
« > 0 with p > 0 are defined by

Jvre(x) = r(lw) /:(x —0)* x(0)dp, x >

and

Jo-x(x) = 1“(1a) /xv(p —x)* x(p)dp, x < v

respectively, where T («) is the Gamma function defined by T (a) = [;° e Pp* 'dp and ]2+K(x) =
]S,K(x) = x(x).

This study played a key role in generalizing, expanding and obtaining variations
of classical integral inequalities with the help of fractional integrals. On the other hand,
by defining different versions of Riemann-Liouville fractional integral operators in the
last decade, new versions and generalizations of inequalities on both convex functions
and differentiable functions have been obtained (see the paper [7]). Studies in the field of
fractional analysis have brought a new perspective and orientation to many fields of applied
sciences and mathematics in addition to the theory of inequality in recent years. It has
shed light on many real world problems with the applications of newly defined fractional
integral and derivative operators. In these new operators, several important criteria have
differentiated them and have made some advantageous in applications compared to others.
Exponentially or power law expressions used in the kernel of fractional operators revealed
their features such as locality and singularity, and it became important to obtain the initial
conditions for the special versions of the parameters used in the definition. Another
important detail is to reveal the spaces where the operators are defined and to show
the suitability for the real world problems. In [8], Atangana and Baleanu has offered a
non-singular and non-local fractional derivative and proved properties of this interesting
operator. Due to this new definition, many real world problems has been solved again
with time memory effect. In [9], the authors have given right sided Atangana-Baleanu
integral operators and proved some new results that depend to this non-singular operator.
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In [10], Awan et al. have established Hadamard type inequalities for preinvex functions
via conformable fractional integral operators. In [11], further motivated results have been
performed by using fractional integrals. Similarly, Tariboon et al. have proved inequalities
via Riemann-Liouville fractional integrals in [12]. The readers can find collection of the
fractional derivative and integral operators in [13] and also we refer to the interested readers
the following papers [14-22]. In this sense, let’s examine some fractional derivative and
integral operators with many applications and features. We first start with the Atangana-
Baleanu derivative operator as following.

Definition 3 ([8]). Let k € H'(u,v), v > u, a € [0,1] then, the definition of the new fractional
derivative is given:

D5 lx(p)] = 18 [ ¥ (e |-a =2 ax -

Here H'(y,v) can be defined as H' (u,v) = {x: x € L[y, v] and x’ € L{u,v]}.

Definition 4 ([8]). Let x € H'(u,v), v > pu, a € [0,1] then, the definition of the new fractional
derivative is given:

ABRDS [ie(p)] = f(_zxi;)/; x(x) Eq {aw}dx. 4)

Equations (3) and (4) have a non-local kernel. Also in Equation (4) when the function
is constant we get zero.

With the help of Laplace transform and convolution theorem, Atangana-Baleanu
described the fractional integral operator as follows.

Definition 5 ([8]). The fractional integral associate to the new fractional derivative with non-local
kernel of a function xk € H'(u,v) as defined:

M)} = S0+ gy L H e -9y

where v > p,« € [0,1].

In [9], Abdeljawad and Baleanu introduced right hand side of integral operator as
following; The right fractional new integral with ML kernel of order « € [0, 1] is defined by

_1—04 o

IR0} = a0+ B, F )y

The main purpose of this article is to obtain an integral identity that includes the
Atangana-Baleanu integral operator and to prove Hermite-Hadamard type integral in-
equalities for differentiable convex functions with the help of this identity. The main
motivation point of the study is to prove a new integral identity with the potential to
produce Hermite-Hadamard type inequalities for Atangana-Baleanu fractional integral
operators based on a non-singular and non-local derivative operator. It is aimed to bring
more general and effective results to the inequality theory thanks to the kernel structure
and properties of the operator.
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2. Main Results
Let x : [, v] — R be differentiable function on (y,v) with y < v. Throughout this
P Le(p, 0, p,v)

section we will take
- () ol )
AB v+p AB v+p
(52 s ( )}

(e —mw" )
—W[K(P) +x(pn)] — 2"‘B( ) (vc) [x(p) +x(v)]

(7))

We will start with a new integral identity that will be used the proofs of our main
findings as following:

Lemma 1. « : [p,v] — R be differentiable function on (u,v) with y < v. Then we have the
following identity for Atangana-Baleanu fractional integral operators

P} ()
()} ()

() +x() B

where o € [0,1], p € [u,v], B(a) is the normalization function and T'(.) is Gamma function.

Proof. By using integration by parts for the right hand side of equation, we have

_ _ e+l 1,
wn(3) — i Jo 5 '(Hw“lz ) de

_ (M+p> et | e 2xk(Het50)
- (ﬂt) 24B(a)T(w) | 2 p—p

jos]

0
_yy ZK(TPP';T(”V) e
_ 113 (P‘-‘rP) zAB aa) p)+2aB fo (+T +1*Twy)dw
_ % )+ 1t aK( +p) +B(M f%p (u_ﬂzﬂ)'HK u)du
= Apli(t42)} - etion(o).

Then we can write following identity
tx+1 x
(,‘M-HJ) 20(3 16% K/<1—Ewp+l_2wy)dw

- ABI“{ (y#)} 204(15( §’r>(a) (p)-

(6)
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Similarly, we have following identities.

o3 i [ e

- (5 p>}‘za§< g
s () b [ (3 e
= aefs("77) ) - za;&)pr)(a)"(”

and

s (5) - dmdi b 5 (Rt e @
= e {x(*37) } - mpar

By adding identities (6)—(9), we obtain desired result. [

Corollary 1. In Lemma 1, if we take o = 1, then the identity (5) reduces to the identity

[ et = LB ) + ) = 5 E (o) + w(0)
_ (o—w?| lw (1-w 1+w lw (14+w 1-w
- T2 [/0 2" (z“")”’ - 2 (z“z”)d“’]

(v —p)? /18 1+ w 1-w _/18 S1—w 1+w
—1—72 02K72p+21/dw 02K72p+21/dw'

Theorem 3. « : [y, v] — R be differentiable function on (u,v) with uy < vand ' € Lq[u,v].
If |&'| is a convex function, we have the following inequality for Atangana-Baleanu fractional
integral operators

|48 1 (o, o, 11, v)|
, 10
< (o—m"™" [K'(P)JFK'(H)I + (v—p)**! [K'(P)HK/(V)} {10)
= BWI(a) aF1 25 TB(w)T () 2

where p € [u,v], a € [0,1], B(«) is normalization function.
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Proof. By using the identity that is given in Lemma 1, we can write
4P L (o, o, )|

a+1 « " _
2&*3 a)r l 0 K/(Tw + HTWV)d‘U ) wTKl<HTwP + 126‘]}4)‘1“]]

— 1 _
Z“B(a)l"(zx) [fo G (+T + 1va>dw ) %K’(lT‘*’p + W"v)dw]

IN

)l 1 o —w w 1 o~
722‘3(0()1"(0() [ 02 K'(lTP+ %V)‘derfo TK

(v—p

a+1 1 o
+2“B(o¢;l"(oc) [ T

¥ (o ) dw+ fo s (1

By using convexity of |«’|, we get

‘ABIK (0, p,v) ‘
)uc+1

. e [/01 ST @+ (55 W o
LS () e+ (1‘2“’)!K’<ﬂ>|]dw]
)+ /()1“;{<1—gw>|x’(p)’+<1_2w>|1<’(1/)@dw

S () e+ (”2“’) !x’(vﬂ}dw]

(v—p

B (a)

_ (o- ﬂ"‘“ ' (p)] / it |’ ()] /1 A
= 2B 1 dw—|— 1 A (w +w )dw
|/ cu —l—w“H dw+ |/ w1 da;
(v— )Hl I’ (p |/ zx+l |/ :x+1
+2“B(1x)1"(zx) w +w dw —|— dw

| uc-i—l

|/ +wtx+1 dw

_ <p—m“+l [x'<p>+|x'<u>|]+ (v—p)" l|x'<p>|+|x'<v>|]
2¢+1B(a)l(a) a+1 20H1B ()T () a+1

and the proof is completed. [

Corollary 2. In Theorem 3, if we take « = 1, then the inequality (10) reduces to the inequality

[ wae— LB p) (0]~ U (o) +5(0)]
M

v— o)
< Lo g U o)+ ¢ )]

M+ Gl] +
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Theorem 4. « : [u,v] — R be differentiable function on (u,v) with y < v and ' € Lq[u,v].
If |x'|7 is a convex function, we have the following inequality for Atangana-Baleanu fractional
integral operators

|ABIK (o, o, 1, v)|

; 1
v q+3 3 I ()TN 7
(a) (ZP (ap+1) p [ P31 ( <’ (p)| 4+|K ()] )‘1‘| a1

a+1 1 3 [ q (o)1 13l! () |7 1
+2(3( i () [(W) + (RO

where p~' +q 1 =1,p € [u,v], « € [0,1], g > 1, B(a) is normalization function.

IN

Proof. By Lemma 1, we can write

|48 I (o, o, 1, v)|

(o—pw)**! [ 1o
2B @) | Jo 2

IN

K (1520 + L) [do + fy 5| (L4520 + L5 \dw]

K’(%p + ”T“’v) ’dcu].

ot 1 w w 1
+2(B(5;r(a)l 0 2 (H p+13¢ )’deffo T

By appliying Holder inequality, we have

4B L (o, o, 1, )|
< st | (8 (9) ) (e (5t 1))
(e (o540 )]

())&

By using convexity of |x|7, we have

K’(l_T“’p + HT“’U) ‘qdw) ;] .

|48 1 (p, 1, V)|
it | (8 () a0)” (R0t + (139)1w )

IN

;
e Pl @P 3 G\ T L (3K @R Gl ) 1
= zw(@r()(zwwn ( 1 ) +( 7 )

(v—p)**1 | (3 @I PN T L (@3 W)\ T
i () | () (]
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So, the proof is completed. O

Corollary 3. In Theorem 4, if we take « = 1, then the inequality (11) reduces to the inequality

[ rtax - Mw) ()] = Y2 [s(p) 5]
)31 )W)Q(sw o)1 + ¥ (1 1

< (p*u)

= 2 2P p+1
1
P

+<V—2P>2(2p(p1+1)> l(le( B >|q)3+ (el 3wy 1

Theorem 5. « : [, v] — R be differentiable function on (u,v) with y < vand k' € Li[u,v].
If |x'|7 is a convex function, we have the following inequality for Atangana-Baleanu fractional
integral operators

‘ABIK(p,a, V/V)‘
)zx—i—l

(o —p 1 &' ()" + |’ ()|
20B(2)(a) [zpl o ap+1) | q ] (12)

(v—p) L L ()1 |K'<v>|q1

a+1
2¢B(a)T(a) [27’1 p (ap+1) q

_|_

where p~' +q7 1 =1,p € [u,v], « € [0,1], g > 1, B(a) is normalization function.

Proof. By Lemma 1, we can write
‘ABIK(pr [X/ ]’ll U) ’

_ e+l 1 .0
< zsvps(ﬂ)) T(a) l 0T «'

(520 + “T“’V) deo + Jy 5|« (B520 + 1520) !dW]

| (50 + %))dw].

By appliying Young inequality as xy < %x” + %y‘i, we have

(s i)

(1/7 )LH~1 1
+2”‘B(£)F(zx}[ 0 G |x

1o, a, )|

i lp/;@)”dw (e o) e
ALY aond (R ) ]
A YRS

1 L /w\* ,M1-w 14w \|
+;/0 (2) dw K<2p+ > 1/) dw|.

By using convexity of |x’|7 and by a simple computation, we have the desired result. [
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Corollary 4. In Theorem 5, if we take « = 1, then the inequality (12) reduces to the inequality

[ wt = LB () + ) = 5 2 x(p) + x(0)

2
- @—yf[ 1 +me+wwmﬂ
T2 (2 hp(p+) q
(v—p)° 1 < (@) + 1% ()|
T l%lp(;ﬂrl)+ q ]

Theorem 6. « : [y, v] — R be differentiable function on (u,v) with y < v and ' € Lq[u,v].
If |«'|7 is a convex function, we have the following inequality for Atangana-Baleanu fractional
integral operators

’ABIK(p/“/,u/V)|
=™ (1 N7 | (@I e o \ T, ( Cat3)K @) K Gl @
< 2“B(oc)l"(oc)(oc+l)) ( (2t 1) (a2) )+( 2(at1) (@ +2) )

O (1 N | (@) @P 0P\ (K@) Qak3) K )7\ 7
+2"‘B()(a)(¢x+1)) q( 4(a+1p)(a+z) ) +( p4(o¢+l)(o¢+2) )

where p € [, v], a € [0,1], g > 1, B(«) is normalization function.

Proof. By Lemma 1, we can write

|ABIK(P/‘X/ l’l/ 1/)|

S l 0 g 5w (520 + 15"#)\’1“’]

(130 140) ]

K (520 + 152 |deo + [

2¢B(a)I'(a)

(e e

_\atl 1 o
+2%(p;r(a)[ 0 2

By using power mean inequality, we have

[*E1eo,0,,7)

b ([ )
(fge) ()
At (L5 (15

([ Ga0) (e (52 52 ae) ]

By using convexity of |«’|7 and by a simple computation, we have the desired result. [
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Corollary 5. In Theorem 6, if we take « = 1, then the inequality (13) reduces to the inequality

[ we— LI 1xp) (0]~ U (o) (0]
I

< W(;)l‘é[(M’(p)ﬂ;fh’(wﬂ)ﬁ (5|K< o)l + I (1 ]

+<V—2P>2(;>13 [(5|K’<p>|"£|x'<v>|")5 (e e 1

Theorem 7. « : [, v] — R be differentiable function on (u,v) with y < vand ' € Ly[u,v]. If
|x'| is a concave function for q > 1, then we have

‘ABIK (o 2, ,v) |
< st (o) | ()|l (5259) | o
bt () e (25 ¢ (523) |

where p € [u,v], a € [0,1], B(«) is normalization function.

Proof. From Lemma 1 and the Jensen integral inequality, we have

4B (0, a, 1, v)|
< it 0 e (s ) o+ ) e (24 )
bt | 1l (g ) s e (4 )
< diion| (2 gaw)e (RELgzrne))

0 2

1,0 f‘ 1+wp+1 U dw
(e (2 ) |
(1/7 )pc+1 1« ‘lwi 1+wp+1 w )dw
+z«3(5>r<a>[(fo & dw) "'( e T
1% (1-w 1+w
1 0 T( o+=* )dw
(o) (G |

By computing the above integrals, we have desired result. O

Corollary 6. In Theorem 7, if we take « = 1, then the inequality (13) reduces to the inequality

[ e OB (o) 4 0] - U5 () +x(w)
M

SOk
A )]
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Theorem 8. « : [y, v] — R be differentiable function on (u,v) with y < vand ' € Ly[u,v]. If

|x'|7 is a concave function, we have
7 +3 30+
1 PTOH 1P TH
[ (55 e (o)
,

o (FeeD) ["/(393 )]+ "'(pz?ﬂ/)H

where p~' +q 1 =1,p € [u,v],a €[0,1], g > 1, B(w) is normalization function.

}ABIK(Pr &, .“/V)‘

=

(o=

1
= 2B)I(a) <2’”(w+1)>

(14)

Proof. By using Lemma 1 and Holder integral inequality, we can write

BLeo, )|

< e () w) ()
(L) ) ([l (e 152)
A () ) ([ (e 152)
(L)) ([l ) )]

By using concavity of |«’|7 and Jensen integral inequality, we get

|-

q
dw)

Kl— 1+w
Ty Pk

qdw)él

q N7
dw)

q 1 _ q
fo (1w +1+“’y)’dw _ fowox’(lT“’p+1+7wﬂ)’dw
1.0 o @ (2p+ 5w\ |1
< (fo w dw) < fol wOdw
+3u\ |1
- )
Similarly
1 M+w  1-w | 3o+ u\ |
(LW 1w < /
/OK( > o+ > y) dw < K< 7] ) ,
1 14w  1-w | 3o0+v\|
/ < /
/OK<2 o+ > 1/> dw < K( 1 )
and
1, /1- 1+w |7 p+3v\ ]
e < ).
/()K( 5 5 1/) dw < K( 4 )
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References

So we obtain,

‘ABIK(p,a,H,V)‘
(0 — )" 1 b
sz(al;T(ﬂc)<2p(“P+1)> [

(V_p)oc-i—l 1
T 2B () (zpmpﬂ))

K/(P'Z&”) ’ +

|

Corollary 7. In Theorem 8, if we take « = 1, then the inequality (14) reduces to the inequality

)
(20 (5]

and the proof is completed. [

[ vt~ L2 o)+ (0] = 5 slp) + w(0)]
) ) )

A5 () [ (28]

In the introduction part, a historical background in the field of inequality theory and
fractional analysis is presented, and in the main results part, a new integral equation is
produced based on fractional integral operators. Then, new Hermite-Hadamard type in-
equalities are obtained by using various auxiliary inequalities for functions whose absolute
values of derivatives are convex and concave. In the main findings, it is emphasized that
the results obtained are general versions of classical integral inequalities, considering the
particular case of the parameter such as « = 1. The special cases of the main theorms can
be applied to numerical integration to give new approaches for error estimation of the
mid-point and trapezoidal formula.
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