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article is an expository paper based on a master class given by the second author at the University of
Vigo and is devoted to presenting some Applications of Fubini’s theorem. In the first part, we present
Brunn–Minkowski’s and Isoperimetric inequalities. The second part is devoted to the estimations of
volumes of sections of balls in Rn.

Keywords: Fubini’s theorem; Brunn–Minkowski inequality; isoperimetric inequality; volumes of
section of balls

MSC: 28A35; 52A40; 52A38

1. Introduction

Fubini’s theorem and Brunn–Minkowski’s inequality are two cornerstones of analyti-
cal methods in convex geometry with important applications to probability theory, partial
differential equations and combinatorics. The present paper is an expository note on the
subject based on a master class given by the second author at the University of Vigo some
years ago. The aim of including it in this volume is to commemorate her teaching trajectory.
We have tried to maintain the original exposition, other than removing some very easy
facts from the original lecture. In this introduction, we intend to show that the subject is
still interesting and to provide the reader with some useful references in order to explore
the evolution of the subject until the present time.

The paper starts by recalling Fubini’s theorem. After that, we give a detailed proof
of Brunn–Minkowski’s inequality and, as a corollary of it, the classical isoperimetric
inequality which states that, among bodies of a given volume in Rn, the Euclidean balls
have the least surface area. This result appears to have been known in ancient times for
two dimensions. By the end of the last century, there were a number of proofs which
worked arbitrarily in many dimensions. It is interesting to remark that the formulation
of the reverse isoperimetric problem needs some care because even convex bodies can
have a large surface area and a small volume [1]. A big part of the classical Brunn–
Minkowski theory is concerned with establishing generalizations and analogues of the
Brunn–Minkowski inequality for other geometric invariants. See the excellent survey article
of Gardner [2] and the book of Schneider [3], which contains a comprehensive account of
different aspects and consequences of Brunn–Minkowski inequality. More recent papers
about Brunn–Minkowski-type inequalities include [4–7].

The second part of this paper is devoted to applying Fubini’s theorem and Brunn–
Minkowski’s inequality to obtain estimations of volumes of sections of balls in Rn. The
study of the geometry of convex bodies based on information about sections and projections
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of the bodies has important applications in many areas of science. The Fourier analytic
approach to sections of convex bodies is based on certain formulas expressing the volume
of sections in terms of the Fourier transform of powers of the Minkowski functional of
a body. This approach was extended to obtain volumes of projections of convex bodies
obtaining counterparts of the results of sections (see [8,9]).

In the study of convex bodies from a geometric and analytic point of view, some other
basic questions appeared. One is about the distribution of the volume of high-dimensional
convex bodies [10]. Moreover, in [11] the authors established the log-concavity of the
volume of central sections of dilations of the cross-polytope Bn

1 . Another remarkable paper
on the subject is [12], where the maximal and minimal volume of non-central sections of
the cross-polytope are obtained. There are also very recent, interesting results concerning
sections of other convex bodies, such as the cube (see [13]).

2. Preliminaries

We recall in this section the concepts and notations used in the rest of the article.
We will not go into great detail because they are elementary and can be found in any
introductory book on Functional Analysis or Measure Theory (see for instance [14]).

If ‖‖ is a fixed norm in Rn, the set B = {x ∈ Rn : ‖x‖ ≤ 1} is called the unit
ball. The dual space of Rn is the space of continuous linear forms endowed with the norm
‖ f ‖ = sup‖x‖≤1 | f (x)| and can be identified with Rn. For a subset B of Rn,
‖x‖ = ‖x‖B := inf {λ > 0 : λ−1x ∈ B} denotes the Minkowski functional corresponding to
the set B. Whenever you have a convex body B in Rn, that is, B is a compact convex set with
non-empty interior and symmetric, its Minkowski functional ‖‖B defines a norm whose unit
ball is B.

The unit ball for the normed spaces (Rn, ‖‖p), where 1 ≤ p < ∞ and ‖x‖p =

(∑n
i=1 |xi|p)

1
p for all x ∈ Rn, will be denoted by Bn

p = {x ∈ Rn s.t ‖x‖p ≤ 1}. In par-
ticular, when p = 2, ‖‖2 is called the euclidean norm and it generates the euclidean topology
in Rn.

A measure space (X,M, µ) is a triple formed by any set X, a σ-algebraM defined on
its subsets and a measure µ defined onM. Members ofM are called measurable sets.
A measure space is called sigma-finite if there exists a countable number {An n ∈ N} of
measurable sets inM such that X = ∪n∈N An and µ(An) < ∞ for any n ∈ N.

A map f between two measure spaces (X,M, µ) and (Y,N, ν) is called measurable if
f−1(B) ∈M ∀ B ∈ N. Given two such measure spaces you can canonically construct the
measure product space (X × Y,M⊗N, µ× ν). M⊗N is called the product σ-algebra of
M and N, and µ× ν the product measure of µ and ν.

We are especially interested in the case where X = Rn, M = Mn is the Lebesgue
σ-algebra in Rn and µ = mn is the Lebesgue measure onMn (mn is the completion of the
product measure m× ...n times...×m, where m is the Lebesgue measure on R). This measure
space is σ-finite.Mn properly contains the Borel σ-algebra Bn (generated by the open sets
of the euclidean topology in X = Rn). Moreover, the Lebesgue measure is a Radon measure:
that is, all compact sets K have finite measures, and it is outer and inner regular (for every
Borel set, its measure is the infimum of the measures of the open sets containing it and for
every open set its measure is the maximum of the measures of the compact sets contained
in it, respectively). For a measurable set A, vol(A), volume of A, will be just mn(A).

Our measurable functions will be defined on (Rn,Mn, mn) and will take real values
in (R,M, m). By

∫
Rn f dmn ,we denote the Lebesgue integral of a measurable function

f . We say that f is integrable if
∫
Rn | f | dmn < ∞. The set of all integrable functions is a

normed space denoted by L1(Rn) and ‖ f ‖1 =
∫
Rn | f | dmn. In the same way that L1(Rn), it

can be defined as the normed space Lp(Rn) for 1 < p ∈ R taking ‖‖p as the norm defined

by ‖ f ‖p = (
∫
Rn | f |p dmn)

1
p . We recall here the Dominated Convergence Theorem, which will

be used later on: if { fn} is a sequence of measurable functions pointwisely convergent to a
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function f and there exists an integrable g such that | fn| ≤ g ∀ n ∈ N, then f is integrable
and the limit of the integrals of fn equals the integral of f .

In the computation of volumes it plays an important role in the Euler Γ-function, which
is defined this way:

Γ : R+ → R
x 7→

∫ ∞
0 tx−1e−tdt,

with the following property and values:

Γ(x + 1) = xΓ(x) ∀x > 0, Γ(1) = 1, Γ
(

1
2

)
=
√

π.

We finish this section with the statement of Fubini’s theorem ([14], Theorem 8.8):

Theorem 1. Let (X,M, µ), (Y,N , ν) be σ-finite measure spaces. Let F : X × Y → R be an
M×N -measurable function. Let us consider the functions:

ϕ∗ : X −→ [0, ∞)
x −→

∫
Y |F(x, .)|dν

and
ψ∗ : Y −→ [0, ∞)

y −→
∫

X |F(., y)|dµ
, then:

1. ϕ∗ ∈ L1(X, µ)⇒ F ∈ L1(X×Y, µ× ν).
2. ψ∗ ∈ L1(Y, ν)⇒ F ∈ L1(X×Y, µ× ν).

If F ∈ L1(X×Y, µ× ν), then:
3. There is E ⊂ X with µ(X \ E) = 0 such that F(x, .) ∈ L1(Y, ν) ∀x ∈ E and

ϕ : E −→ R
x −→

∫
Y F(x, .)dν

is in L1(E, µE).

4. There is G ⊂ Y with ν(Y \ G) = 0 such that F(., y) ∈ L1(X, µ) ∀y ∈ G and
ψ : G −→ R

y −→
∫

X F(., y)dµ
is in L1(G, νG).

Moreover, ∫
E

ϕdµE =
∫

X×Y
Fd(µ× ν) =

∫
G

ψdνG.

3. Brunn-Minkowski’s Inequality

Next, we are going to use Fubini’s theorem in the proof of Brunn–Minkowski inequal-
ity [15], which will be done by induction.

Theorem 2. If A, B are compact sets in Rn with n ≥ 1,
(1) ∀λ ∈ [0, 1], vol(λA + (1− λ)B) ≥ vol(A)λ · vol(B)1−λ

(2) vol(A + B) ≥ (vol(A)1/n + vol(B)1/n)n (Brunn−−Minkowski)

Proof. First step: (2) is consequence of (1).
In fact, taking

λ =
vol(A)1/n

vol(A)1/n + vol(B)1/n

and, considering the compact sets A′ = vol(A)−1/n · A, B′ = vol(B)−1/n · B, we have

vol(λA′ + (1− λ)B′) ≥ [vol(vol(A)−1/n A)]λ · [vol(vol(B)−1/nB)]1−λ

= [vol(A)−1 · vol(A)]λ[vol(B)−1 · vol(B)]1−λ = 1.

In other words:
vol(

A + B
vol(A)1/n + vol(B)1/n ) ≥ 1
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and then
vol(A + B) ≥ (vol(A)1/n + vol(B)1/n)n

Second step: (1) is a consequence of the following lemma

Lemma 1. Let f , g, ϕ : Rn → [0, ∞] be measurable functions, such that for some λ ∈ (0, 1)

ϕ(λr + (1− λ)s) ≥ f (r)λ · g(s)1−λ, ∀r, s ∈ Rn.

Then, ∫
Rn

ϕ(x)dmn(x) ≥ (
∫
Rn

f (x)dmn(x))λ(
∫
Rn

g(x)dmn(x))1−λ.

Indeed, taking
ϕ = 1λA+(1−λ)B, f = 1A, g = 1B

(1) is obtained.
Third step: it is enough to prove the lemma for ‖ f ‖∞ = ‖g‖∞ = 1.
In fact if the lemma holds for ‖ f ‖∞ = ‖g‖∞ = 1, it will also be true (by linearity of the

integral) for any pair of bounded functions f , g, just applying the lemma to

Φ =
ϕ

‖ f ‖λ
∞‖g‖1−λ

∞
, F =

f
‖ f ‖∞

and G =
g
‖g‖∞

.

Fourth step: proof of the lemma for ‖ f ‖∞ = ‖g‖∞ = 1, n = 1.
For 0 ≤ t < 1, whenever f (x) ≥ t, g(y) ≥ t, we will have

ϕ(λx + (1− λ)y) ≥ f (x)λ · g(y)1−λ ≥ t.

So,

{x ∈ R, ϕ(x) ≥ t} ⊃ λ{x ∈ R, f (x) ≥ t}+ (1− λ){x ∈ R, g(x) ≥ t}

Now, since for non-empty compact sets A, B of R, we have

{minA}+ B ⊂ A + B and A + {maxB} ⊂ A + B

⇒ m(A + B) ≥ m[({minA}+ B) ∪ (A + {maxB})]
= m({minA}+ B) + m(A + {maxB}) = m(B) + m(A),

by the regularity of Lebesgue’s measure inR, for the measurable sets A = λ{x ∈ R, f (x) ≥ t}
and B = (1− λ){x ∈ R, g(x) ≥ t} we have

m{x ∈ R, ϕ(x) ≥ t} ≥ λm{x ∈ R, f (x) ≥ t}+ (1− λ)m{x ∈ R, g(x) ≥ t}.

Integrating with respect to t in R+:

∫ ∞

0
m{x ∈ R, ϕ(x) ≥ t}dm(t)

≥ λ
∫ ∞

0
m{x ∈ R, f (x) ≥ t}dm(t) + (1− λ)

∫ ∞

0
m{x ∈ R, g(x) ≥ t}dm(t).

The first integral is

∫ ∞

0
(
∫
{x∈R:ϕ(x)≥t}

dm(x))dm(t) =
∫
R
(
∫ ϕ(x)

0
dm(t))dm(x) =

∫
R

ϕ(x)dm(x).
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In the same way, the second and third integrals are:∫
R

f (x)dm(x) and
∫
R

g(x)dm(x).

So:∫
R

ϕ(x)dm(x) ≥ λ
∫
R

f (x)dm(x) + (1− λ)
∫
R

g(x)dm(x)

≥ (
∫
R

f (x)dm(x))λ(
∫
R

g(x)dm(x))1−λ),

where the last inequality comes from

λa + (1− λ)b ≥ aλ · b1−λ, ∀ a, b > 0,

because ln(x) is concave.
Let n > 1 and suppose the result is proved for n− 1.
Take a fixed y ∈ R and define

ϕy : Rn−1 −→ [0, ∞)
t −→ ϕ(t, y).

Define fy, gy analogously.
If y0, y1 ∈ R are such that y = λy1 + (1− λ)y0, then ∀r, s ∈ Rn−1 we have:

ϕy(λr + (1− λ)s) = ϕ(λ(r, y1) + (1− λ)(s, y0))

≥ ( f (r, y1))
λ · (g(s, y0)

1−λ = ( fy1(r))
λ · (gy0(s))

1−λ.

So, if we apply the induction hypothesis to ϕy, fy1 , gy0 , we get∫
Rn−1

ϕydmn−1 ≥ (
∫
Rn−1

fy1 dmn−1)
λ · (

∫
Rn−1

gy0 dmn−1)
1−λ

and applying again the result for n = 1,

∫
Rn

ϕ dmn =
∫
R
(
∫
Rn−1

ϕydmn−1)dm(y)

≥ [
∫
R
(
∫
Rn−1

fy1 dmn−1)dm(y)]λ · [
∫
R
(
∫
Rn−1

gy0 dmn−1)dm(y)]1−λ

= (
∫
Rn

f dmn)
λ.(
∫
Rn

gdmn)
1−λ.

4. Isoperimetric Inequality

Brunn–Minkowski’s inequality allows us to easily obtain the isoperimetric inequality.

Theorem 3. Let C be a convex body in Rn with n ≥ 2, let ∂(C) its border and A(∂(C)) its surface
area or perimeter,

Bn
2 = {x ∈ Rn : ‖x‖2 ≤ 1} and Sn−1 = {x ∈ Rn : ‖x‖2 = 1}

A(∂(C)) ≥ (
vol(C)
vol(Bn

2 )
)

n−1
n A(Sn−1)

(Among all convex bodies with fixed area, the maximum volume is attained by the spheres).
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Proof. Although it is difficult to give a notion of the perimeter or surface area (area for
short) of a general compact, the convex ones are well approximated by polytopes and their
area can be defined by continuity. Thus, we obtain a notion of area which coincides, for
differentiable manifolds of class C1, with that corresponding to the canonical measure.

If such definition is accepted, the area is obtained from the volume by the intuitive
formula [16]:

A(∂(C)) = lim
t→0

vol(C + tBn
2 )− vol(C)
t

.

Using the Brunn–Minkowski’s inequality,

vol(C + tBn
2 ) ≥ (vol(C)

1
n + (t vol(Bn

2 )
1
n )n ≥ vol(C) + nt vol(Bn

2 )
1
n vol(C)

n−1
n + o(t)

and so

A(∂(C)) ≥ nvol(Bn
2 )

1
n vol(C)

n−1
n

= nvol(Bn
2 )vol(C)

n−1
n vol(Bn

2 )
1
n−1 = A(Sn−1)(

vol(C)
vol(Bn

2 )
)

n−1
n .

The volume of convex bodies is related to the geometrical properties of the corre-
sponding spaces. So its study is important in the local theory of Banach spaces [15]. Next,
we will try to show how Fubini’s theorem can be used in the estimation of volumes of
sections of balls. We will see two illustrative theorems.

5. Estimations of Volumes of Sections of Balls in Rn

In the sequel, a ball B will be a symmetric convex body in Rn.
If ‖‖B is the Minkowski’s functional associated with B, (Rn, ‖‖B) is a Banach space

whose unit ball is B. (Rn, ‖‖B) is a Hilbert space if and only if B is an ellipsoid.
If E is a k-dimensional subspace of (Rn, ‖‖B) and E⊥ is the orthogonal complement of

E, the section E ∩ B is the unit ball of the normed subspace E and the projection PE⊥(B) is
the unit ball of the quotient normed space Rn/E.

Theorem 4. [15](
n
k

)−1
vol(E ∩ B)vol(PE⊥(B)) ≤ vol(B) ≤ vol(E ∩ B)vol(PE⊥(B))

Proof. First step: vol(B) can be expressed as vol(B) =
∫

PE⊥ (B) vol((x + E) ∩ B)dmn−k(x). By

Fubini’s theorem,

vol(B) = mn(B) =
∫

E⊥
mk{y ∈ E : x + y ∈ B}dmn−k(x)

=
∫

E⊥
vol((x + E) ∩ B)dmn−k(x) =

∫
PE⊥ (B)

vol((x + E) ∩ B)dmn−k(x),

because if x /∈ PE⊥(B), (x + E) ∩ B = ∅.
Second step: We obtain the inequality on the right vol(B) ≤ vol(E ∩ B)vol(PE⊥(B))

E ∩ B =
1
2
[((x + E) ∩ B) + ((−x + E) ∩ B)]

and
vol((x + E) ∩ B) = vol((−x + E) ∩ B)).
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Then applying Brunn–Minkowski’s inequality, it yields

vol(E ∩ B)
1
k ≥ 1

2
[vol((x + E) ∩ B)

1
k + vol((−x + E) ∩ B)

1
k ] = vol((x + E) ∩ B)

1
k

and hence, using First Step, we obtain vol(B) ≤ vol(E ∩ B)vol(PE⊥(B)).
Third step: We obtain the inequality on the left.

If x ∈ tPE⊥(B), 0 ≤ t ≤ 1, then x = tPE⊥(b) being b ∈ B and tb ∈ x + E.
By convexity tb + (1− t)(E ∩ B) ⊂ B, so tb + (1− t)(E ∩ B) ⊂ (x + E) ∩ B and, being

Lebesgue measure translation invariant

vol[(1− t)(E ∩ B)] ≤ vol((x + E) ∩ B)

hence
(1− t(x))kvol(E ∩ B) ≤ vol((x + E) ∩ B),

where t(x) represents the Minkowski functional of PE⊥(B). Finally,

vol(B) ≥ vol(E ∩ B)
∫

PE⊥ (B)
(1− t(x))kdmn−k(x)

= vol(E ∩ B)
∫

PE⊥ (B)
(
∫ 1

t(x)
k(1− t)k−1dt)dmn−k(x)

= vol(E ∩ B)
∫ 1

0
k(1− t)k−1(

∫
tPE⊥ (B)

dmn−k)(x)dt

= vol(E ∩ B)vol(PE⊥(B))
∫ 1

0
k(1− t)k−1tn−kdt

= vol(E ∩ B) · vol(PE⊥(B)) ·
(

n
k

)−1
.

The following lemma gives us an expression of the volumes of sections of balls in Rn.

Lemma 2. Let {u1, . . . , un−k} be an orthonormal basis of E⊥, ‖ · ‖ the norm associated with the
ball B and E(ε) = {x ∈ Rn : |〈x, uj〉| ≤ ε, 1 ≤ j ≤ n− k}.

Then,

Γ(1 +
k
p
)vol(E ∩ B) = lim

ε→0
(2ε)k−n

∫
E(ε)

e−‖x‖
p
dmn(x), p > 0

Proof. First step.

vol(E ∩ B) ≥ (2ε)k−nvol(E(ε) ∩ B), ∀ε > 0

and
vol(E ∩ B) = lim

ε→0
(2ε)k−nvol(E(ε) ∩ B).

By Fubini’s theorem,

vol(E(ε) ∩ B) =
∫

E⊥
mk{y ∈ E : x + y ∈ E(ε) ∩ B}dmn−k(x)

=
∫

E⊥∩E(ε)
mk{y ∈ E : x + y ∈ B}dmn−k(x)

=
∫

PE⊥ (E(ε))
vol((x + E) ∩ B)dmn−k(x).
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Then, doing the change of variable x = εz,

(2ε)k−nvol(E(ε) ∩ B) = 2k−n
∫

PE⊥ (E(1))
vol((εz + E) ∩ B)dmn−k(z)

≤ 2k−nvol(E ∩ B)
∫

PE⊥ (E(1))
dmn−k(z) = vol(E ∩ B).

This last inequality allows us to apply the dominated convergence theorem and also
obtain that

lim
ε→0

(2ε)n−kvol(E(ε) ∩ B) = vol(E ∩ B)

Second step: Obtaining the result.

(2ε)k−n
∫

E(ε)
e−‖x‖

p
dmn(x) = (2ε)k−n

∫
E(ε)

(
∫ +∞

‖x‖p
e−tdt)dmn(x)

= (2ε)k−n
∫ ∞

0
e−t(

∫
t

1
p B∩E(ε)

dmn(x))dt

= (2ε)k−n
∫ ∞

0
e−tvol(t

1
p B ∩ E(ε))dt

=
∫ ∞

0
(2εt

−1
p )k−ne−tt

k
p vol(B ∩ E(εt

−1
p ))dt

−→
ε→0

∫ ∞

0
vol(B ∩ E)t

k
p e−tdt = vol(B ∩ E)Γ(1 +

k
p
).

Remark 1. If E = Rn, we have Γ(1 + n
p )vol(B) =

∫
Rn e−‖x‖

p
dmn(x), which for B = Bn

p allows

us to easily compute vol(Bn
p) because the integral

∫
Rn e−‖x‖

p
p dmn(x) is transformed by Fubini’s

theorem into:

Πn
i=1

∫
R

e−|xi |p dxi = (2
∫ ∞

0
e−tp

dt)n = (2
∫ ∞

0
e−ss

1
p ds)n = (2Γ(1 +

1
p
))n

and so,

mn(Bn
p) =

(2Γ(1 + 1
p ))

n

Γ(1 + n
p ).

In particular,

mn(Bn
1 ) =

2n

n!

mn(B2k
2 ) =

πk

k!
and mn(B2k+1

2 ) =
πk

1/2(1 + 1/2) . . . (k + 1/2).

From the above lemma, we will obtain the next Theorem. In order to do that we need
two definitions:

Definition 1. Let
f : Rn −→ R

x −→ e−‖αpx‖p
p ,

where αp = 2Γ(1 + 1
p ). We define the measure µn

p as µn
p(A) =

∫
A f (x)dmn(x).

So defined, µn
p turns out to be a probability measure with density f (x) with respect to mn,

because precisely ∫
Rn

e−‖x‖
p
p dmn(x) = αn

p.
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Definition 2. Let µ, ν be Radon positive measures on Rn. The measure µ is said to be finer than
the measure ν (µ � ν), if for any ball B ⊂ Rn, µ(B) ≥ ν(B).

Theorem 5. [17] If 1 ≤ q ≤ p < ∞,
vol(Bn

p∩E)
vol(Bk

p)
≥ vol(Bn

q∩E)
vol(Bk

q).

Proof. Applying the former lemma to Bn
p, we have

vol(E ∩Bn
p) =

1
Γ(1 + k/p)

lim
ε→0

(2ε)k−n
∫

E(ε)
e−‖x‖

p
p dmn(x).

Changing the variables x = αpz

vol(E ∩Bn
p) =

αk
p

Γ(1 + k/p)
lim
ε→0

(
2ε

αp
)k−n

∫
E( ε

αp )
e−‖αpz‖p

p dmn(z)

and calling η to ε
αp

vol(E ∩Bn
p) = vol(Bk

p) lim
η→0

(2η)k−nµn
p(E(η))

or equivalently
vol(E ∩Bn

p)

vol(Bk
p)

= lim
η→0

(2η)k−nµn
p(E(η))

and analogously
vol(E ∩Bn

q )

vol(Bk
q)

= lim
η→0

(2η)k−nµn
q (E(η)).

Let us see now that for p ≥ q, µ1
p � µ1

q.

In fact, it is enough to see that g(x) =
∫ x

0 (e
−|αpt|p − e−|αqt|q)dt ≥ 0, ∀ x > 0 and this

is so because g(0) = 0, g(∞) = 1/2− 1/2 = 0, g′(x) vanishes in one single point and
moreover it is positive on a neighbourhood of 0.

Moreover, if µ1 � ν1 and µ2 � ν2 being µi, νi, i = 1, 2 Radon positive measures with
concave logarithm density with respect to msi in Rsi , for i = 1, 2, then µ1 × µ2 � ν1 × ν2 in
Rs1+s2 [13].

Hence, if p ≥ q, µn
p � µn

q .
Now, being E(η) symmetric convex with non-empty interior and the measures µn

p, µn
q

regular and satisfying µn
p � µn

q , we have that µn
p(E(η)) ≥ µn

q (E(η)) and so

vol(E ∩Bn
p)

vol(Bk
p)

≥
vol(E ∩Bn

q )

vol(Bk
q)

We finish this note with some consequences:

Remark 2. Taking into account that E ∩Bn
2 = Bk

2, we obtain from Theorem 5:

For 2 ≤ p < ∞, vol(E ∩Bn
p) ≥ vol(Bk

p)

For 1 ≤ p ≤ 2, vol(E ∩Bn
p) ≤ vol(Bk

p).

On the other hand, if B, B′ are balls in Rn such that B ⊂ B′, we obtain from Theorem 5 that:

vol(B′ ∩ E)
vol(B′)

≤
(

n
k

)
1

vol(PE⊥(B′))
≤
(

n
k

)
1

vol(PE⊥(B))
≤
(

n
k

)
vol(B ∩ E)

vol(B).
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In particular:

For 2 ≤ p ≤ ∞, vol(E ∩Bn
p) ≤

(
n
k

)
vol(Bk

2)

vol(Bn
2 )

vol(Bn
p)

For 1 ≤ p ≤ 2, vol(E ∩Bn
p) ≥

(
n
k

)−1 vol(Bk
2)

vol(Bn
2 )

vol(Bn
p).
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