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Abstract

:

The purpose of this paper is to present some fixed point results for Frum-Ketkov type operators in complete b-metric spaces.
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1. Introduction and Preliminaries


In [1], Frum-Ketkov obtained a fixed point theorem, which was later generalized by Nussbaum [2] and Buley [3]. Later, Park and Kim [4] obtained other forms of the Frum-Ketkov theorem. Recently, Petrusel, Rus and Serban [5] gave sufficient conditions ensuring that a Frum-Ketkov operator is a weakly Picard operator and studied also some generalized Frum-Ketkov operators, see also [6].



The purpose of this paper is to obtain similar results for generalized Frum-Ketkov operators in the context of b-metric spaces.



We start by recalling the definition of Frum-Ketkov operators and some notions given in [5].



Let   M , d   be a metric space. We denote by   P ( M )   the family of all nonempty subsets of M, by    P  c l    ( M )    the family of all nonempty closed subsets of M and by    P  c p    ( M )    the family of all nonempty compact subsets of M.



The  ω -limit set of   x ∈ M   under the self-mapping f is defined as


   ω f   x  =  ⋂  n = 0   + ∞      f k   x  : k ≥ n  ¯  ,  








where   f k   is the iterate of order k of f.



Remark 1.

Ref. [5]    ω f   x  =   x *  ∈ M :  t h e r e   e x i s t s     n k     s u c h   t h a t     f  n k    x  →  x *   .  





Definition 1.

Ref. [5] Let   M , d   be a metric space. A self-mapping   f : M → M   is called:




	1. 

	
l-contraction if   l ∈  0 , 1    and   d ( f ( x ) , f ( y ) ) ≤ l d ( x , y )  , for every   x , y ∈ M  ;




	2. 

	
Contractive if   d ( f ( x ) , f ( y ) ) < d ( x , y )  , for every   x , y ∈ M   with   x ≠ y  ;




	3. 

	
Nonexpansive if   d ( f ( x ) , f ( y ) ) ≤ d ( x , y )  , for every   x , y ∈ M  ;




	4. 

	
Quasinonexpansive if    F f  ≠ ⌀   and, if   x * ∈  F f    then   d  ( f  ( x )  ,  x *  )  ≤ d  ( x ,  x *  )   , for every   x ∈ M  , where   F f   is the set of fixed point of the mapping f;




	5. 

	
Asymptotical regular in a point   x ∈ M  , if   d   f n   x  ,  f  n + 1    x   → 0  , as   n → + ∞ .  











Definition 2.

Ref. [7] Let   X ∈  P  c l    M    and   f : X → X  . f is called weakly Picard operator (WPO) if the sequence of successive approximation     f k   x    n ∈ N    converges for all   x ∈ X   and its limit (which in general depends on x) is a fixed point of f. If f is a WPO with a unique fixed point, then f is called Picard operator (PO).





Definition 3.

Ref. [5] Let   M , d   be a metric space,   X ∈  P  c l    M    and   K ∈  P  c p    M   . A continuous operator   f : X → X   is said to be a Frum-Ketkov    l , K   -operator if   l ∈  0 , 1    and


   d  f  x  , K  ≤ l d  x , K  ,    f o r   e v e r y    x ∈ X ,   








where


   d ( x , K ) = inf { d ( x , z ) : z ∈ K } .   













In what follows, we recollect the definition of b-metric that was considered by several authors, including Bakhtin [8] and Czerwik [9].



Definition 4.

Let M be a nonempty set and let   s ≥ 1   be a given real number. A functional   d : M × M → [ 0 , + ∞ )   is said to be a b-metric with constant s, if




	1. 

	
d is symmetric, that is,   d ( x , y ) = d ( y , x )   for all   x , y  ,




	2. 

	
d is self-distance, that is,   d ( x , y ) = 0   if and only if   x = y  ,




	3. 

	
d provides s-weighted triangle inequality, that is


   d ( x , z ) ≤ s [ d ( x , y ) + d ( y , z ) ] ,    f o r   a l l    x , y , z ∈ M .   

















In this case the triple   ( M , d , s )   is called a b-metric space with constant   s ≥ 1  .





It is evident that the notions of b-metric and standard metric coincide in case of   s = 1  . For more details on b-metric spaces see, e.g., [10,11,12] and corresponding references therein.



Example 1.

Let   M = [ 0 , + ∞ )   and   d : M × M → [ 0 , + ∞ )   such that   d  x , y  =   x − y  p  , p > 1 .   It’s easy to see that d is a b-metric with   s =  2  p − 1    , but is not a metric.





Definition 5.

A mapping   φ : [ 0 , + ∞ ) → [ 0 , + ∞ )   is called a comparison function if it is increasing and    φ n   ( t )  → 0  , as   n → + ∞  , for any   t ∈ [ 0 , + ∞ )  .





Lemma 1.

Ref. [11] If   φ : [ 0 , + ∞ ) → [ 0 , + ∞ )   is a comparison function, then:




	1. 

	
Each iterate   φ k   of φ,   k ≥ 1  , is also a comparison function;




	2. 

	
φ is continuous at 0;




	3. 

	
  φ ( t ) < t  , for any   t > 0  .











Definition 6.

A function   φ : [ 0 , + ∞ ) → [ 0 , + ∞ )   is said to be a   c  -comparison function if




	1. 

	
φ is increasing;




	2. 

	
There exists    k 0  ∈ N  ,   a ∈ ( 0 , 1 )   and a convergent series of nonnegative terms     ∑  k = 1   + ∞     v k    such that    φ  k + 1    ( t )  ≤ a  φ k   ( t )  +  v k   , for   k ≥  k 0    and any   t ∈ [ 0 , + ∞ ) .  











In order to give some fixed point results to the class of b-metric spaces, the notion of   c  -comparison function was extended to b-comparison function by V. Berinde [12].



Definition 7.

Ref. [12] Let   s ≥ 1   be a real number. A mapping   φ : [ 0 , + ∞ ) → [ 0 , + ∞ )   is called a b-comparison function if the following conditions are fulfilled




	1. 

	
φ is monotone increasing;




	2. 

	
There exist    k 0  ∈ N  ,   a ∈ ( 0 , 1 )   and a convergent series of nonnegative terms     ∑  k = 1   + ∞     v k    such that    s  k + 1    φ  k + 1    ( t )  ≤ a  s k   φ k   ( t )  +  v k   , for   k ≥  k 0    and any   t ∈ [ 0 , + ∞ ) .  











The following lemma is very important in the proof of our results.



Lemma 2.

Ref. [12] If   φ : [ 0 , + ∞ ) → [ 0 , + ∞ )   is a b-comparison function, then we have the following conclusions:




	1. 

	
The series     ∑  k = 0   + ∞     s k   φ k   ( t )    converges for any   t ∈  0 , + ∞   ;




	2. 

	
The function    S b  :  [ 0 , + ∞ )  →  [ 0 , + ∞ )    defined by    S b   ( t )  =   ∑  k = 0   + ∞     s k   φ k   ( t )  ,  t ∈  [ 0 , + ∞ )   , is increasing and continuous at 0.











Remark 2.

Due to the Lemma 1.2, any b-comparison function is a comparison function.






2. Frum-Ketkov Operators in  b -Metric Spaces


Definition 8.

Let   ( M , d )   be a b-metric space with constant   s ≥ 1  ,   X ∈  P  c l    M    and   K ∈  P  c p    M   . A continuous function   f : X → X   is said to be a Frum-Ketkov    φ , K   -operator if there exists   φ : [ 0 , + ∞ ) → [ 0 , + ∞ )   a b-comparison function such that


   d  f  x  , K  ≤ φ  d  x , K   ,    f o r   e v e r y    x ∈ X .   













Example 2.

Let   M =  0 , + ∞  , d : M × M →  0 , + ∞  , d  x , y  =   x − y  2  , s = 2  . From Example 1.1. we have that   M , d   is a b-metric space. Let   X =  0 , 1  , K =  0  ,     f : X → X ,     f  x  =  x  x + 2   , φ :  [ 0 , + ∞ )  →  [ 0 , + ∞ )  , φ  t  =  t  t + 4    . f is Frum-Ketkov operator.





Theorem 1.

Let   ( M , d )   be a b-metric space with constant   s ≥ 1  ,   X ∈  P  c l    M   ,   K ∈  P  c p    M    and   f : X → X   a Frum-Ketkov    φ , K   -operator. Then the following conclusion hold:




	(i) 

	
   ω f   x  ≠ ⌀   and    ω f   x  ⊂ X ∩ K  , for every   x ∈ X  ;




	(ii) 

	
   F f  ⊂ X ∩ K  ;




	(iii) 

	
  f  X ∩ K  ⊂ X ∩ K  ;




	(iv) 

	
If f is asymptotically regular, then    ϖ f   x  ⊂  F f   , for every   x ∈ X  . If, in addition, f is quasinonexpansive, then f is WPO.












Proof. (i) Let   x ∈ X   arbitrary. Because   K ∈  P  c p    M   , there exists    y n    such that   d  f  x  , K  = d  f  x  ,  y n    


     d  f  x  ,  y n   ≤ φ  d  x ,  y n          d   f 2   x  ,  y n   ≤ φ  d  f  x  ,  y n    ≤  φ 2   d  x ,  y n        











Inductively, we obtain


  d   f n   x  ,  y n   ≤  φ n   d  x ,  y n    → 0 ,  a s  n → + ∞ .  











Hence,   d   f n   x  ,  y n   → 0 ,  a s  n → + ∞ .  



As   K ∈  P  c p    M   , there exists a subsequence    y  n k     of    y n   , such that    y  n k   →  y *   x  ∈ K  ,    n k  → + ∞ .  



Since   d   f n   x  ,  y n   → 0  , then   d   f  n k    x  ,  y *   x   → 0   and hence    f  n k    x  →  y *   x  ,  n k  → + ∞ ,   and thus    y *   x  ∈  ω f   x  .  



In this way    ω f   x  ≠ ⌀   and    ω f   x  ⊂ X ∩ K  , for every   x ∈ X .  



(ii) Let   x ∈  F f   . Suppose   d  x , K  ≠ 0 .  


  d  x , K  = d  f  x  , K  ≤ φ  d  x , K   < d  x , K  ,  








which is a contradiction.



Hence,   d  x , K  = 0   which implies   x ∈ K   and thus    F f  ⊂ X ∩ K .  



(iii) Let   x ∈ X ∩ K  


  d  f  x  , K  ≤ φ  d  x , K   = φ  0  = 0 .  











Hence,   f  x  ∈ K .  



(iv) From (i) we have that    ω f   x  ≠ ⌀  , for every   x ∈ X  . Let    x *   x  ∈      ω f   x   . There exists   n k   such that    f  n k    x  →  x *   x    as    n k  → + ∞ .  


     d   x *  , f   x *        ≤ s d   x *  ,  f  n k     x *    + s d   f  n k     x *   , f   x *             ≤ s d   x *  ,  f  n k     x *    +  s 2  d   f  n k     x *   ,  f   n k  + 1     x *    +  s 2  d   f   n k  + 1     x *   , f   x *        



(1)







From (i) and (iii) since    x *   x  ∈      ω f   x    we have that


  d   f 2    x *   , f   x *    ≤ φ  d   x *  , f   x *     .  











Inductively, we obtain


  d   f  n k     x *   ,  f   n k  + 1     x *    ≤  φ  n k    d   x *  , f   x *     .  











Now, if in (1) we consider    n k  → + ∞  , then we obtain   d   x *  , f   x *     , which implies that    x *  ∈  F f    and thus    ϖ f   x  ⊂  F f  .  



Consider now that, in addition, f is quasinonexpansive and let   x ∈ X   and    f  n k    x  →  y *   x  ,  n k  → + ∞   (see (i)). Because f is asymptotically regular,    y *   x  ∈  F f  .  


     d  f  x  ,  y *   ≤ φ  d  x ,  y *          d   f 2   x  ,  y *   ≤ φ  d  f  x  ,  y *    < d  f  x  ,  y *   .     











Hence the sequence   d   f n   x  ,  y *     is decreasing and since    d   f  n k    x  ,  y *    → 0   as    n k  → + ∞  , we obtain   d   f n   x  ,  y *   → 0   as   n → + ∞   and thus f is WPO. □






3. Conclusions


Frum-Ketkov type contractions are an interesting topic that has been overlooked and has not attracted anyone’s attention for many years. The very attractive recent publication of Petrusel–Rus–Serban [5] is the one that brought this shadowy concept to light. In this paper, we consider the Frum-Ketkov type contractions in the framework of b-metric space. For this reason, this paper should be considered as an initial paper that opens a new trend in metric fixed point theory.
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