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Abstract: The Gerdjikov–Ivanov (GI) equation is one type of derivative nonlinear Schrödinger
equation used widely in quantum field theory, nonlinear optics, weakly nonlinear dispersion water
waves and other fields. In this paper, the coupled GI equation on a time–space scale is deduced
from Lax pairs and the zero curvature equation on a time–space scale, which can be reduced to the
classical and the semi-discrete GI equation by considering different time–space scales. Furthermore,
the Darboux transformation (DT) of the GI equation on a time–space scale is constructed via a gauge
transformation. Finally, N-soliton solutions of the GI equation are given through applying its DT,
which are expressed by the Cayley exponential function. At the same time, one-solition solutions are
obtained on three different time–space scales ( X = R, X = C and X = Kp ).
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1. Introduction

There are some practical problems that cannot be solved accurately by using only
continuous or discrete analysis. In order to unify continuous and discrete analysis, a
time scale was initiated by Stefan Hilger in 1988, which is an arbitrary nonempty closed
subset of the real numbers [1–3]. In recent years, extensive research about time scales has
been conducted, particularly in stability, oscillation and initial-boundary value problems
[4–8]. In addition, time scale dynamic equations have wide application prospects in many
areas, such as population dynamic models [9], epidemic models [10,11] and models of the
financial consumption process [12,13].

Toda’s lattice, Hirota’s network and nonlinear Schrödinger dynamic equations were
derived on a time–space scale by extending an Ablowitz–Ladik hierarchy of integrable
dynamic systems on a time–space scale [14]. This extension facilitates a variety of modeling
applications of Ablowitz–Ladik hierarchies, including optics and chaos in dispersion
numerical schemes [15]. The formulas for solutions of boundary value problem of Burgers
equation and heat equation were derived on a time–space scale by using the Cole–Hopf
transformation. These formulas may be used to study the wave motion on a time–space
scale. Sine-Gordon equation was obtained on a time–space scale and its solution expressed
by the Cayley exponential function was given [16–18]. However, the development of time–
space scales is relatively slow in nonlinear dynamical systems compared to other fields.

There are important applications regarding the derivative nonlinear Schrödinger
(DNLS) equation in many fields [19]. In particular, in situations where higher order
nonlinear effects need to be restored, a family of DNLS equations was investigated [20].
There are three famous DNLS equations, which are the DNLS I equation [21,22], DNLS
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II equation [23,24] and DNLS III equation [25]. The forms of these three equations are as
follows

iqt + qxx + i
(

q2q∗
)

x
= 0,

iqt + qxx + iqq∗qx = 0,

iqt + qxx +
1
2

q3q∗2 − iq2q∗x = 0,

where q∗ represents the complex conjugate of q. They can be transformed into each other by
a gauge transformation [26]. Specifically, the last equation is also known as the Gerdjikov–
Ivanov (GI) equation, which was discovered by Gerdjikov and Ivanov [27]. In recent years,
several useful methods have been proposed for obtaining solutions of the GI equation, such
as the Darboux transformation (DT) [28,29], algebra-geometric solution [30–33], Wronskian
type solution [29,34] and Hamiltonian structures [35,36].

The advantage of DT is that new solutions can be obtained successively through
iteration. The explicit soliton-like solution of the GI equation was obtained by its DT [26].
The explicit N-fold DT with multiparameters for the GI equation was constructed with
the help of a gauge transformation [28]. The dark soliton, bright soliton, breather solution
and periodic solution are given explicitly from different seed solutions. In this paper, the
coupled GI equation on a time–space scale is deduced by the Lax matrix equation extended
on a time–space scale. This extension will provide a wider range of nonlinear integrable
dynamic models and promote solutions to practical problems.

This paper is organized as follows. In Section 2, the coupled GI equation on a time–
space scale is obtained, which can be reduced to the classical and the semi-discrete GI
equation. In Section 3, N-fold DT and N-soliton solutions of the GI equation on a time–
space scale are constructed with the help of a gauge transformation. In particular, one-
soliton solutions of the GI equation on three different time–space scales are obtained from
seed solution. The last section is our conclusions.

2. GI Equation on a Time–Space Scale

For constructing the GI equation on a time–space scale, jump operators, graininess
functions and the ∇−derivative are introduced as follows [1–3].

Definition 1. For (t, x) ∈ T×X, backward jump operators are defined as

σ : T→ T, ρ : X→ X,

σ(t) = sup{s ∈ T : s < t}, ρ(x) = sup{y ∈ X : y < x}. (1)

For x ∈ X, the forward jump operator β(x) : X → X is defined as β(x) = ρ−1(x) =
inf{y ∈ X : y > x}.

Definition 2. The ∇−derivative associated with t (time) and x (space) variables is defined as

∇t f (t, x) = lim
p→µ(t)

f (t, x)− f σ(t, x)
p

, (2)

∇x f (t, x) = lim
q→ν(x)

f (t, x)− f ρ(t, x)
q

, (3)

where the graininess functions µ : T→ [0,+∞), ν : X→ [0,+∞) are defined as

µ(t) = t− σ(t), ν(x) = x− ρ(x). (4)

Note that,
f σ(t, x) := f (σ(t), x) = f (t, x)− µ(t)∇t f (t, x), (5)

f ρ(t, x) := f (t, ρ(x)) = f (t, x)− ν(x)∇x f (t, x). (6)
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Definition 3. The Cayley exponential function on a time scale is defined by

eα(x, x0) := exp
(∫ x

ι0
ζµ(s)(α(s))∆s

)
, eα(x) := eα(x, 0),

where α = α(x) is a given rd-continuous regressive function and

ζh(z) :=
1
h

log
1 + 1

2 zh
1− 1

2 zh
, h > 0, ζ0(z) := z.

When X = R and X = hZ, the Cayley exponential function becomes

eα(x) = e
∫ x

0 α(s)dsand

eα(x) =

(
1 + 1

2 αh
1− 1

2 αh

) x
h

,

respectively.

Lemma 1. Take T×X = R×R. The backward jump operators

σ(t) = sup(−∞, t) = t, ρ(x) = sup(−∞, x) = x, (7)

and the graininess functions

µ(t) = t− σ(t) = 0, ν(x) = x− ρ(x) = 0. (8)

Lemma 2. Take T×X = R×Z. The backward jump operators

σ(t) = sup(−∞, t) = t, ρ(x) = sup{x− 1, x− 2, · · · } = x− 1, (9)

and the graininess functions

µ(t) = t− σ(t) = 0, ν(x) = x− ρ(x) = 1. (10)

Lemma 3. When X = R, X = h̄Z and X = Kp, the ∇−derivative becomes

∇x f (x) = fx(x),

∇x f (x) =
f (x)− f (x− h̄)

h̄
and

∇x f (x) =
f (x)− f

(
p−1x

)
(1− p−1)x

,

respectively.

In what follows, based on Lax pairs of DNLS equation from the generalized Kaup–
Newell spectrum problem [32], a ∇-dynamical system is introduced{

∇xψ(t, x) = U(t, x)ψ(t, x),

∇tψ(t, x) = V(t, x)ψ(t, x),
(11)

where 
U =

(
−iλ2 − 1

2 iqr λq
λr iλ2 + 1

2 iqr

)
,

V =

(
A(t, x) B(t, x)
C(t, x) −A(t, x)

)
,

(12)
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with ψ=
(

ψ1(t, x)
ψ2(t, x)

)
, q and r are potential functions, and λ is a spectral parameter.

According to the compatibility condition ∇xtψ = ∇txψ and ∇−derivative product
rules [15], the zero curvature equation on a time–space scale is obtained

∇tU −∇xV + UσV −VρU = 0. (13)

Then, substituting Equation (12) into Equation (13), we find

− i(C + Cρ)λ2 − (rσ A + rAρ +∇tr)λ−
1
2

i(qr)σC− 1
2

iqrCρ +∇xC = 0,

− i(B + Bρ)λ2 − (qσ A + qAρ +∇tq)λ−
1
2

i(qr)σB− 1
2

iqrBρ −∇xB = 0,

− i(A− Aρ)λ2 + (qσC− rBρ)λ− 1
2

i(qr)σ A +
1
2

iqrAρ − 1
2

i∇t(qr)−∇x A = 0,

− i(A− Aρ)λ2 + λ(rσB− qCρ)− 1
2

i(qr)σ A +
1
2

iqrAρ − 1
2

i∇t(qr) +∇x A = 0.

(14)

Take A, B and C as quaternary polynomials of λ,

A =
4

∑
j=0

ajλ
j, B =

4

∑
j=0

bjλ
j, C =

4

∑
j=0

cjλ
j. (15)

Then, by substituting Equation (15) into Equation (14), these relations are obtained

a4 =− 2i, a1 = a3 = b0 = b2 = b4 = c0 = c2 = c4 = 0,

b3 =− bρ
3 + 2(qσ + q), c3 = −cρ

3 + 2(rσ + r) = 0,

b1 =− bρ
1 + iqaρ

2 + iqσa2 −
1
2

qrbρ
3 −

1
2
(qr)σb3 + i∇xb3,

c1 =− cρ
1 + iraρ

2 + irσa2 −
1
2

qrcρ
3 −

1
2
(qr)σc3 − i∇xc3,

a2 =∇−1
x (

1
2

qσc1 −
1
2

rσb1 −
1
2

rbρ
1 +

1
2

qcρ
1),

a0 =∇−1
x (−1

2
iqrσaρ

0 +
1
4

qrrσbρ
1 −

1
2

irσbx
1 −

1
2

iqσrσa0 +
1
4
(qr)σb1rσ

+
1
2

iqraρ
0 −

1
4

q2rcρ
1 +

1
2

irσqa0 −
1
4
(qr)σqc1 −

1
2

ic1xq),

(16)

and evolution equations on a time–space scale are obtained

∇tq = qaρ
0 + qσa0 +

1
2

iqrbρ
1 +

1
2

i(qr)σb1 +∇xb1, (17)

∇tr = −raρ
0 − rσa0 −

1
2

iqrcρ
1 −

1
2

i(qr)σc1 +∇xc1. (18)

According to Equations (5) and (6), Equation (16) is reduced to

b3 = 2(2− ν(x)∇x)
−1(q + qσ), (19)

c3 = 2(2− ν(x)∇x)
−1(r + rσ), (20)

b1 = 2i(2− ν(x)∇x)
−1m1a2 +

1
2
(2− ν(x)∇x)

−1m4(q + qσ), (21)

c1 = 2i(2− ν(x)∇x)
−1m2a2 +

1
2
(2− ν(x)∇x)

−1m3(r + rσ), (22)

∇xa0 =
1
2

im5a0 +
1
2

i(rσm4m1 − qm4m2)a2 +
1
8

rσm2
4(q + qσ)− 1

8
qm4m3(r + rσ), (23)
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∇xa2 =
1
2

i(m1m2 −m2m1)(2− ν(x)∇x)a2 +
1
2

m1m3(r + rσ) +
1
2

m2m4(q + qσ), (24)

with
m1 = [qσ + q(1− ν(x)∇x)](2− ν(x)∇x)

−1,

m2 = [rσ + r(1− ν(x)∇x)](2− ν(x)∇x)
−1,

m3 = [(qr)σ + (qr)(1− ν(x)∇x) + 2i∇x](2− ν(x)∇x)
−1,

m4 = [(qr)σ + (qr)(1− ν(x)∇x)− 2i∇x](2− ν(x)∇x)
−1,

m5 = (qr− qrσ)(1− ν(x)∇x) + qrσ − qσrσ.

Then, the coupled GI equation on a time–space scale is obtained
∇tq =q(1− ν(x)∇x)a0 + qσa0 +

1
2

iqr(1− ν(x)∇x)b1 +
1
2

i(qr)σb1 +∇xb1,

∇tr =− r(1− ν(x)∇x)a0 − rσa0 −
1
2

iqr(1− ν(x)∇x)c1 −
1
2

i(qr)σc1 +∇xc1,
(25)

where a0, b1, c1 are defined by Equations (21)–(23), respectively.
In the following, two special kinds of equations are given as follows.
Case I: Taking T×X = R×R, we find µ(t) = 0, ν(x) = 0.

Equations (21)–(23) are reduced to

b1 = iqx,

c1 = −irx,

a0 =
1
2
(rqx − qrx) +

1
4

iq2r2.

Then, Equation (25) is reduced to the coupled GI equation
iqt + qxx + iq2rx +

1
2

q3r2 = 0,

irt − rxx + ir2qx −
1
2

q2r3 = 0.
(26)

When r = −q∗, the classical GI equation is obtained

iqt + qxx +
1
2

q3q∗2 − iq2q∗x = 0. (27)

Case II: Taking T×X = R×Z, we find µ(t) = 0, ν(x) = 1.

f σ(x, t) = f (x, t),

f ρ(x, t) = E f (x, t) = f (x, t)− (1− E) f (x, t),
(28)

where E is the shift operator. Then, Equations (19)–(24) are reduced to

b3 = 4(1 + E)−1q, (29)

c3 = 4(1 + E)−1r, (30)

a2 = (1− E)−1
(

qr2 + rm7q
)

, (31)

b1 = 2i(1 + E)−1q(1− E)−1
(

qr2 + rm7q
)
+ (1 + E)−1m7q, (32)

c1 = 2i(1 + E)−1r(1− E)−1
(

qr2 + rm7q
)
+ (1 + E)−1m6q, (33)
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a0 =
1
2

i(1− E)−1(rm7q− qm7r)(1− E)−1
(

qr2 + rm7q
)

+
1
4
(1− E)−1

(
rm2

7q− qm7m6r
)

,
(34)

with
m6 = qr + 2i(1− E)(1 + E)−1,

m7 = qr− 2i(1− E)(1 + E)−1.

Therefore, the semi-discrete coupled GI equation is obtained

qt = q(1 + E)a0 +
1
2

iqr(1 + E)b1 + (1− E)b1,

rt = −r(1 + E)a0 −
1
2

iqr(1 + E)c1 + (1− E)c1,
(35)

where a0, b1, and c1 are defined by Equations (32)–(34), respectively.

3. DT of GI Equation on a Time–Space Scale

In this section, we construct a DT for GI equation and give its N-soliton solutions on a
time–space scale.

3.1. Construction of DT on a Time–Space Scale

First, it can be shown by long calculations that Equation (12) is transformed toU = −iλ2σ3 + λQ− 1
2

iQ2σ3,

V = −2iσ3λ4 + B3λ3 + a2σ3λ2 + B1λ + a0σ3,
(36)

with σ3 is a Pauli matrix where Q =

(
0 q
−q∗ 0

)
, B1 =

(
0 b1
c1 0

)
, B3 =

(
0 b3
c3 0

)
,

aj(j = 0, 2), bj, cj(j = 1, 3) are defined by Equations (19)–(24), respectively.
Then, the ∇-dynamical system Equation (11) is transformed into{

∇xψ[1] = U[1]ψ[1],

∇tψ[1] = V[1]ψ[1],
(37)

under a gauge transformation
ψ[1] = T[1]ψ. (38)

Substituting Equation (38) into Equation (37), we find

U[1]T[1] = ∇xT[1] + T[1]ρU, (39)

V[1]T[1] = ∇tT[1] + T[1]σV, (40)

where U[1] = −iλ2σ3 + λQ[1]− 1
2

iQ[1]2σ3,

V[1] = −2iσ3λ4 + B3[1]λ3 + a2[1]σ3λ2 + B1[1]λ + a0[1]σ3,
(41)

with Q[1] =
(

0 q[1]
−q[1]∗ 0

)
, B1[1] =

(
0 b1[1]

c1[1] 0

)
, B3[1] =

(
0 b3[1]

c3[1] 0

)
.

Assume
T[1] = T0 + T1λ (42)

where T0 =

(
a b
c d

)
, T1 =

(
a11 b12
c21 d22

)
.



Axioms 2021, 10, 294 7 of 14

Substituting Equation (42) into Equation (39) and comparing the coefficients in the
terms of the same powers λj(j = 0, · · · , 5) on both sides of equation, we find

c21 = b12 = 0,

a11 = d22 = 1,

q[1] = q + ib + ibρ,

q[1]∗ = q∗ + ic + icρ.

(43)

Setting S = −T0 =

(
s11 s12
s21 s22

)
, we obtain

T[1] = λI − S, (44)

q[1] = q− is12 − isρ
12. (45)

Substituting Equation (44) into Equation (39), we obtain

∇xS =
1
2

iSρQ2σ3 +
1
2

iSQ2σ3 + QS2 − SρQS + iSρS2σ3 + iS3σ3. (46)

Assume
S = HΛH−1 (47)

with Λ =

(
λ 0
0 λ∗

)
is an eigenvalue matrix, H =

(
ψ1 ψ∗2
ψ2 −ψ∗1

)
is a fundamental solution

matrix and satisfies∇x H = −iσ3HΛ2 + QHΛ− 1
2

iQ2σ3H,

∇tH = −2iσ3HΛ4 + B3Λ3 + a2σ3HΛ2 + B1HΛ + a0σ3H.
(48)

It is easy to obtain

∇xS = ∇x

(
HΛH−1

)
=

1
2

iSρQ2σ3 +
1
2

iSQ2σ3 + QS2 − SρQS + iSρS2σ3 + iS3σ3,
(49)

which means that Equation (47) yields Equation (46). From T[1]t + T[1]σV = V[1]T[1],
we find

−∇tS + (λI − Sσ)
(
−2iσ3λ4 + B3λ3 + a2σ3λ2 + B1λ + a0σ3

)
=
(
−2iσ3λ4 + B3[1]λ3 + a2[1]σ3λ2 + B1[1]λ + a0[1]σ3

)
(λI − S).

(50)

Comparing the coefficients in terms of the same powers λj(j = 0, · · · , 5) on both sides
of Equation (50), we obtain

λ0 : −∇tS− a0Sσσ3 = −a0[1]σ3S,

λ1 : a0σ3 − SσB1 = −B1[1]S + a0[1]σ3,

λ2 : B1 − a2Sσσ3 = B1[1]− a2[1]σ3S,

λ3 : a2σ3 − SσB3 = a2[1]σ3 − B3[1]S,

λ4 : B3 + 2iSσσ3 = B3[1] + 2iσ3S,

λ5 : −2iσ3 = −2iσ3.

(51)
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Then, the gauge transformations Equations (44) and (45) are proven to be DT of the GI
equation on a time–space scale.

3.2. Soliton Solutions of the GI Equation on a Time–Space Scale

Soliton solutions of the GI equation on a time–space scale are constructed by applying
its DT. First, Equation (11) is transformed to

∇xψ[0] = U[0]ψ[0] =
(
−iλ2 + 1

2 iq[0]q[0]∗ λq[0]
−λq[0]∗ iλ2 − 1

2 iq[0]q[0]∗

)
ψ[0],

∇tψ[0] = V[0]ψ[0] =
(
−2iλ4 + a2[0]λ2 + a0[0] b3[0]λ3 + b1[0]λ

c3[0]λ3 + c1[0]λ 2iλ4 − a2[0]λ2 − a0[0]

)
ψ[0],

(52)

where ψ[0]=
(

ψ1[0]
ψ2[0]

)
.

Let us set the spectral parameter λ = λ1. A one-fold DT of the GI equation on a
time–space scale is constructed

ψ[1] = T[1]ψ[0]
= (λI − S[0])ψ[0]

=

(
λ− s11[0] −s12[0]
−s21[0] λ− s22[0]

)
ψ[0],

q[1] = q[0]− is12[0]− is12[0]
ρ

= q[0]− i
(
λ1 − λ∗1

)
ψ1[0]ψ∗2 [0]

∆0
− i
(
λ1 − λ∗1

)
ψ

ρ
1 [0]ψ

∗ρ
2 [0]

∆ρ
0

,

(53)

where

S =
1

∆0

(
−λ1|ψ1[0]|2 + λ∗1 |ψ2[0]|2

(
λ∗1 − λ1

)
ψ1[0]ψ∗2 [0](

−λ∗1 − λ1
)
ψ∗1 [0]ψ2[0] −λ∗1 |ψ1[0]|2 − λ1|ψ2[0]|2

)
, (54)

with ∆0 = −|ψ1[0]|2 − |ψ2[0]|2.
Under the DT (53), the ∇-dynamical system (52) is transformed into
∇xψ[1] = U[1]ψ[1] =

(
−iλ2 + 1

2 iq[1]q[1]∗ λq[1]
−λq[1]∗ iλ2 − 1

2 iq[1]q[1]∗

)
ψ[1],

∇tψ[1] = V[1]ψ[1] =
(
−2iλ4 + a2[1]λ2 + a0[1] b3[1]λ3 + b1[1]λ

c3[1]λ3 + c1[1]λ 2iλ4 − a2[1]λ2 − a0[1]

)
ψ[1].

(55)

In what follows, taking the “seed solution” q[0] = 0, we obtain eigenvectors ψ[0] of
Equation (52) with λ = λ1

ψ[0]=
(

ψ1[0]
ψ2[0]

)
=

(
e−iλ2

1
(x, 0)e−2iλ4

1
(t, 0)

eiλ2
1
(x, 0)e2iλ4

1
(t, 0)

)
, (56)

ψρ[0]=
(

ψ
ρ
1 [0]

ψ
ρ
2 [0]

)
=

([
1− iλ2

1ν(x)
]
e−iλ2

1
(x, 0)e−2iλ4

1
(t, 0)[

1 + iλ2
1ν(x)

]
eiλ2

1
(x, 0)e2iλ4

1
(t, 0)

)
, (57)

where e±iλ2
1
(x, 0) and e±2iλ4

1
(t, 0) are Cayley exponential functions [18]. Then, a one-soliton

solution of the GI equation on a time–space scale is obtained

q[1] =
i
(
λ1 − λ∗1

)
E3

E1 + E2
+

i
(
λ1 − λ∗1

)(
1− iλ∗21 ν(x)

)
E3(

1 + iλ∗21 ν(x)
)
E1 +

(
1− iλ∗21 ν(x)

)
E2

, (58)
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where
E1 = −e−i(λ2

1−λ∗21 )(x, 0)e−2i(λ4
1−λ∗41 )(t, 0),

E2 = −ei(λ2
1−λ∗21 )(x, 0)e2i(λ4

1−λ∗41 )(t, 0),

E3 = −e−i(λ2
1+λ∗21 )(x, 0)e−2i(λ4

1+λ∗41 )(t, 0).

Similarly, we take the spectral parameter λ = λ2. A two-fold DT of the GI equation
on a time–space scale is constructed

ψ[2] = T[2]ψ[1]
= (λI − S[1])ψ[1]

=

(
λ− s11[1] −s12[1]
−s21[1] λ− s22[1]

)
ψ[1]

= T[2]T[1]ψ[0],

q[2] = q[1]− is12[1]− is12[1]
ρ

= q[1]− i
(λ2 − λ∗2)ψ1[1]ψ∗2 [1]

∆1
− i

(λ2 − λ∗2)ψ
ρ
1 [1]ψ

∗ρ
2 [1]

∆ρ
1

,

(59)

where

S[1] =
1
∆ 1

(
−λ2|ψ1[1]|2 + λ∗2 |ψ2[1]|2 (λ∗2 − λ2)ψ1[1]ψ2[1]∗

(−λ∗2 − λ2)ψ1[1]∗ψ2[1] −λ∗2 |ψ1[1]|2 − λ2|ψ2[1]|2

)
, (60)

with ∆1 = −|ψ1[1]|2 − |ψ2[1]|2.

When the spectral parameter λ = λN , N-fold DT is constructed as follows

ψ[N] = T[N]ψ[N − 1]

= (λI − S[N − 1])ψ[N − 1]

=

(
λ− s11[N − 1] −s12[N − 1]
−s21[N − 1] λ− s22[N − 1]

)
ψ[N − 1]

= T[N] · · · T[3]T[2]T[1]ψ[0],
q[N] = q[N − 1]− is12[N − 1]− isρ

12
[N − 1]

= q[0] + i
N

∑
j=1

(
λj − λ∗j

)
ψ1[j− 1]ψ∗2 [j− 1]

|ψ1[j− 1]|2 + |ψ2[j− 1]|2
+ i

N

∑
j=1

(
λj − λ∗j

)
ψ

ρ
1 [j− 1]ψ∗ρ2 [j− 1]∣∣∣ψρ

1 [j− 1]
∣∣∣2 + ∣∣∣ψρ

2 [j− 1]
∣∣∣2 .

(61)

An N-soliton solution of the GI equation on a time–space scale is obtained

q[N] = i
N

∑
j=1

(
λj − λ∗j

)
ψ1[j− 1]ψ∗2 [j− 1]

|ψ1[j− 1]|2 + |ψ2[j− 1]|2
+ i

N

∑
j=1

(
λj − λ∗j

)
ψ

ρ
1 [j− 1]ψ∗ρ2 [j− 1]∣∣∣ψρ

1 [j− 1]
∣∣∣2 + ∣∣∣ψρ

2 [j− 1]
∣∣∣2 . (62)

In what follows, N-fold DT and N-soliton solutions of the GI equation on three special
time–space scales are obtained as follows.
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Case I: Taking T×X = R×R, we obtain an N-fold DT of the classical GI equation

ψ[N] = T[N]ψ[N − 1]

= (λI − S[N − 1])ψ[N − 1]

=

(
λ− s11[N − 1] −s12[N − 1]
−s21[N − 1] λ− s22[N − 1]

)
ψ[N − 1]

= T[N] · · · T[3]T[2]T[1]ψ[0],
q[N] = q[N − 1]− 2is12[N − 1]

= q[0] + 2i
N

∑
j=1

(
λj − λ∗j

)
ψ1[j− 1]ψ∗2 [j− 1]

|ψ1[j− 1]|2 + |ψ2[j− 1]|2
.

(63)

When N = 1, q[0]=0 and the spectral parameter λ1 = α1 + iη1, we obtain a one-soliton
solution of Equation (27)

q[1] = −2η1e2iY1 sech(2X1), (64)

where
X1 = 4α1η1x + 16

(
α3

1η1 − α1η3
1

)
t,

Y1 = −2
(

α2
1 − η2

1

)
x− 4

(
α2

1 − 6α2
1η2

1

)
t.

The profile of the one-soliton in Figure 1.

Figure 1. One-soliton solution (64) with α1 = 0.7, η1 = 0.6.

When N = 2, q[0]=0 and the spectral parameter λ2 = α2 + iη2, we obtain a two-soliton
solution of Equation (27)

q[2] =− 2η1e2iY1 sech(2X1)− 4η2
M1M2e−2iY2 − α1M1 sech(2X1)e2X2−2iY1

|M1|2e2X2 + |M2|2e−2X2 + M4 + M5 + M6

+ 4η2
iη1M2 sech(2X1)e−2X2−2iY1 −M3

|M1|2e2X2 + |M2|2e−2X2 + M4 + M5 + M6
,

(65)
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where
M1 = α2 − α1 tanh(2X1) + (η2 − η1)i,

M2 = α2 − α1 + (η2 − η1 tanh(2X1))i,

M3 = iα1η1 sech2(2X1)e−4iY1+2iY2 ,

M4 = 2i sech(2X1) sinh(2iY1 − 2iY2)(η1α2 + α1η2),

M5 = 2 sech(2X1) cosh(2iY1 − 2iY2)
(

η1η2 − η2
1 + α1α2 − α2

1

)
,

M6 = sech2(2X1)
(

η2
1e−2X2 + α2

1e2X2
)

,

X2 = 4α2η2x + 16
(

α3
2η2 − α2η3

2

)
t,

Y2 = −2
(

α2
2 − η2

2

)
x− 4

(
α2

2 − 6α2
2η2

2

)
t.

Case II: Taking T×X = R×C, we find

µ(t) = 0,

ν(x) =


1

3m+1 , x ∈ L,

0, x ∈ C\L,

(66)

where C is a Cantor set. L contains left discrete elements of C,

L =

{
m

∑
k=1

ak

3k +
1

3m+1 : m ∈ N, ak ∈ {0, 2}, 1 ≤ k ≤ m

}
.

Then, an N-fold DT of the GI equation is constructed

ψ[N] = T[N]ψ[N − 1]

= (λI − S[N − 1])ψ[N − 1]

=

(
λ− s11[N − 1] −s12[N − 1]
−s21[N − 1] λ− s22[N − 1]

)
ψ[N − 1]

= T[N] · · · T[3]T[2]T[1]ψ[0],

q[N] =


q[0] + i

N
∑

j=1

(
λj−λ∗j

)
ψ1[j−1]ψ∗2 [j−1]

|ψ1[j−1]|2+|ψ2[j−1]|2
+ i

N
∑

j=1

(
λj−λ∗j

)
ψ

ρ
1 [j−1]ψ∗ρ2 [j−1]

|ψρ
1 [j−1]|2+|ψρ

2 [j−1]|2
, x ∈ L, t ∈ R,

q[0] + 2i
N
∑

j=1

(
λj−λ∗j

)
ψ1[j−1]ψ∗2 [j−1]

|ψ1[j−1]|2+|ψ2[j−1]|2
, x ∈ C\L, t ∈ R.

(67)

According to Definition 3, we have

e±2iλ4
1
(x, 0) =

1± iλ4
1

3m+1

1∓ iλ4
1

3m+1


x

3m+1

, e±iλ2
1
(x, 0) =

1± iλ2
1

2×3m+1

1∓ iλ2
1

2×3m+1


x

3m+1

.

When N = 1, q[0] = 0 and the spectral parameter λ1 = α1 + iη1, a one-soliton solution
is obtained

q[1] =


1

N1
−
(
3m+1 − iα2

1
)2M7 −

(
iη2

1 − 2α1η1
)2M7(

iα2
1 − iη2

1
)

N2
, x ∈ L, t ∈ R,

− 2η1e2iY1 sech(2X1), x ∈ C\L, t ∈ R,

(68)
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where
N1 = E1|λ1=α1+iη1

+ E2|λ1=α1+iη1
,

N2 = E1|λ1=α1+iη1
− E2|λ1=α1+iη1

,

M7 = 2η1

[
1 +

iα2
1

3m+1

(
2iη2

1 − 2iα2
1

)]3m+1x

e(24iα2
1η2

1−4iα4
1)t.

Case III: Taking T×X = R×Kp, we find

µ(t) = 0,

ν(x) =

{
(1− p−1)x, x = pk ∈ pZ,

0, x = 0,

(69)

where p > 1, pZ =
{

pk : k ∈ Z
}

and Kp = pZ
⋃{0}.

Then, an N-fold DT is constructed

ψ[N] = T[N]ψ[N − 1]

= (λI − S[N − 1])ψ[N − 1]

=

(
λ− s11[N − 1] −s12[N − 1]
−s21[N − 1] λ− s22[N − 1]

)
ψ[N − 1]

= T[N] · · · T[3]T[2]T[1]ψ[0],

q[N] =


q[0] + i

N
∑

j=1

(
λj−λ∗j

)
ψ1[j−1]ψ∗2 [j−1]

|ψ1[j−1]|2+|ψ2[j−1]|2
+ i

N
∑

j=1

(
λj−λ∗j

)
ψ

ρ
1 [j−1]ψ∗ρ2 [j−1]

|ψρ
1 [j−1]|2+|ψρ

2 [j−1]|2
, x ∈ pZ, t ∈ R,

q[0] + 2i
N
∑

j=1

(
λj−λ∗j

)
ψ1[j−1]ψ∗2 [j−1]

|ψ1[j−1]|2+|ψ2[j−1]|2
, x = 0, t ∈ R.

(70)
According to ∫ b

a
f (x)∇x =

(
1− p−1

) b

∑
x=a

x f (x),

∫ b

a
f (ρ(x))∇x = (p− 1)

b

∑
x=a

x f (x),

we have

e±iλ2
1
(x, 0) = e

(1−p−1)
pk

∑
x=0
±iλ2

1
,

e±iλ2
1
(ρ(x), 0) = e

(p−1)
pk

∑
x=0
±iλ2

1
.

When N = 1, q[0]=0 and the spectral parameter λ1 = α1 + iη1, a one-soliton solution
is obtained

q[1] =

{
− η1e(16α1η3

1−16α3
1η1−4iα4

1+24iα2
1η2

1)t M8, x ∈ pZ, t ∈ R,

− 2η1e2iY1 sech(2X1), x = 0, t ∈ R,
(71)

where

M8 =e
(1−p−1)

pk

∑
x=0

(−2iα2
1+2iη2

1)x
sech

(
1− p−1

) pk

∑
x=0

4α1η1x

+ e
(p−1)

pk

∑
k=0

(−2iα2
1+2iη2

1)x
sech(p− 1)

pk

∑
x=0

4α1η1x.
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4. Conclusions

In this paper, the coupled GI equation on a time–space scale was obtained by extending
the Lax matrix equation on a time–space scale, which can be reduced to the classical GI
equation. In particular, the semi-discrete GI equation was given by providing parallel
computations for the discrete and continuous case. The standard DT of the GI equation
was extended on a time–space scale. On this basis, its N-soliton solutions on a time–space
scale were obtained, which were expressed using Cayley exponential functions.

The extension provides a wider range of nonlinear integrable dynamic models and
promotes the study of nonlinear dynamic systems. By taking the “seed solution” q = 0
and λ = α + iβ, one-solition solutions of the GI equation were obtained on three different
time–space scales ( X = R, X = C and X = Kp ). In one case, the exact solution (64) and its
dynamic figure were obtained when x ∈ R. In the other cases, when x ∈ C\L and x = 0,
exact solutions (68) and (71) were obtained and were similar to Equation (64). However,
when x ∈ L and x ∈ pZ, the structures of solutions (68) and (71) were more complicated
and their values were different from those of Equation (64) at those discontinuity points.

Due to the limitations of the computer, it was difficult to obtain their dynamic figures
at this stage. Furthermore, there is another well-known equation, the Eckhaus equation,
which possesses a very similar structure. The Eckhaus equation is also integrable and has
soliton-like solutions expressed in terms of the hyperbolic functions [37,38]. Therefore, we
will find the most effective way to reduce structures of solutions (68) and (71) on C and Kp,
and study the Eckhaus equation on a time–space scale in our future work.
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