
axioms

Article

Constacyclic Codes over Finite Chain Rings of Characteristic p

Sami Alabiad * and Yousef Alkhamees

����������
�������

Citation: Alabiad, S.; Alkhamees, Y.

Constacyclic Codes over Finite Chain

Rings of Characteristic p. Axioms 2021,

10, 303. https://doi.org/10.3390/

axioms10040303

Academic Editor: Hari Mohan

Srivastava

Received: 15 October 2021

Accepted: 10 November 2021

Published: 12 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Mathematics, King Saud University, Riyadh 11451, Saudi Arabia; ykhamees@ksu.edu.sa
* Correspondence: ssaif1@ksu.edu.sa

Abstract: Let R be a finite commutative chain ring of characteristic p with invariants p, r, and k. In
this paper, we study λ-constacyclic codes of an arbitrary length N over R, where λ is a unit of R.
We first reduce this to investigate constacyclic codes of length ps (N = n1 ps, p - n1) over a certain
finite chain ring CR(uk, rb) of characteristic p, which is an extension of R. Then we use discrete
Fourier transform (DFT) to construct an isomorphism γ between R[x]/ < xN − λ > and a direct
sum ⊕b∈IS(rb) of certain local rings, where I is the complete set of representatives of p-cyclotomic
cosets modulo n1. By this isomorphism, all codes over R and their dual codes are obtained from the
ideals of S(rb). In addition, we determine explicitly the inverse of γ so that the unique polynomial
representations of λ-constacyclic codes may be calculated. Finally, for k = 2 the exact number of such
codes is provided.
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1. Introduction

The class of constacyclic codes plays an important role in coding theory and has been
a primary area of study (see [1–9]). In the literature, most research has been focused on the
situation where the alphabet of these codes is a field. However, many important non-linear
codes over finite fields are actually related via the Gray map to linear codes over finite
rings and, particularly, over finite chain rings. Constacylic codes of arbitrary length N over
a finite ring R are identified with ideals of the polynomials ring R[x]/ < xN − λ > . Let
p be the characterstic of the residue field of a finite commutative chain ring R. When the
length N is prime relative to p, constacyclic codes are easily determined by the unique
factorization of XN − λ using Hensel’s Lemma. On the other hand, case p | N yields what
is called repeated-root codes, which were studied for the first time by Berman [10] in 1967
(for more details, see [2,7,11,12]).

The class of finite chain rings has been extensively used as the alphabet of constacyclic
codes [8,13–24]. This class was introduced in [23] to construct new sequences posessing
optimal Hamming correlation properties, and these sequences were found to be useful in
frequency hopping multiple-access (FHMA) spreading spectrum communication systems.
The chain ring Z4 has been widely considered as alphabet of cyclic codes (special types
of constacyclic codes) [17–19,25]. Doughtry et al. [16] generalized the results to cyclic
codes of length N over Zpn . Moreover, Kiah et al. [8] studied cyclic codes of length ps over
GR(p2, r), while Zhu et al. [26] examined a special class of constacyclic codes over Zpn .
Now, let R be a finite commutative chain ring of characteristic p with invariants p, r, and k.
Cyclic codes and their dual codes were initially considered over R with p = 2 and k = 2
by Bonnecaze et al. [20]. Qian et al. [21] used discrete Fourier transform (DFT) to study
cyclic codes over R. Moreover, Dinh [27] studied consatcyclic codes of length ps over R
when k = 2. Ozger et al. [22] discussed constacyclic codes over R under the condition
p = 2, k = 4. Recently, in [15], Mu Han et al. classified cyclic codes of length nps over
R in case of r = 1 via DFT. Motivated by the above cited studies, the main objective of
this paper is to extend the approach of Han et al. [15] and to obtain unique polynomial
representations of constacyclic codes of any finite length N over R with arbitrary invariants
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p, r, and k. This paper is organized as follows. Section 2 gives some basic definitions of
linear codes. In Section 3, we construct unique representations of constacyclic codes of
length ps over R. Section 4 is devoted to establishing unique polynomial representations of
constayclic codes of length N = n1 ps over R using DFT, where p - n1. This representation
enables us to compute Hamming distance and dual codes of any such constacyclic code.
We also obtain the exact number of constacyclic codes when k = 2.

2. Preliminaries

All rings considered in this paper are finite commutative and possess an identity.
In this section, we mention some definitions and introduce notations that will be used in
the subsequent discussions.

2.1. Constacyclic Codes

A code of length N over a ring R is a nonempty subset of RN , and R is referred to be
the alphabet of the code. A code C is said to be linear if it is also a R-submodule of RN . For a
given unit λ of R, a linear code C is said to be constacyclic or more precisely λ-constacyclic
if (λxN−1, x0, x1, . . . , xN−2) ∈ C, whenever (x0, x1, . . . , xN−2, xN−1) ∈ C, i.e., C is closed
under λ-constacyclic shifts. The cyclic and negacyclic codes are obtained when λ = 1 and
−1, respectively.

Proposition 1 ([28,29]). A linear code C of length N is a λ-constacyclic code over R if and only if
C is an ideal of R[x]/ < xN − λ >.

2.2. Finite Chain Rings of Characteristic p

A ring R is a chain ring if it is local and its Jacobson radical J(R) is principal. Every
finite chain ring R is associated with five invariants p, n, r, k, and m. From now on, R is a
finite chain ring of characteristic p, i.e., n = 1 and m = k. In this case, R is associated with
p, r, and k. We denote J(R) =< u >, k the index of nilpotency of u, and pr is the order of
the residue field R/J(R). Such chain rings are uniquely determined by their invariants p, r,
and k [30].

Proposition 2 ([31,32]). Let R be a finite chain ring of characteristic p with invariants p, r, k.
Then, the following is the case:

(i) R has a subfield F of order pr;
(ii) R = F⊕ uF⊕ . . .⊕ uk−1F;
(iii) R ∼= F[u]/ < uk >;
(iv) If U(R) is the group of units of R, then U(R) ∼= F∗ × (1⊕ uF⊕ u2F⊕ . . .⊕ uk−1F).

By Proposition 2, every unit λ of R can be uniquely written as λ = α + uβ1 + u2β2 +
. . . + uk−1βk−1, where α ∈ F∗ and βi ∈ F for 1 ≤ i ≤ k− 1. If l is the smallest positive
integer such that βl 6= 0, then the following is the case:

λ = α + ul
(

βl + . . . + uk−l−1βk−l−l

)
= α + ul β, (1)

where β = βl + . . . + uk−l−1βk−l−l . Thus, every unit λ of R is of the form λ = α + ul β,
where β is either 0 or a unit of R. Let the following be the case:

α0 = α−p(q+1)r−s
, (2)

where s = rq + t and 0 ≤ t ≤ r− 1. Then, α
ps

0 = α−p(q+1)r
= α−1.

Remark 1. If F is a finite field. The ring F[x]/ < xps − α > is a chain ring with maximal ideal <
α0x− 1 > . Thus, α-constacyclic codes of length ps over F are precisely the ideals < (α0x− 1)i >,
where 0 ≤ i ≤ ps. Each α-constacyclic code < (α0x− 1)i > has pr(ps−i) codewords.
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Definition 1. For any λ-constacyclic code C of length ps over R and for 0 ≤ i ≤ k− 1, we define
the following codes over F:

Tori(C) = µ
({

a | uia ∈ C
})

, (3)

where µ is the canonical homomorphism (modulo u). Moreover, Tori(C) is called the ith torsion
code of C, µ(C) = Tor0(C) = Res(C) is the residue code of C, and Ti(C) = Ti is called the
ith-torsional degree of C.

Proposition 3 ([16]). Let C be a λ-constacyclic code over R and i be an integer such that 0 ≤ i ≤
k− 1. Then, Ti(C) is α-constacyclic codes of length ps over F and Tori(C) =< (α0x− 1)Ti > for
some 0 ≤ Ti ≤ ps. Moreover, we have the following:

(i) |Tori(C)| = (pr)ps−Ti ;
(ii) If ui((λ0x− 1)ti + ug(x)

)
in C, then ti ≥ Ti;

(iii) ps ≥ T0 ≥ T1 ≥ . . . ≥ Tk−1 ≥ 0;
(iv) |C| = (pr)kps−(T0+T1+...+Tk−1).

Remark 2. Obviously, Ti is the smallest degree amongst all the degrees of non-zero polynomials
in Tori(C).

All symbols stated above shall retain their meanings throughout the article, in addition,
N = n1 ps, (n1, p) = 1.

3. Constacyclic Codes of Length ps

In this section, we provide a unique representation for any constacyclic code of length
ps over R. This representation allows us to compute Hamming distances and dual codes
as well as enumerates all constacyclic codes of length ps over R, i.e., ideals of the quotient
ring Rα,β = R[x]/ < xps − (α + ul β) >. Assume k1 = d k

l e, i.e., k1 is the smallest positive
integer greater than k

l .

Lemma 1. In Rα,β, < (α0x − 1)ps
>=< ul >. In particular, (α0x − 1) is nilpotent with

nilpotency index k1 ps.

Proof. Note that the following is the case.

(α0x− 1)ps
=(α0x)ps

+
ps−1

∑
i=1

(
ps

i

)
(α0x− 1)i(−1)ps−i − 1

=(α0x)ps − 1 = α
ps

0 xps − 1 = α−1
0 (α + ul β)− 1

=1 + ulα−1
0 β− 1 = ulα−1

0 β.

Thus, < (α0x− 1)ps
>=< ul >. The last statement follows immediately, since ul has

nilpotency index k1.

Proposition 4. The ring Rα,β is a local ring with maximal ideal < (α0x− 1), u >.

Proof. Due to the fact that R = F ⊕ uF ⊕ . . . ⊕ uk−1F, each element a of R has unique
presentation as a = ∑k−1

i=0 uiai, where a0, a1, . . . , ak−1 are elements of F. This implies that for
any polynomial f (x) ∈ Rα,β, f (x) can be expressed uniquely as follows:

f (x) =
k−1

∑
i=0

ps−1

∑
j=0

aijui(α0x− 1)j,

where aijs are elements of F. Due to the fact that α0x − 1 and u are nilpotent, f (x) is
a unit if and only if a00 6= 0. Moreover, if f (x) is a zero divisor, i.e., a00 = 0, then
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f (x) ∈< (α0x− 1), u > by Lemma 1. Thus, the ideal < (α0x− 1), u > consists of all zero
divisors of Rα,β. Therefore, Rα,β is a local ring with maximal ideal < (α0x− 1), u >.

Remark 3. If k = 1, Rα,β = Rα is a chain ring with maximal ideal < α0x− 1 > .

Theorem 1. If C is a (α+ ul β)-constacyclic code of length ps over R, then the following is the case:

C =< g0(x), g1(x), . . . , gk−1(x) >, (4)

where gi(x) = ui(α0x− 1)Ti + ui+1hi(x), if Ti < ps, where hi(x) ∈ Rα,β such that deg hi < Ti+1
or gi(x) = 0 otherwise. Moreover, the k-tuple (g0(x), g1(x), . . . , gk−1(x)) is unique.

Proof. The proof will be carried out by induction. Let Ri = F + uF + . . . + uiF and
R′i = Ri[x]/ < xps − (α + ul β) >, where 0 ≤ i ≤ k− 1. First note that if k = 1, R = F, and
the case is trivial. Now if k = 2, let µ1 be the canonical homomorphism from R′1 to R′0. It is
clear that Ker µ1 =< u >. Let C be a constacyclic code of length ps over R1 and µC be the
restriction of µ1 on C. Then,

Ker µC = C ∩ < u >=< u(α0x− 1)T1 >,

where T1 = T1(C). Moreover, Im µC ∼= C/Ker µC is a constacyclic code of length ps over
R0; thus,

Im µC =< (α0x− 1)T0 >,

where T0 = T0(C) and 0 ≤ T0 ≤ ps. This implies that (α0x− 1)T0 + ua(x) ∈ C for some
a(x) in R′1, and a(x) can be expressed as a(x) = (α0x− 1)th(x), where h(x) is either zero or
a unit. We can consider deg a ≤ T1, and, therefore, t + deg h ≤ T1. Thus, C is generated by

g0(x) = (α0x− 1)T0 + (α0x− 1)th(x) and g1(x) = u(α0x− 1)T1 .

In cases when T0 = ps, then C = ker µC; thus, g0(x) = 0. Let us assume that the
hypothesis is true for k− 2 and we prove it for k− 1. Let µk−1 be the natural homomorphism
(modulo uk−1) from R′k−1 to R′k−2. It is obvious that Ker µk−1 =< uk−1 >. Assume C is a
constacyclic code of length ps over Rk−1, and µC is the restriction of µk−1 on C. Then,

Ker µC =< uk−1 > ∩C =< uk−1(α0x− 1)Tk−1 > .

Now, since Im µC ∼= C/Ker µC is a constacyclic code of length ps over Rk−2, and by
the induction step,

Im µC =< g80(x), g81(x), . . . , g8k−2(x) >,

where g80(x), g81(x), . . . , g8k−2(x) satisfy the conditions of the theorem. This implies that there
exist ai(x) ∈ R′k−1 such that gi(x) = g8i(x) + uk−1ai(x) ∈ C. Moreover, we have Ti = Ti(µI)

for i = 0, 1, 2, . . . , k− 2. If we write ai(x) = (α0x− 1)tk−i−1,i hk−i−1,i(x) with deg ai ≤ Tk−1,
then tk−i−1,i + deg hk−i−1,i ≤ Tk−1. Therefore, we can take g0(x), g1(x), . . . , gk−1(x) as
generators of C, where gk−1(x) = uk−1(α0x− 1)Tk−1 . Now suppose

C =< e0(x), e1(x), . . . , ek−1(x) >,

where e0(x), e1(x), . . . , ek−1(x) is another expression of C satisfying the conditions of the
theorem. Then, the uniqueness follows from the induction step and the fact that gi(x) =
ei(x) mod ker µC for i = 0, 1, 2, . . . , k− 2.

Corollary 1. Suppose that Ti < ps. Then, the smallest degree amongst the polynomials in C with
leading coefficient ui is Ti.
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Definition 2. Let C be a constacyclic code over R. We call the unique k-tuple of polynomials
described in Theorem 1 to be the representation of C.

Next, we construct a one-to-one correspondence between cyclic and α-constacyclic
codes, where α is a nonzero element of F. Consider the map Ψ : R[x]/ < xps − 1 >−→
R[x]/ < xps − α > defined by Ψ( f (x)) = f (α0x), where α0 as in Equation (2). For polyno-
mials f (x) and g(x) in R[x], f (x) ≡ g(x) (mod xps − 1) if and only if there exists a polyno-
mial h(x) in R[x] such that f (x)− g(x) = h(x)(xps − 1) if and only if f (α0x)− g(α0x) =
h(α0x)[(α0x)ps − 1] = α−1h(α0x)[xps − α], if and only if f (α0x) ≡ g(α0x) (mod xps − α).
This means that Ψ is well defined and has one-to-one correspondence. It is easy to show
that Ψ is a ring homomorphism. Thus, Ψ is a ring isomorphism.

Proposition 5. The map Ψ : R[x]/ < xps − 1 >−→ R[x]/ < xps − α > defined by
Ψ( f (x)) = f (α0x) is a ring isomorphism. In particular, C is a cyclic code of length ps over
R if and only if ψ(C) is a α-constacyclic code of length ps over R. Moreover, ψ is Hamming
weight preserving.

Hamming Distance and Dual Codes

Definition 3. For a nonzero linear code C, the Hamming distances of C and d(C) are defined by
the following:

d(C) = min{wt(c) | c 6= 0, c ∈ C}, (5)

where wt(c) is the number of nonzero components of c = (c0, c1, . . . , cN−1) in RN . The zero code
is conventionally said to have Hamming distance 0.

Theorem 2. Let C be a constacyclic code of length ps over R. Then,

d(C) = d(Tork−1(C)).

Proof. For any nonzero codeword c(x) of C, we have wt(uk−1c(x)) ≤ wt(c(x)). Then, it
suffices to compute Hamming distance of uk−1c(x), where c(x) ∈ C. As uk−1c(x) and
c(x) have the same number of nonzero coefficients, then wt(uk−1c(x)) = wt(c(x)). Thus,
d(C) = d(Tork−1(C)). As Tork−1(C) is a constacyclic code over F, its Hamming distance is
completely determined (see [33], Theorem 4.11).

Next, we consider the dual codes. Given N-tuples x = (x0, x1, . . . , xN−1) and
y = (y0, y1, . . . , yN−1) in RN , the inner product or dot products is defined as usual,
with x · y = x0y0 + x1y1 + . . . + xN−1yN−1, which is evaluated in R. Two N-tuples x
and y are called orthogonal if x · y = 0.

Definition 4. For a linear code C over R, its dual code C⊥ is the set of N-tuples over R that is
orthogonal to all codewords of C, i.e., C⊥ = {x | x · y = 0, ∀y ∈ C}.

The following propositions are well known [28,29,34,35].

Proposition 6. Let λ be a unit of R. Then, the dual of a λ-constacyclic code over R is a λ−1-
constacyclic code over R.

Proposition 7. Let p be a prime and R be a finite chain ring of order pz. The number of codewords
in any linear code C of length N over R is pe for some integer e ∈ {0, 1, . . . , zN}. Moreover,
the dual code C⊥ has pe′ codewords, where e + e′ = zN, i.e., |C| · |C⊥| = |R|N .

Note that in Rα,β, (α + ul β)pk1 = αpk1 ; thus, the following is the case.

(α + ul β)pk1 α−pk1 = 1.
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Therefore, the following is the case:

(α + ul β)−1 =(α + ul β)pk1−1α−pk1 (6)

=[αpk1−1 +
pk1−1

∑
i=1

(
pk1−1

i

)
αpk1−1−i(ul β)i]α−pk1 (7)

=α−1 + (ul β)
pk1−1

∑
i=1

(
pk1−1

i

)
α−(1+i)(ul β)i−1 (8)

=α−1 + (ul β)α−1
pk1−1

∑
i=1

(
pk1−1

i

)
α−i(ul β)i−1 (9)

=α−1 + ul βα−1ζ, (10)

where ζ = ∑
pk1−1
i=1

(
pk1−1

i

)
α−i(ul β)i−1, which is a unit in Rα,β.

Theorem 3. Let C be a (α + ul β)-constacyclic code of length ps over R as in Theorem 1. Then,
C⊥ is a (α−1 + ul βα−1ζ)-constacyclic code of length ps over R, and the following is the case:

C⊥ =< f0(x), f1(x), . . . , fk−1(x) >, (11)

where fi(x) = ui(α−1
0 x − 1)Ti + ui+1ai(x) for some ai(x) ∈ Rα−1,βα−1ζ . Moreover, Ti =

ps − Tk−1−i for 0 ≤ i ≤ k− 1.

Proof. By Proposition 6, C⊥ is a (α−1 + ul βα−1ζ)-constacyclic code of length ps over R;
thus, by Theorem 1,

C⊥ =< f0(x), f1(x), . . . , fk−1(x) >,

where fi(x) = ui(α−1
0 x − 1)Ti + ui+1hi(x) for some hi(x) ∈ R′ and Ti = Ti(C⊥). By the

definition of C⊥, it is easy to deduce that uk−1−i(α−1
0 x− 1)ps−Ti ∈ C⊥ and then Tk−1−i ≤

ps − Ti for 0 ≤ i ≤ k− 1. As |C| = (pr)kps−(T0+T1+...+Tk−1) and |C| · |C⊥| = (pr)kps
(Propo-

sition 7), then |C⊥| = (pr)T0+T1+...+Tk−1 . Thus, we must have Tk−1−i + Ti = ps and so
Ti = ps − Tk−1−i.

Example 1. Table 1 shows the representation of all proper cyclic codes of length 3 over the chain
ring R = Z3 + uZ3 of characteristic 3.

Table 1. Proper cyclic codes of length 3 over R.

C ⊆< u > C *< u >

< 0 > < (x− 1), u(x− 1) >
< u > < (x− 1), u >
< u(x− 1) > < (x− 1)2 >
< u(x− 1)2 > < (x− 1)2, u >

< (x− 1)2, u(x− 1) >
< (x− 1) + u >
< (x− 1) + 2u >
< (x− 1)2 + u >
< (x− 1)2 + 2u >
< (x− 1)2 + u >
< (x− 1)2 + 2u >
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Example 2. Table 2 shows the representation of all proper (1 + u2)-constacyclic codes of length 2
over the chain ring R = Z2 + uZ2 + u2Z2 of characteristic 2. We have the following case.

l = 2, α = α0 = β = 1, u2 = (x− 1)2 and s = 1.

Table 2. Proper (1 + u2)-consacyclic codes of length 2 over R.

C ⊆< u > C *< u >

< 0 > < (x− 1) >
< u > < (x− 1), u >
< u2 > < (x− 1) + u, u2 >
< u(x− 1) > < (x− 1) + u >
< u(x− 1) + u2 > < (x− 1) + u, u(x− 1) >
< u2(x− 1) > < (x− 1) + u + u2 >
< u(x− 1), u2 > < (x− 1) + u(x− 1) + u >

Example 3. Consider the constacyclic codes in Example 2. As (1 + u2)−1 = 1 + u2 by
Equation (10), C⊥ = C for any (1 + u2)-constacyclic code C. This means all (1 + u2)-constacyclic
codes in Example 2 are self dual codes.

4. Constacyclic Codes of Length N
4.1. Exension Rings

Let r′ be a positive integer and let CR(uk, r′) = R[x]/ < f (x) >, where f (x) is a
monic basic irreducible of degree r′ over R. Note that f (x) can be chosen so that CR(uk, r′)
contains (pr′ − 1)th root of unity. Moreover, CR(uk, r′) is a chain ring of characteristic p
with maximal ideal < u > and residue field K = Fprr′ . By Theorem 2,

CR(uk, r′) = K⊕ uK⊕ . . .⊕ uk−1K. (12)

Let a be the order of p modulo n1, then Fpa contains a primitive n1th root ξ of unity.
Assume that K is the splitting field of xn1 − α over Fpa , where α is a nonzero element of F
and r′ = aa′ for some positive integer a′ the degree of the extension. If θ is a root of xn − α
in Fpr , then θξ i, for 0 ≤ i ≤ n1 − 1 are all distinct roots of xn1 − α in Fpr ; hence, by Hensel’s
Lemma ([29], Theorem XIII.4), CR(uk, r) also contains all those roots. Now xn1 − α factors
uniquely into monic irreducible polynomials over F, and then again by Hensel’s Lemma,
xn1 − α factors into monic basic irreducible polynomials over R as follows.

xn1 − α = f1(x) f2(x) . . . fm(x). (13)

For each 0 ≤ j ≤ n1 − 1, there exists a unique i, 1 ≤ i ≤ m such that fi(θξ j) = 0, and
fi(x) is called the minimal polynomial of θξ j over R.

Next, we introduce another extension:

S(r′) = CR(uk, r′)[x]/ < xps − (α + ul β) > (14)

of CR(uk, r′). Note that, for a suitable positive number r′, S will be the alphabet of codes of
length ps over R that contains nth root of unity. The results of Lemma 1 and Proposition 4
hold for the ring S. Moreover, we define the following extension of R.

RN = R[x]/ < xN − (α + ul β) > . (15)

Let r′ be the order of p modulo n1. Let ∼ be a relation on the set {1, 2, . . . , n1} defined
as i ∼ j if and only if θξ i and θξ j are roots of the same minimal polynomial, i.e., there is
a unique b such that fb(θξ i) = fb(θξ j) = 0. It is easy to show this relation is equivalence.
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Now, let I be the set of all classes of ∼, Ib be a class containing b, and rb is the size of this
class, i.e., | Ib |= deg fb(x) = rb.

4.2. Discrete Fourier Transform (DFT)

DFT has been used to study repeated-root codes over finite chain rings in [3,5,6]. We
employ DFT as a tool to establish the structure of (α + ul β)-constacyclic codes over R for a
given length N.

Remark 4. In S(rb), we have (α + ul β)pd−1
= α, where d = d k

l e; hence, xps+d−1
= α and then

(α0x)ps+d−1
= 1.

Definition 5 (DFT). Let c be a vector in RN with c(x) = Σn1−1
i=0 Σps−1

j=0 ci,jxi+jn1 the corresponding
polynomial. The DFT of c(x) is the following vector:

(ĉ0, ĉ1, . . . , ĉn1−1) ∈ S(r′)n1 , (16)

where ĉb = c((α0w)n′θξb) = Σn1−1
i=0 Σps−1

j=0 ci,jwn′i+j(αn′
0 θξb)i, b ∈ I and n1n′ ≡ 1 (mod ps+d−1).

Define the Mattson–Solomon polynomial of c to be the following.

ĉ(z) = Σn1−1
b=0 ĉn1−bzb. (17)

Note that ĉn1 = ĉ0.

The following lemma shows that if the Mattson–Solomon polynomial of c is given,
then c can be recovered. Set S = Rα,β = R[w]/ < wps − (α + ul β) > . Let φ be the natural
R-module isomorphism φ : Sn1 −→ RN defined by the following case.

φ(
ps−1

∑
i=0

c0,iwi, . . . ,
ps−1

∑
i=0

cn−1,iwi) = (c0,0, c1,0, . . . , cn−1,0, c0,1, . . . , c0,ps−1, c1,ps−1 . . . , cn−1,ps−1).

Lemma 2. Let c ∈ RN with ĉ(z) its Mattson–Solomon polynomial. Then, the following is the case:

c = φ[(1, u−n′ , u−2n′ , . . . , u−(n1−1)n′) ∗ 1
n1

(ĉ(1), ĉ(α1), . . . , ĉ(αn1−1))], (18)

where ∗ denotes component-wise multiplication.

Proof. Let 0 6 t′ 6 n1 − 1. Then, the following is the case.

ĉ(ξt) =
n−1

∑
b=0

ĉbξ−bt =
n1−1

∑
b=0

(
n−1

∑
i=0

ps−1

∑
j=0

ci,jwn′i+j(αn′
0 θξb)i)ξ−bt

=
n1−1

∑
i=0

ps−1

∑
j=0

ci,jwn′i+j(αn′
0 θ)i

n1−1

∑
b=0

ξb(i−t)

= n1((α0w)n′θ)t
ps−1

∑
j=0

ct,jwj.

Note that Σn1−1
i=0 ξ ij = 0, when j 6= 0 (mod n1). Then, by the definition of φ, we have

c = φ[(1, w−n′ , w−2n′ , . . . , w−(n1−1)n′) ∗ 1
n1

(ĉ(1), ĉ(α1), . . . , ĉ(αn1−1))].
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Remark 5. Since θξb ∈ S(rb), it is easy to verify that ĉb ∈ S(rb). Now let the following be
the case.

A = {(ĉ0, ĉ2, . . . , ĉn1−1) ∈ S(r)n1 |ĉi ∈ S(rb), i ∈ Ib}. (19)

Note that A with component-wise addition and multiplication is a ring. Moreover, it is clear
that A ∼= ⊕b∈IS(rb).

Theorem 4. Let γ be the map γ : RN −→ ⊕b∈IS(rb), given by γ(c(x)) = (ĉb)b∈I . Then, γ is a
ring isomorphism. In particular, if C is a constacyclic code of length N over R, then the following is
the case:

C ∼= ⊕b∈ICb, (20)

where Cb is the constacyclic code {c((α0w)n′θξb) | c(x) ∈ C} of length ps over CR(uk, rb).

Proof. Define the map γ : RN −→ A, where γ(c(x)) = (ĉ0, ĉ2, . . . , ĉn1−1). Let a(x), b(x) be
polynomials over R of degree less than N. Then, clearly
γ(a(x)+ b(x)) = γ(a(x))+γ(b(x)) and also γ(a(x)b(x)) = γ(a(x)) ∗γ(b(x)), where ∗ de-
notes the componentwise product. Suppose γ(c(x)) = 0, then by Lemma 2, Σps−1

j=0 ct′ ,juj = 0
for any t′, where 0 6 t′ 6 n1 − 1. It follows that c(x) = 0, and this implies γ is an injection.
Moreover, |A| = ∏b∈I prrbn1 ps

= pn1rN , which means that γ is a bijection. Therefore, γ is an
isomorphism. The second statement follows directly because γ is a ring isomorphism.

Before we obtain the structure of all constacyclic codes of length n1 ps over R in terms
of their generator polynomials, we provide the following lemma.

Lemma 3. Let fb(x) be the minimal polynomial of θξb over R for each b ∈ I and n′ a positive
integer such that n1n′ ≡ 1 (mod ps+d−1). Then, the following is the case:
(i) fb((α0w)n′θξ i) is a unit if i is not in Ib;
(ii) fb((α0w)n′θξb) ∈< α0w− 1 > but fb((α0w)n′θξb) is not in < (α0w− 1)2 >.

Proof.
(i) Since fb(x) = ∏t∈Ib

(x− θξt). Then, the following is the case.

fb((α0w)n′θξ i) = ∏
t∈Ib

((α0w)n′θξ i − θξt)

= ∏
t∈Ib

[((α0w)n′ − 1)θξ i + (θξ i − θξt)].

Since i is not in Ib, then θξ i − θξe 6= 0. Therefore, fb((α0w)n′θξ i) is a unit if i is not in Ib.
(ii) We know that xn

1 − α = ∏i∈I fi(x) and then ∏i∈I fi((α0w)n′θξb) = ((α0w)n′θξb)n1 −
1 = α0w − 1. However, from (i) we have fi((α0w)n′θξb), which is a unit for i 6= b.
Hence, fb((α0w)n′θξb) = a(w)(α0w − 1), where a(w) is a unit in S(rb). It follows that
fb((α0w)n′θξb) ∈ (α0w− 1). Now, suppose that fb((α0w)n′θξb) ∈< (α0w− 1)2 >, which
implies that < α0w− 1 >⊆< (α0w− 1)2 >. However, this is a contradiction, and this
completes the proof.

Next, we introduce the polynomial representations of constacyclic codes over R. If
C is a constacyclic code of length N over R. By Theorem 4, C ∼= ⊕b∈ICb, where Cb is a
constacyclic code of length ps over CR(uk, rb), and by Theorem 1:

Cb =< e0,b(w), ue1,b(w), . . . , uk−1ek−1,b(w) >,

where ei,b(w) = (α0w− 1)Ti,b + uhi,b(w). Now, fix i and for each 0 6 j 6 ps. We define Fj(x)
to be the product of all minimal polynomials of αb such that Tori(Cb) =< (α0w− 1)j >.
By Lemma 3, the following is the case:
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ps

∏
j=0

[Fj((α0w)n′θξb)]j = ab(w)(α0w− 1)j, (21)

where ab(α0w) is a unit in S(rb). Define the following:

gi(x) =
ps

∏
j=0

[Fj(x)]j + pbi(x), (22)

where bi(x) = γ−1((ab(α0w)hi,b(α0w))b∈I).

Theorem 5. Let C be a constacyclic code of length N over R . Then, the following is the case.

C =< g0(x), ug1(x), . . . , uk−1gk−1(x) > . (23)

Moreover, this representation is unique.

Proof. For every b ∈ I, gi((α0w)n′αb) ∈< ei,b(α0w) > and then pigi((α0w)n′θξb) ∈ Cb. It
follows that uigi(x) ∈ C for each i, 0 ≤ i ≤ k− 1. Furthermore, by Equations (21) and (22),
< gi((α0w)n′θξb) >=< ei,b(α0w) > for all b. Therefore, g0(x), ug1(x), . . . , uk−1gk−1(x) gen-
erate C (Theorem 4). The uniqueness of gi(x) follows from the uniqueness of hi,b(α0w).

Corollary 2. If C =< g0(x), ug1(x), . . . , uk−1gk−1(x) > is a constacyclic code of length N over
R, then |C| = prt′ , where t′ = kN − Σps

j=0 jdeg Fj.

Proof. By Theorem 4, |C| = ∏b∈I |Cb| and |Cb| = prrb(n1 ps−(T0,b+T1,b+...+Tk−1,b)), and then
by computing the product, we obtain the result.

Remark 6. If we choose ge(x) to have a minimal degree in the representation given by (23), we
will obtain a minimal strong Gröbner basis < g0(x), . . . , uege(x) > for C. For more details about
minimal strong Gröbner basis, refer to [7].

Next, we provide the enumeration of constacyclic codes of length N in terms of the
length of ps. In other words, the problem of enumeration of constacyclic codes of length N
over R is reduced to that of constacyclic codes of length of power of p. The proof of the
following result is direct by Theorem 5.

Corollary 3. The number of distinct (α + ul β)-constacyclic codes of length N over R is the follow-
ing:

∏
b∈I

Nb, (24)

where Nb is the number of (α + ul β)-constacyclic codes of length ps over CR(uk, rb).

Theorem 6. If k = 2, then the number of distinct (α + ul β)-constacyclic codes of length N
over R is the following:

∏
b∈I

(
prrb(zb+1) − 1

prrb − 1
), (25)

where zb = min{[ db
2 ], ps−1} and T0(Cb) + T1(Cb) = db ≤ ps.

Proof. By Corollary 3, it suffices to compute Nb, b ∈ I. First fix T1; thus, T0 = db − T1.
Let dp < ps. By Theorem 1, < (α0w − 1)T0 + ue(w), (α0w − 1)T1 > is a representation.
Moreover, we have (prrb)T1 choices for e(w) = ∑T1−1

i=0 ai(α0w − 1)i. Theorem 1 implies

that T1 < min{ps−1, T0}; hence, T1 < min{ps−1, b dp
2 c} = zb because T1 + T0 = dp. If
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we vary T1 from 0 to zb, then there are 1 + prrb + . . . + (prrb)zb = prrb (zb+1)−1
prrb−1 of (α + ul β)-

constacyclic codes of length ps over CR(uk, rb). In the case when dp = ps, we have two
options. If T0 = ps, the only (α + ul β)-constacyclic code is < 0, u > with T0 + T1 = dp. If
T0 < ps, we use a similar discussion as before.

Remark 7. When k > 2, the enumeration of all constacyclic codes of length N over R is a
tedious computation.

4.3. Torsion Codes and Hamming Distance

In this subsection, we first obtain the torsion codes of a constacyclic code C of length N
over R in terms of the generators of C given in Theorem 5. Then, we reduce the Hamming
distance of C to that of its (k− 1)th torsion code.

Lemma 4. Let C =< g0(x), ug1(x), . . . , uk−1gk−1(x) >. If ui(h(x)) ∈ C such that
h(x) ∈ Tori(C), then deg h ≥ deg gi.

Proof. Assume that ui(h(x)) ∈ C, then ui(h((α0w)n′θξb)) ∈ Cb, b ∈ I,
n1n′ ≡ 1 (mod ps+d−1). As h(x) ∈ Tori(C), then h((α0w)n′αb) ∈ Tori(Cp). This means,
h((α0w)n′θξb) = c(w)(α0w − 1)Ti for some unit c(w) in S(rb). Now, let
g(x) = p(x)∏

ps

j=0 [Fj(x)]j, where Fj(x) as defined in the proof of Theorem 5 and

p(x) = γ−1((cb(w)a−1
b (w))b∈I). By (21), for each b ∈ I, g((α0w)n′θξb) = c(w)(α0w− 1)Ti .

Thus, γ(h(x)) = γ(g(x)); hence, h(x) = g(x), i.e., deg h = deg g. Therefore,
deg g ≥ deg ∏

ps

j=0 [Fj]
j = deg gi by (22).

Theorem 7. If C =< g0(x), ug1(x), . . . , uk−1gk−1(x) >, then Tori(C) =< gi(x) > .

Proof. First, note that uigi(x) ∈ C; thus, < gi(x) >⊆ Tori(C). Conversely, let
h(x) ∈ Tori(C), then by the definition of torsion codes, uih(x) ∈ C. We make use of
Lemma 4, deg h ≥ deg gi. By the division algorithm, there are r(x) and q(x) in RN such
that h(x)− gi(x)q(x) = r(x), where r(x) = 0 or deg r < deg gi. As uir(x) ∈ C, then by
the minimality of deg gi, we must have r(x) = 0. In other words, h(x) ∈< gi(x) >; thus,
h(x) ∈< gi(x) > . Therefore, Tori(C) ⊆< gi(x) >, and this ends the proof.

Next, we obtain the Hamming distance of any cyclic code of length N over R.

Theorem 8. Let C be a cyclic code of length N over R. Then, d(C) = d(Tork−1(C)).

Proof. By the same argument as in Theorem 2, we obtain d(C) = d(Tork−1(C)), where
Tork−1(C) =< gk−1(x) >=< ∏

ps−1
j=0 Fj(x) > from Theorem 7.

4.4. Dual Codes

Define Fj(x) as in the proof of Theorem 5. Let aj be the constant of Fj(x), 0 6 j 6 ps.

Since ∏
ps

j=0 Fj(x) = xn1 − α, then ∏
ps

j=0 aj = −α. Thus, ajs are units in R and ajs are the

leading coefficient of F∗j (x) = xdeg Fj Fj(x−1). Let the following is the case.

mj(x) = a−1
j F∗j (x). (26)
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Note that mj(x)s are monic polynomials and ∏
ps

j=0 a−1
j = −α−1. Hence, the following

is the case.

ps

∏
j=0

mj(x) =

(
ps

∏
j=0

a−1
j

)
ps

∏
j=0

F∗j (x)

= −α−1xΣps
j=0deg Fj

ps

∏
j=0

Fj(x−1)

= −α−1xn1(x−n1 − 1)

= xn1 − α−1.

Therefore, mj(x)s are monic coprime divisors of xn1 − α−1 in R[x]. Since Tori(Cb) =<

(α0w− 1)j >, then Fj(θξb) = 0, which implies that F∗j (θξn1−b) = 0; hence, mj(θξn1−b) =

0. It follows that mj(x) is the product of all minimal polynomials of αn1−b such that
Tori(C⊥b ) =< (α0w− 1)ps−j >. By Lemma 3, the following is the case:

ps

∏
j=0

[F∗j (α0wn′θξn1−b)]p
s−j = ab(w)(α0w− 1)ps−j, (27)

where ab(w) is a unit in S(rb). Define the following case:

Gi(x) =
ps

∏
j=0

[F∗j (x)]p
s−j + uci(x), (28)

where ci(x) = γ−1((ab(w)h′i,b(w))b∈I) and h′i,b(w) as in Theorem 3.

Theorem 9. Let C be a constacyclic code of length N over R. Then, the following is the case.

C⊥ =< G0(x), uG1(x), . . . , uk−1Gk−1(x) > .

Furthermore, |C⊥| = prt′ , where t′ = Σps

j=0 jdeg F∗j .

Proof. By Theorem 4, C = ⊕b∈ICb, where Cb is a constcyclic code of length ps over
CR(pn, rrb). Assume that D = ⊕b∈IC⊥b . By the definition of dual code, D ⊆ C⊥. On the
other hand, we have |Cb| · |C⊥b | = prrbkps

. Then, |C| · |D| = prkN ; thus,

C⊥ = D = ⊕b∈IC⊥b .

Therefore, by a similar argument to that of the proof of Theorem 5, we obtain

C⊥ =< G0(x), uG1(x), . . . , uk−1Gk−1(x) >,

where Gi(x) is defined in (28) and 0 ≤ i ≤ k − 1. By Corollary 2 and the fact that
|C⊥| · |C| = prkN , we obtain |C⊥| = prt′ , where t′ = Σps

j=0 jdeg F∗j .

To summarize, the results of this section provide an algorithm for constructing the
representation of constacyclic codes of length N = n1 ps from those of length ps. This
algorithm consists of the following steps:

Step 1: Find θ, ξ, I and all rb, b ∈ I;
Step 2: Compute Fj(x) for each 0 ≤ j ≤ ps when i is fixed;
Step 3: Find ab(x), b ∈ I from the relation (21);
Step 4: Extract bi(x) by using bi(x) = γ−1((ab(w)hi,b(w))b∈I), 0 ≤ i ≤ k− 1;
Step 5: Compute the polynomials gi(x) via Equation (22).
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Next, we present an example illustrating the algorithm described above.

Example 4. Consider R = Z2 + uZ2 and N = 6. First, n1 = 3, I = {0, 1}, r0 = 1, and r1 = 2.
Let C0 =< (w− 1), u(w− 1) >, and C1 =< (w− 1), u > be cyclic codes of length 2 over R
and CR(u2, 2), respectively. Next, compute Fj(x) for i = 0. As T0(C0) = 1 = T0(C1) and by the
definition of Fj(x),

F0(x) = 1, F2(x) = 1 and F1(x) = f0(x) f1(x) = (x− 1)(x− α)(x− α2) = x3 − 1,

where α is a third primitive root of unity satisfying α2 + α + 1 = 0. Since h0,0(x) = h0,1(x) = 0,
then b0(x) = 0; thus, g0(x) = ∏2

j=0 Fj(x)j = x3 − 1. Now, find Fj(x) when i = 1, note that
T1(C0) = 1 and T1(C1) = 0. It follows that F2(x) = 1, F0(x) = (x− α)(x− α2) and F1(x) =
( f0(x)) = (x− 1). As b1(x) = 0 since h1,0(x) = 0 = h1,1(x), g1(x) = ∏2

j=0 Fj(x)j = x− 1.
Therefore, by Theorem 5, the following is the case.

C =< x3 − 1, u(x− 1) > .

Remark 8. The same algorithm described above can be applied to compute the generators of dual
codes. The main key for performing this is to consider C⊥b instead of Cb, where b ∈ I.

5. Conclusions

In this article, we have determined a unique representation of any constacyclic code of
arbitrary length N over a finite chain ring of characteristic p via discrete Fourier transform
(DFT). Such representations allowed us to compute Hamming distance and dual codes
easily. Moreover, we managed to provide the number of constacyclic codes of length N
over R in terms of that of length ps, where vp(N) = s and vp is the p-adic valuation. In
particular, we provided the exact number of such codes when k = 2.
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