
axioms

Article

On Turing Machines Deciding According to the
Shortest Computations †

Florin Manea 1,2

����������
�������

Citation: Manea, F. On Turing

Machines Deciding According to the

Shortest Computations. Axioms 2021,

10, 304. https://doi.org/10.3390/

axioms10040304

Academic Editor: Cristian S. Calude

Received: 13 October 2021

Accepted: 11 November 2021

Published: 13 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Computer Science Department, Göttingen University, 37073 Göttingen, Germany;
florin.manea@cs.uni-goettingen.de

2 Campus-Institut Data Science, Göttingen University, 37073 Göttingen, Germany
† Extended version of a paper of Proceedings of the Conference on Computability in Europe 2011.

Abstract: In this paper we propose and analyse from the computational complexity point of view
several new variants of nondeterministic Turing machines. In the first such variant, a machine accepts
a given input word if and only if one of its shortest possible computations on that word is accepting;
on the other hand, the machine rejects the input word when all the shortest computations performed
by the machine on that word are rejecting. We are able to show that the class of languages decided
in polynomial time by such machines is PNP[log]. When we consider machines that decide a word
according to the decision taken by the lexicographically first shortest computation, we obtain a new
characterization of PNP. A series of other ways of deciding a language with respect to the shortest
computations of a Turing machine are also discussed.

Keywords: computational complexity; Turing machine; oracle Turing machine; shortest computations

1. Introduction

The computation of a nondeterministic Turing machine and, in fact, any computation
of a nondeterministic machine that consists of a sequence of moves can be represented as
a (potentially infinite) tree. Each node of this tree is an instantaneous description (ID for
short); that is, a string encoding the configuration of the machine at a given moment: the
content of the machine’s memory and the current state of the machine. The children of a
node are the IDs encoding the possible configurations in which the machine can be found
after a (nondeterministic) move is performed starting from the ID corresponding to that
node. If the computation is finite then the tree is also finite and each leaf of the tree encodes
a final ID: an ID in which the state is either accepting or rejecting. The machine accepts if
and only if one of the leaves encodes the accepting state (also in the case of infinite trees),
and rejects if the tree is finite and all the leaves encode the rejecting state.

Therefore, in the case of finite computations, one can check if a word is accepted/rejected
by a machine by searching in the computation tree for a leaf that encodes an accepting ID.
Theoretically, this is done by a simultaneous traversal of all the possible paths in the tree (as
we can deduce, for instance, from the definition of the time complexity of a nondeterminis-
tic computation). However, in practice, it is done by traversing each path at a time, until an
accepting ID is found, or until the whole tree was traversed. Unfortunately, this may be a
very time consuming task. Consequently, one may be interested in heuristic methods that
may speed up this search, or, in other words, methods of using nondeterministic machines
in a more efficient manner.

Our paper proposes such a method: the machine accepts a word if and only if one
of the shortest paths in the computation tree ends with an accepting ID and rejects the
input word if all the shortest paths end with rejecting IDs. Intuitively, we traverse the
computation tree on levels and, as soon as we reach a level containing a leaf, we check if
there is a leaf encoding an accepting ID on that level, and accept, or if all the leaves on
that level are rejecting IDs, and, consequently, reject. While it is not hard to see that the

Axioms 2021, 10, 304. https://doi.org/10.3390/axioms10040304 https://www.mdpi.com/journal/axioms

https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://doi.org/10.3390/axioms10040304
https://doi.org/10.3390/axioms10040304
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/axioms10040304
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms10040304?type=check_update&version=3

Axioms 2021, 10, 304 2 of 15

class of languages which are accepted (respectively decided) by these machines is the class
of recursively enumerable languages (respectively, the class of recursive languages), we
are able to show that the class of languages that are decided according to this strategy
by Turing machines, whose shortest computations have a polynomial number of steps,
equals the class PNP[log]. As a consequence of this result we can also show that the class of
languages that are decided by Turing machines, working in nondeterministic polynomial
time on any input but deciding according to the computations that have a minimal number
of nondeterministic moves, also equals the class PNP[log]. These results continue a series of
characterizations of PNP[log], started in [1–3].

Then, we propose another method: the machine accepts (rejects) a word if and only if
the the first leaf that we meet in a breadth-first-traversal of the computation tree encodes
an accepting ID (respectively, encodes a rejecting ID); note that in this case, one must define
first an order between the sons of a node in the computation tree. Again, it is not hard
to show that these machines have the same computational power as unrestricted Turing
machines. However, we show that, in the case of ordering the tree lexicographically, the
class of languages that are decided, according to this new strategy, by Turing machines
whose shortest computations have a polynomial number of steps, equals the class PNP.

The research presented in this paper is related to a series of papers presenting variants
of nondeterministic Turing machines, working in polynomial time, that accept (or reject)
a word if and only if a specific property is (respectively, is not) verified by the possible
computations of the machine on that word. We recall, for instance: polynomial machines
that accept if and only if the number of accepting paths is even (⊕P from [4]), polynomial
machines which accept if at least 1/2 of their computations are accepting, and reject if at
least 1/2 of their computations are rejecting (the class PP [5], which coincidentally include
PNP[log] [6]), or polynomial machines that accept if at least 2/3 of the computation paths
accept and reject if at most 1/3 of the computation paths accept (the class of bounded-
error probabilistic polynomial time BPPpath from [7]); several other examples can be
found on the Complexity Zoo web page (https://complexityzoo.net/ (accessed on 10
November 2021), a web page constructed and maintained, at the time when this paper
was submitted, by the zookeeper Scott Aaronson, the veterinarian Greg Kuperberg, and
the zoo conservationist Oliver Habryka on behalf of the LessWrong community) or in [8].
However, instead of looking at all the computations, we look just at the shortest ones, and
instead of asking questions regarding the number of accepting/rejecting computations, we
just ask existential questions about the shortest computations.

Our work finds motivations also in the area of nature-inspired supercomputing mod-
els. Some of these models (see [9,10], for instance) were shown to be complete by simulating,
in a massively parallel manner, all the possible computations of a nondeterministic Turing
machine; characterizations of several complexity classes, like NP, P and PSPACE, were
obtained in this framework. However, these machines were, generally, used to accept
languages, not to decide them; in the case when a deciding model was considered [9], the
rejecting condition was just a mimic of the rejecting condition from classical computing
models. Modifying such nature-inspired machines in order to decide as soon as a possible
accepting/rejecting configuration is obtained, in one of the computations simulated in
parallel, seems to be worth analysing: such a halting condition looks closer to what really
happens in nature, and it leads to a reduced use of resources, comparing to the case when
the machine kept on computing until all the possibilities were explored. Moreover, from a
theoretical point of view, considering such halting conditions could lead to novel character-
izations of a series of complexity classes (like the ones discussed in this paper) by means
of nature-inspired computational models, as they seem quite close to the idea of deciding
with respect to the shortest computations. To this end, we refer to the papers [11,12], and
we leave open the question of whether similar results could be obtained for bio-inspired
machines with more particular and compact structure [13–15] or for bio-inspired problem
solvers [16].

https://complexityzoo.net/

Axioms 2021, 10, 304 3 of 15

2. Basic Definitions

The reader is referred to [8,17,18] for the basic definitions regarding Turing machines,
oracle Turing machines, complexity classes and complete problems. In the following we
present just the intuition behind these concepts, as a more detailed presentation would
exceed the purpose of this paper.

A k-tape Turing machine is a construct M = (Q, V, U, q0, acc, rej, B, δ), where Q is a
finite set of states, q0 is the initial state, acc and rej are the accepting state, respectively, the
rejecting state, U is the working alphabet, B is the blank-symbol, V is the input alphabet and
δ : (Q \ {acc, rej})×Uk → 2(Q×(U\{B})

k×{L,R}k) is the transition function (that defines the
moves of the machine). An instantaneous description (ID for short) of a Turing machine is a
word that encodes the state of the machine and the contents of the tapes (actually, the finite
strings of nonblank symbols that exist on each tape), and the position of the tape heads, at
a given moment of the computation. An ID is said to be final if the state encoded in it is the
accepting or the rejecting state. A computation of a Turing machine on a given word can
be described as a sequence of IDs: each ID is transformed into the next one by simulating
a move of the machine. If the computation is finite then the associated sequence is also
finite and it ends with a final ID; a computation is said to be an accepting (respectively,
rejecting) one, if and only if the final ID encodes the accepting state (respectively, rejecting
state). All the possible computations of a nondeterministic machine on a given word can
be described as a (potentially infinite) tree of IDs: each ID is transformed into its sons by
simulating the possible moves of the machine; this tree is called a computation tree.

A word is accepted by a Turing machine if there exists an accepting computation of
the machine on that word; it is rejected if all the computations are rejecting. A language is
accepted (decided) by a Turing machine if all its words are accepted by the Turing machine,
and no other words are accepted by that machine (respectively, all the other words are
rejected by that machine). The class of languages accepted by Turing machines is denoted
by RE (and is known as the class of recursively enumerable languages), while the class of
languages decided by Turing machines is denoted by REC (and called the class of recursive
languages).

The time complexity (or length) of a finite computation on a given word is the mini-
mum between the number of IDs that occur in an accepting computation of that word and
the height of the computations-tree of the machine on the word. A language is said to be
decided in polynomial time if there exists a Turing M machine and a polynomial f such
that the time complexity of a computation of M on each word of length n is less than f (n),
and M accepts exactly the given language. The class of languages decided by deterministic
Turing machines in polynomial time is denoted P and the class of languages decided by
nondeterministic Turing machines in polynomial time is denoted NP. If a machine decides
a language in polynomial time we usually say that this machine works in polynomial time.

A Turing machine with oracle A, where A is a language over the working alphabet
of the machine, is a regular Turing machine that has a special tape (the oracle tape) and a
special state (the query state). The oracle tape is just as any other tape of the machine, but,
every time the machine enters the query state, a move of the machine consists of checking
if the word found on the oracle tape is in A or not, and returning the answer.

We denote by PNP the class of languages decided by deterministic Turing machines,
that work in polynomial time, with oracles from NP. We denote by PNP[log] the class
of languages decided by deterministic Turing machines, that work in polynomial time,
with oracles from NP, and which can enter the query state at most O(log n) times in a
computation on a input word of length n.

The following problem is complete for PNP, with respect to polynomial time reductions
(see [19] for a proof):

Problem 1. (Odd—Travelling Salesman Problem, TSPodd) Let n be a natural number, and d
be a function d : {1, . . . , n} × {1, . . . , n} → IN. Decide if the minimum value of the set I =
{∑n

i=1 d(π(i), π(i + 1)) | π is a permutation of {1, . . . , n}, and π(n + 1) = π(1)} is odd.

Axioms 2021, 10, 304 4 of 15

We assume that the input of this problem is given as the natural number n, and n2

numbers representing the values d(i, j), for all i and j. The size of the input is the number
of bits needed to represent the values of d times n2.

Next we describe a PNP[log]-complete problem; however, we need a few preliminary
notions (see [20] for a detailed presentation). Let n be a natural number and let C =
{c1, . . . , cn} be a set of n candidates. A preference order on C is an ordered list 〈cπ(1) <
cπ(2) < . . . < cπ(n)〉, where π is a permutation of {1, . . . , n}; if ci appears before cj in the
list we say that the candidate ci is preferred to the candidate cj in this order. Given a
multiset V of preference orders on a set of n candidates C (usually V is given as a list of
preference orders) we say that the candidate ci is a Condorcet winner, with respect to the
preference orders of V, if ci is preferred to each other candidate in strictly more than half of
the preference orders. We define the Dodgson score of a candidate c, with respect to V, as
the smallest number of exchanges of two adjacent elements in the preference orders from
V (switches, for short) needed to make c a Condorcet winner; we denote this score with
Score(C, c, V). In [20] it was shown that the following problem is PNP[log]-complete, with
respect to polynomial time reductions:

Problem 2. (Dodgson Ranking, DodRank) Let n be a natural number, let C be a set of n candidates,
and c and d two candidates from C. Let V be a multiset of preference orders on C. Decide if
Score(C, c, V) ≤ Score(C, d, V).

We assume that the input of this problem is given as the natural number n, two num-
bers c and d less or equal to n, and a list of preference orders V, encoded as permutations
of the set {1, . . . , n}. If we denote by #(V) the number of preference orders in V, then the
size of the input is O(#(V)n log n).

The connection between decision problems and languages is discussed in [18]. When
we say that a decision problem is solved by a Turing machine, of certain type, we actually
mean that the language corresponding to that decision problem is decided by that machine.

3. Shortest Computations

In this section we propose a modification of the way Turing machines decide an input
word. Then we propose a series of results on the computational power of these machines
and the computational complexity classes defined by them.

Definition 1. Let M be a Turing machine and w be a word over the input alphabet of M. We
say that w is accepted by M with respect to shortest computations if there exists at least one finite
possible computation of M on w, and one of the shortest computations of M on w is accepting; w is
rejected by M with regard to shortest computations if there exists at least one finite computation
of M on w, and all the shortest computations of M on w are rejecting. We denote by Lsc(M) the
language accepted by M with regard to shortest computations, i.e., the set of all words accepted
by M, with regard to shortest computations. We say that the language Lsc(M) is decided by M
with regard to shortest computations if all the words not accepted by M, with regard to shortest
computations, are rejected with regard to shortest computations.

The following remark shows that the computational power of the newly defined
machines coincides with that of classic Turing machines.

Remark 1. The class of languages accepted by Turing machines with regard to shortest computa-
tions equals RE, while the class of languages decided by Turing machines with regard to shortest
computations equals REC.

Proof. On the one hand, since any language from REC (respectively, RE) is decided
(accepted) by a deterministic Turing machine, it is clear that it is also decided (accepted)
with regard to shortest computations by the same machine. Indeed, a deterministic machine
has a single computation, and this is also the shortest computation, so the decision reached

Axioms 2021, 10, 304 5 of 15

on this computation is the same decision reached when the machine works according to
the shortest computation policy.

On the other hand, if a language is decided (respectively, accepted) by a Turing
machine M with regard to shortest computations then that language is decided (accepted)
by a classic deterministic Turing machine M′ as follows. The machine M′ simply generates
the computation tree of M on an input word w level by level. Basically, this is a very simple
process: starting with all the configurations on one level, M′ simulates one computational
step of M on each of them, and collects the resulting configurations. In this way, M′

explores, in order, the levels of the computation tree of M. Then, the machine M′ stops as
soon as it generates a level of the computation tree of M which contains a final ID. It accepts
the input word if the respective level contains an accepting ID, and rejects otherwise. To a
certain extent, the deterministic machine M′ explores the computation tree of M breadth-
first, and stops this exploration on the first level of this computation tree which contains
final ID; the decision is then made by analysing the IDs of the respective level.

Next we define a computational complexity measure for the Turing machines that
decide the shortest computations.

Definition 2. Let M be a Turing machine, and w be a word over the input alphabet of M. The
time complexity of the computation of M on w, measured with regard to shortest computations,
is the length of the shortest possible computation of M on w. A language L is said to be decided
in polynomial time with regard to shortest computations if there exists a Turing M machine and
a polynomial f such that the time complexity of a computation of M on each word of length n,
measured with regard to shortest computations, is less than f (n), and Lsc(M) = L. We denote
by PTimesc the class of languages decided by Turing machines in polynomial time with regard
to shortest computations.

The main result of this section is the following:

Theorem 1. PTimesc = PNP[log].

Proof. The proof will be structured in two parts. First, we show the upper bound PTimesc ⊆
PNP[log], and then we show the lower bound PTimesc ⊇ PNP[log].

For the first part of the proof, let L ⊆ V∗ be a language in PTimesc and let M be a
Turing machine that decides L in polynomial time with regard to shortest computations.
Additionally, let f be a polynomial such that the time complexity of the computation of M
on each word of length n, measured with regard to shortest computations, is less than f (n).
Finally, let # be a symbol not contained in V.

We define the language L′ = {x#w#1k | w ∈ V∗, x ∈ {0, 1}, and, if x = 1 (respectively,
x = 0) there exists an accepting (respectively, rejecting) computation of M, of length less
than k, on the input word w}. It is not hard to see that L′ is in NP. A nondeterministic
machine deciding L′ works as follows: it simulates, nondeterministically, a computation
of at most k steps of M, and accepts if and only if x = 1, or, respectively, x = 0, and the
simulated computation is accepting, or, respectively, rejecting; otherwise (i.e., if in the k
steps simulated by the machine a final configuration was not obtained) it rejects. Clearly,
this machine works in polynomial time.

A deterministic Turing machine M′, with oracle L′, accepting L implements the
following strategy, on an input word w:

1. M′ searches (by binary search) the minimum length of an accepting computation of
M on w, with length less or equal to f (|w|). In this search, the machine queries the
oracle L′ for O(log2(f (|w|))) times, asking, in each of these queries, if a string of the
form 1#w#1k, with k ≤ f (|w|), is in L′.

2. Let n0 be the minimum length of an accepting computation, with length less than or
equal to f (|w|), computed in the previous step (we assume that n0 is set to a special
value, f (n) + 1 for instance, if the search is unsuccessful). The machine verifies now,

Axioms 2021, 10, 304 6 of 15

by another oracle query, if 0#w#1n0−1 ∈ L′ (i.e., if there exists a shorter rejecting
computation of M). If the answer of the last query is positive, M′ rejects the input
word, otherwise, it accepts.

Since the machine M has at least one possible computation on w of length less than
f (|w|), and that w ∈ L if and only if the shortest computation of M accepts, it is clear that
the machine M′ decides the language L. Furthermore, M′ works in polynomial time and
makes at most O(log n) queries to the oracle L′; therefore, L ∈ PNP[log]. This completes the
proof of the upper bound.

For the second inclusion, note that the class PTimesc is closed to polynomial-time
reductions. That is, if L ∈ PTimesc and L′ is polynomial-time reducible to L, then L′ ∈
PTimesc. Indeed, assume that g is a function, that can be computed in polynomial time
by a deterministic Turing machine such that, w ∈ L′ if and only if g(w) ∈ L. A machine
that decides with regard to shortest computations the language L′ works as follows: first,
for the input w, it computes deterministically the function g(w), and, then, runs the
machine accepting L on the input g(w); it is clear that this machine implements the
desired behaviour, and that it works in polynomial time, measured with regard to shortest
computations. Therefore, it is sufficient to show that the PNP[log]-complete problem DodRan
can be solved in polynomial time by a Turing machine M that makes a decision with regard
to shortest computations.

Let us first make several denotations. The input of M consists in the number n, the set
C of n candidates, c and d two candidates from C, and V the multiset of preference orders on
C (encoded as explained in the previous section). It is not hard to see that one can verify if a
candidate is a Condorcet winner for the multiset V of preference orders on C in polynomial
time; let f be a polynomial that upper bounds the time needed to do this checking, for
every n and #(V). Note that one needs at most (n− 1)

(⌊
#(V)

2

⌋
+ 1
)

switches to make a
candidate a Condorcet winner, since, in the worst case, we must bring this candidate from
the last position to the first position in

⌊
#(V)

2

⌋
+ 1 of the orders. Additionally, making

(n − 1)
(⌊

#(V)
2

⌋
+ 1
)

switches in the orders of V requires polynomial time. Let g be a

polynomial that sets the upper bounds for the time needed to make (n− 1)
(⌊

#(V)
2

⌋
+ 1
)

switches, for every n and #(V).
This machine implements the following algorithm:

1. M writes, nondeterministically, two numbers k1 and k2 (as the strings 1k1 and 1k2),

with ki ≤ (n− 1)
(⌊

#(V)
2

⌋
+ 1
)

for i ∈ {1, 2}. Then, M chooses nondeterministically
k1 switches to be made in V, and saves them as the set T1, and k2 switches to be made
in V, and saves them as the set T2.

2. M makes (deterministically) the switches from T1, and saves the newly obtained
preference orders as a multiset V1. M makes (deterministically) the switches from T2,
and saves the newly obtained preference orders as a multiset V2.

3. M checks (deterministically) if c is a Condorcet winner in V1. If the answer is positive
it goes to step 4, otherwise it makes 2 f (n, #(V)) + 2g(n, #(V)) dummy steps and
rejects the input word.

4. M checks (deterministically) if d is a Condorcet winner in V2. If the answer is positive
it goes to step 7, otherwise it makes 2 f (n, #(V)) + 2g(n, #(V)) dummy steps and
rejects the input word.

5. If k1 ≤ k2 the machine accepts the input, otherwise it rejects it.

First, let us see that M works correctly. In step 1 it chooses nondeterministically some
switches in V, that are supposed to make c and d Condorcet winners, respectively. Notice
that the length of a possible computation performed in this step depends on the choice
of the numbers k1 and k2; if these numbers are smaller, then the computation is shorter.
Then in step 2 the machine actually makes (deterministically) the switches chosen in the
previous step. The length of a possible computation, until this moment, is still determined

Axioms 2021, 10, 304 7 of 15

by the choice of k1 and k2. In steps 3 and 4 the machine verifies if those switches were
indeed good to make c and d winners, according to the orders modified by the previously
chosen moves. If they were both transformed in winners by the chosen switches, the
computation continues with to step 5; otherwise, the machine makes a sequence of dummy
steps, long enough to make that computation irrelevant for the final answer of the machine
on the given input. Note that at least one choice of the switches, in step 1, makes both
c and d winners. Now, the shortest computations are those ones in which both c and d
were transformed into winners and the chosen numbers k1 and k2 are minimal. Yet this
is exactly the case when k1 = Score(C, c, V) and k2 = Score(C, d, V). In the step 5, all
the computations in which c and d were transformed into winners are completed by a
deterministic comparison between k1 and k2. Thus, after the execution of this step the
shortest computations remain the ones where k1 = Score(C, c, V) and k2 = Score(C, d, V);
the decision of this computation is to accept, if k1 ≤ k2, or to reject, otherwise. Consequently,
M accepts if and only if Score(C, c, V) ≤ Score(C, d, V), and rejects otherwise. Moreover, it
is rather easy to see that M works in polynomial time, since each of the 5 steps described
above can be completed in polynomial time.

In conclusion, we showed that DodRan can be solved in polynomial time by a Turing
machine that decides with regard to shortest computations. It follows that PTimesc ⊇
PNP[log], and this ends our proof.

The technique used in the previous proof to show that PNP[log]-complete problems
can be solved in polynomial time by Turing machines that decide with regard to shortest
computations suggests another characterization of PNP[log]. In this respect, consider nonde-
terministic Turing machines, working in polynomial time, that decide an input according
to the decisions of the computations in which the least number of nondeterministic moves
is made. Such a machine can be formally defined as follows:

Definition 3. Let M be a Turing machine working in polynomial time and w be a word over the
input alphabet of M. We say that w is accepted by M with respect to the computations with a
minimum number of nondeterministic moves if one of the possible computations of M on w, in
which M makes the minimum number of nondeterministic moves, is accepting; w is rejected by M
with regard to the computations with minimum number of nondeterministic moves if all the possible
computations of M on w, in which M makes the minimum number of nondeterministic moves, are
rejecting.We denote by Lnm(M) the language decided by M with regard to the computations with a
minimum number of nondeterministic moves and by PTimenm the class of all the languages decided
in this manner.

It is not hard to see that, given a Turing machine working in polynomial time and an
input word for that machine, the machine will always decide the input word with regard
to the computations with minimum number of nondeterministic moves, since all of its
computations are finite. One can show the following result.

Theorem 2. PTimenm = PNP[log].

Proof. We can use a proof similar to the one of Theorem 1.
For the inclusion PTimenm ⊆ PNP[log] we can assume, without loss of generality, that

the machine accepting a language from PTimenm has all the possible computations on an
input of length n of the same length f (n), for some polynomial f (we can complete some of
the computations with dummy deterministic steps, in order to make this happen). Then we
just have to search (using binary search) for the computation with the minimum number of
nondeterministic moves, and check if it is an accepting or rejecting one.

For the inclusion PTimenm ⊇ PNP[log], we use the machine constructed in the proof of
PTimesc ⊇ PNP[log], and note that the shortest computations performed by this machine on
a certain input are also the computations where the minimum number of nondeterministic
moves are made. This concludes our proof.

Axioms 2021, 10, 304 8 of 15

4. The First Shortest Computation
4.1. Ordered Turing Machines

In the previous section we proposed a decision mechanism of Turing machines that
basically consisted in identifying the shortest computations of a machine on an input word,
and checking if one of these computations is an accepting one, or not. Now we analyse
how the properties of the model are changed if we order the computations of a machine
and the decision is made according to the first shortest computation, in the defined order.

Let M = (Q, V, U, q0, acc, rej, B, δ) be a t-tape Turing machine, and assume that δ(q,
a1, . . . , at) is a totally ordered set, for all ai ∈ U, i ∈ {1, . . . , t}, and q ∈ Q; we call such a
machine an ordered Turing machine. Let w be a word over the input alphabet of M. Assume
that s1 and s2 are two (potentially infinite) sequences describing two possible computations
of M on w. We say that s1 is lexicographically smaller than s2 if s1 has fewer moves than
s2, or they have the same number of steps (potentially infinite), the first k IDs of the two
computations coincide and the transition that transforms the kth ID of s1 into the k + 1th
ID of s1 is smaller than the transition that transforms the kth ID of s2 into the k + 1th ID of
s2, with respect to the predefined order of the transitions. It is not hard to see that this is a
total order on the computations of M on w. Therefore, given a finite set of computations of
M on w, one can define the lexicographically first computation of the set as that one which
is lexicographically smaller than all the others.

Definition 4. Let M be an ordered Turing machine, and w be a word over the input alphabet of M.
We say that w is accepted by M with respect to the lexicographically first computation if there exists
at least one finite possible computation of M on w, and the lexicographically first computation of
M on w is accepting; w is rejected by M with regard to the lexicographically first computation if
the lexicographically first computation of M on w is rejecting. We denote by Llex(M) the language
accepted by M with regard to the lexicographically first computation. We say that the language
Llex(M) is decided by M with regard to the lexicographically first computation if all the words not
contained in Llex(M) are rejected by M.

As in the case of Turing machines that decide with regard to shortest computations,
the class of languages accepted by Turing machines with regard to the lexicographically
first computation equals RE, while the class of languages decided by Turing machines
with regard to the lexicographically first computation equals REC. The time complexity
of the computations of Turing machines that decide with regard to the lexicographically
first computation is defined exactly as in the case of machines that decide with regard
to shortest computations. We denote by PTimelex the class of languages decided by Turing
machines in polynomial time with regard to the lexicographically first computation. In this context,
we are able to show the following theorem.

Theorem 3. PTimelex = PNP.

Proof. In the first part of the proof we show that PTimelex ⊆ PNP. Let L be a language in
PTimelex and let M be a Turing machine that decides L in polynomial time with regard
to the lexicographically first computation. Additionally, let f be a polynomial such that the
time complexity of the computation of M on each word of length n, measured with regard
to the lexicographically first computation, is less than f (n).

We define the language L′ = {x#w#w′#1k | w ∈ V∗, w′ is a sequence of consecutive IDs
of M, x ∈ {0, 1}, and, if x = 1 (respectively, x = 0) there exists an accepting (respectively,
rejecting) computation of M on the input word w of length less than k, starting with the
sequence of IDs w′}. It is not hard to see that L′ is in NP. A nondeterministic machine
deciding it works as follows: it simulates, nondeterministically, a computation of at most
k steps of M, starting with the IDs in the sequence w′, and accepts if and only if this
x = 1,or, respectively, x = 0, and the simulated computation is accepting, or, respectively,

Axioms 2021, 10, 304 9 of 15

rejecting; otherwise (i.e., if in the simulated computation steps a final configuration was
not obtained), it rejects. Clearly, this machine works in polynomial time.

A deterministic Turing machine M′, with oracle L′, accepting L implements the
following strategy, on an input word w:

1. M′ searches (by binary search) the minimum length of a computation of M on w,
with length less than or equal to f (|w|). In this search, the machine queries the oracle
L′ for O(log2(f (|w|))) times, asking, in each of these queries, if a string of the form
1#w#ε#1k and 0#w#ε#1k, with k ≤ f (|w|), is in L′. Let n0 be the minimum length of a
computation, with length less than or equal to f (|w|).

2. Next, M′ tries to construct, ID by ID, the first (shortest) computation of length n0,
using the oracle L′. Assume that w′ is a sequence of IDs identified until a given
moment as a prefix of the sequence encoding the first computation of length n0, and
we try to lengthen this sequence. Assume that w1, w2, . . . , wk are the IDs that can be
obtained from the last ID of w′, ordered according to the transitions that were used to
obtain them. We search the minimum i, with 1 ≤ 1 ≤ k, such that 0#w#w′wi#1n0 or
1#w#w′wi#1n0 is in L′. Once we have identified this minimum value, denoted i0, we
add the ID wi0 to the sequence w′, and repeat the process described above, until w′

contains n0 IDs.
3. The machine finally checks if the string 1#w#w′#1n0 is in L′, and if it is so accepts, or,

if the string 0#w#w′#1n0 is in L′, and, in this case, rejects.

It is not hard to see that M′ correctly computes the length n0 of the shortest com-
putation of M on an input word w. Also, once this length computed, the first shortest
computation is identified, and the machine checks if this computation is an accepting or a
rejecting one. Thus, M′ implements the desired behaviour. Finally, note that M′ works in
polynomial time: in step 2 it makes O(n0) queries, asking if strings of polynomial length
are in L′, while the rest of the computation is clearly carried out in polynomial time. This
completes the proof of the upper bound on PTimelex.

To show the second inclusion, note that, similar to the case of machines deciding with
regard to shortest computations, the class PTimelex is closed to polynomial-time reductions.
Thus, it is sufficient to show that the PNP-complete problem TSPodd can be solved in
polynomial time by a Turing machine M that decides with regard to the lexicographically
first computation.

Therefore, we construct a Turing machine M that solves TSPodd with regard to the
lexicographically first computation. The input of this machine consists in a natural number
n, and n2 natural numbers, encoding the values of the function d : {1, . . . , n}×{1, . . . , n} →
IN. We can assume, without losing generality, that all the input numbers are given as
decimal numbers; furthermore, we assume that all the n2 numbers, that encode the values
of the function d, have the same number of decimal digits, denoted by m (we may add
some leading zeros at the beginning of these numbers in order to make this assumption
hold). Therefore, the size of the input is O(n2m). Additionally, let us make the assumption
that every time we sum up n numbers of m digits we make exactly f (m, n) steps, where
f is a polynomial, and the sum is always represented using the same number of digits
(clearly bounded by the input size).

This machine implements the following algorithm:

1. M writes, nondeterministically, a permutation π of {1, . . . , n} and computes, deter-
ministically, the sum S = ∑n

i=1 d(π(i), π(i + 1)). Let k be the number of digits of
S.

2. M writes, nondeterministically, a number S0 of k digits; this number may have some
leading zeros. We assume that this step is performed in k computational steps, each
consisting in choosing one of the moves {m0, m1, . . . , m9} in which one of the digits
0, . . . , 9, respectively, is written. These moves are ordered m0 < m1 < . . . < m8 < m9.

3. M writes, nondeterministically, a permutation π′ of {1, . . . , n} and computes, deter-
ministically, the sum S′ = ∑n

i=1 d(π′(i), π′(i + 1)).

Axioms 2021, 10, 304 10 of 15

4. M checks, deterministically, if S′ = S0. If yes, it goes to step 5, otherwise it makes
2n2m dummy step and rejects.

5. M checks, deterministically, if S′ is odd. If yes, it accepts, otherwise it rejects.

It is important to state that the order of the nondeterministic moves that are executed
in steps 1 and 3 has no impact on the computation. For uniformity we consider that they
are ordered, but we do not make any assumption on what order is actually used.

Before showing that the machine works correctly, we notice that it works in polynomial
time. Indeed, it is not hard to see that every possible computation of M consists of a
sequence of steps of polynomial length, and always ends with a decision.

To show the soundness of our construction, let us observe that all the possible com-
putations implemented by the first 3 steps of the above algorithm have the same length.
In the first of these steps we choose a possible permutation π of {1, . . . , n} and compute
the sum S = ∑n

i=1 d(π(i), π(i + 1)); in this way we have computed a possible solution of
the Travelling Salesman Problem, defined by the function d, and the real solution of the
problem should be at most S. Then we try to find another permutation π′ that leads to a
smaller sum. For this we choose first a number S0 that has as many digits as S (of course, it
may have several leading zeros); however, the computations are ordered in such a manner
that a computation in which smaller numbers are constructed comes before a computation
in which a greater number is constructed. Then, in steps 3 and 4, M verifies if S′ can
be equal to the sum ∑n

i=1 d(π′(i), π′(i + 1)), for a permutation π′ nondeterministically
chosen. If the answer is yes then it means that S0 is also a possible solution of the problem;
otherwise, we conclude that the nondeterministic choices made so far were not really the
good ones, so we reject after we make a long enough sequence of dummy steps, in order
not to influence the decision of the machine. Finally, we verify if S0 is odd, and accept if
and only if this condition holds. By the considerations made above, it is clear that in all
the shortest computations we identified some numbers that can represent solutions of the
Travelling Salesman Problem; moreover, in the first of the shortest computations we have
identified the smallest such number, i.e., the real solution of the problem. Consequently,
the decision of the machine is to accept or to reject the input according to the parity of the
solution identified in the first shortest computation, which is correct.

Summarizing, we showed that TSPodd can be solved in polynomial time by a Turing
machine that decides with regard to the lexicographically first computation. It follows that
PTimelex ⊇ PNP, and this concludes our proof.

Remark 2. Note that the proof of Theorem 1 shows that PNP[log] can be also characterized as the
class of languages that can be decided in polynomial time with regard to shortest computations
by nondeterministic Turing machines whose shortest computations are either all accepting or all
rejecting. On the other hand, in the proof of Theorem 3, the machine that we construct to solve with
regard to the lexicographically first computation the TSPodd problem may have both accepting and
rejecting shortest computations on the same input. This shows that PNP[log] = PNP if and only if
all the languages in PNP can be decided with regard to shortest computations by nondeterministic
Turing machines whose shortest computations on a given input are either all accepting or all
rejecting.

4.2. Ordering Functions

There is a point where the definition of the ordered Turing machine does not seem
satisfactory: each time a machine has to execute a nondeterministic move, for a certain state
and a tuple of scanned symbols, the order of the possible moves is the same, regardless of
the input word and the computation performed until that moment. Therefore, we consider
another variant of ordered Turing machines, in which such information is considered:
Let M be a Turing machine. We denote by 〈M〉 a binary encoding of this machine (see, for
instance, [18]). It is clear that the length of the string 〈M〉 is a polynomial with respect to the
number of states and the working alphabet of the machine M. Let g : {0, 1, #}∗ → {0, 1, #}∗
be a function such that g(〈M〉#w1#w2# . . . #wk) = w′1#w′2# . . . #w′p, given that w1, . . . , wk are

Axioms 2021, 10, 304 11 of 15

binary encodings of the IDs that appear in a computation of length k of M (we assume that
they appear in this order, and that w1 is an initial configuration), and w′1, . . . , w′p are the IDs
that can be obtained in one move from wk. Clearly, this function induces canonically an
ordering on the computations of a Turing machine. Assume s1 and s2 are two (potentially
infinite) sequences describing two possible computations of M on w. We say that s1 is
g-smaller than s2 if the first k IDs of the two computations, which can be encoded by the
strings w1, . . . , wk, coincide, and g(〈M〉#w1#w2# . . . #wk) = w′1#w′2# . . . #w′p, the k + 1th ID
of s1 is encoded by w′i , the k + 1th ID of s2 is encoded by w′j, and i < j. It is not hard to
see that g induces a total order on the computations of M on w; thus, we will call such a
function an ordering function. Therefore, given a finite set of computations of M on w we
can define the g-first computation of the set as the one that is g-smaller than all the others.

Definition 5. Let M be a Turing machine, and g : {0, 1, #}∗ → {0, 1, #}∗ be an ordering function.
We say that w is accepted by M with respect to the g-first shortest computation if there exists at
least one finite possible computation of M on w, and the g-first of the shortest computations of M
on w is an accepting one; w is rejected by M with regard to the lexicographically first computation
if the g-first shortest computation of M on w is a rejecting computation. We denote by Lg

f sc(M) the
language accepted by M with regard to the g-first shortest computation, i.e., the set of all words
accepted by M, with regard to the g-first shortest computation. As in the case of regular Turing
machines, we say that the language Lg

f sc(M) is decided by M with regard to the g-first shortest

computation if all the words not contained in Lg
f sc(M) are rejected by that machine, with regard

to the g-first shortest computation.

It is not surprising that, if g is Turing computable, the class of languages accepted
by Turing machines with regard to the g-first shortest computation equals RE, while
the class of languages decided by Turing machines with regard to the lexicographically
first computation equals REC. The time complexity of the computations of Turing machines
that decide with regard to the g-first shortest computation is defined exactly as in the case
of machines that decide with regard to shortest computations. We denote by PTimeg

f sc the
class of languages decided by Turing machines in polynomial time with regard to the g-first shortest
computation. We also denote by PTimeo f sc the union of all the classes PTimeg

f sc, where the
ordering function g can be computed in polynomial deterministic time. We are now able to
show the following theorem.

Theorem 4. PTimeo f sc = PNP.

Proof. In fact, we will show that PTimeo f sc = PTimelex. First, let us observe that the
inclusion PTimeo f sc ⊇ PTimelex holds canonically. Indeed, the lexicographical order of the
computations defined in the previous section is just a particular case of an order defined by
an ordering function computable in deterministic polynomial time.

Further, we show that PTimeo f sc ⊆ PTimelex. Given g an ordering function that can
be computed in deterministic polynomial time, let L be a language and M be a Turing
machine that decides in polynomial time L with regard to the g-first shortest computation.
Let us assume, without loss of generality, that the time needed to compute the value of g
for a string of k configurations of M, all having the same initial configuration, regardless
of the configurations. We define an ordered machine M′ and show that it decides L with
regard to the lexicographically first computation, also in polynomial time.

We will not give the details of the construction of M′, as they can be quite tedious,
but we will give the main idea implemented by this machine. The machine M′ basically
simulates the computation of the machine M and keeps on a track (called “memory track”)
the encoding of M and the encodings of IDs of M that were obtained during the simulated
computation. Assume that M′ should simulate a move of M, provided that the current
state of M is q and the scanned symbols are (a1, . . . , ak). First, M′ enters in a state qg in
which it computes the value of the function g having as argument the string saved on

Axioms 2021, 10, 304 12 of 15

the memory track. Suppose that the computed value is the string w′1#w′2# . . . #w′p, and
the machine M must make the transition mi to obtain the ID w′i from the current ID, for
i ∈ {1, . . . , p}. Accordingly, the machine M′ enters in a state qm1,...,mp , and from this state it
must make a nondeterministic move that simulates the move of M. However, we define
M′ such that its possibilities, in this case, are ordered: the first comes the move m1, then the
move m2, and so on, finally coming mp (m1 < m2 < . . . < mp, in the formalism of ordered
machines). Once the move is simulated, the machine M′ saves the encoding of the current
ID of the simulated machine (again, we may assume that this operation can be done in
the same time for any ID, since their length is bounded by a polynomial), and goes on to
simulate the next move of M.

It is not hard to see that M′ simulates soundly the behaviour of M. Basically, M′

keeps a history of the computation performed by M and uses a subroutine, computing the
function g, to ensure that the lexicographical order of the simulated computations coincides
with the order defined by the function g for the machine M and its real computations.
Additionally, the part of the algorithm implemented by M′ that is not involved in the actual
simulation (that is in keeping the history of the simulated computation and computing the
values of g) depends only on the number of steps of M simulated until that point and on
the input word, so it is quite easy to see that the shortest computations of M are simulated
by the shortest computations of M′; moreover, the g-first shortest computation of M is
simulated by the lexicographically first shortest computation of M′.

It follows that the language L is decided by M′ in polynomial time with regard to the
lexicographically first computation.

To conclude, we showed that PTimeo f sc ⊆ PTimelex.
It follows that PTimeo f sc = PTimelex and, according to Theorem 3, we obtain the

identity PTimeo f sc = PNP.

Notice that PNP[log] ⊆ PTimeg
f sc ⊆ PNP, for all the ordering functions g which can be

computed in polynomial deterministic time. The second inclusion is immediate from the
previous Theorem, while the first one follows from the fact that any language in PNP[log] is
accepted with regard to shortest computations, in polynomial time, by a nondeterministic
Turing machine whose shortest computations are either all accepting or all rejecting; clearly,
the same machine can be used to show that the given language is in PTimeg

f sc.
It is interesting to see that for some particular ordering functions, as for instance the

one that defines the lexicographical order discussed previously, a stronger result holds:
PTimeg

f sc = PNP (where g is the ordering function). We leave as an open problem to see if
this relation holds for all the ordering functions, or, if not, to see when it hold.

5. Conclusions and Further Work

In this paper, we have shown that considering a variant of Turing machine, that
decides an input word according to the decisions of the shortest computations of the
machine on that word, leads to new characterizations of two well-studied complexity
classes PNP[log] and PNP. These results seem interesting since they provide alternative
definitions of these two classes that do not make use of any other notion than the Turing
machine (such as oracles, reductions, etc.) Note that some of our proofs rely on showing
that complete problems can be solved by machines deciding with respect to the shortest
computations. These complete problems were chosen according to the personal preferences
of the author; clearly, other complete problems could have been solved similarly with
the respective techniques. We feel, however, that our solutions capture entirely the ideas
that connect the different complexity classes we characterize with the usage of shortest
computations.

From a theoretical point of view, an attractive continuation of the present work would
be to analyse if the equality results in Theorems 1–3 relativise. It is not hard to see that the
upper bounds shown in these proofs are true even if we allow all the machines to have
access to an arbitrary oracle. It remains to be settled if a similar result holds in the case

Axioms 2021, 10, 304 13 of 15

of the lower bounds. However, we conjecture that the lower bounds do not hold in the
presence of arbitrary oracles, highlighting, in this way, the difference between the way our
variant of Turing machine decides and the way regular oracle Turing machines decide.

Nevertheless, other accepting/rejecting conditions related to the shortest computa-
tions could be investigated. As we mentioned in the Introduction, several variants of
Turing machines that decide a word according to the number of accepting, or rejecting,
computations were already studied. We intend to analyse what happens if we use similar
conditions for the shortest computations of a Turing machine. In this respect, using the
ideas of the proof of Theorem 3, one can show that

Theorem 5. Given a nondeterministic polynomial Turing machine M1, one can construct a
nondeterministic polynomial Turing machine, with access to NP-oracle, M2, whose computations
on an input word correspond bijectively to the short computations of M1 on the same word, such
that two corresponding computations are both either accepting, or rejecting.

Proof. Let M be a nondeterministic Turing machine working in polynomial time. Further-
more, let f be a polynomial such that the time complexity of the computation of M on each
word of length n is less than f (n).

Recall the language L′ = {x#w#w′#1k | w ∈ V∗, w′ is a sequence of consecutive IDs
of M, x ∈ {0, 1}, and, if x = 1 (respectively, x = 0) there exists an accepting (respectively,
rejecting) computation of M on the input word w of length less than k, starting with the
sequence of IDs w′}, from the proof of Theorem 3. Additionally, recall that L′ is in NP.

We construct now a nondeterministic Turing machine M′, with oracle L′, that acts
as follows:

1. M′ searches (by binary search) the minimum length of a computation of M on w,
with length less or equal to f (|w|). In this search, the machine queries the oracle
L′ for O(log2(f (|w|))) times, asking, in each of these queries, if a string of the form
1#w#ε#1k and 0#w#ε#1k, with k ≤ f (|w|), is in L′. Let n0 be the minimum length of a
computation, with length less or equal to f (|w|). This step is executed deterministi-
cally.

2. Next M′ tries to construct nondeterministically, ID by ID, one of the shortest compu-
tations of M on w (the length of this computation is n0), using the oracle L′. Assume
that w′ is a sequence of IDs identified until a given moment as a prefix of the sequence
encoding such a computation, and we try to lengthen this sequence. Assume that
w1, w2, . . . , wk are the IDs that can be obtained from the last ID of w′. We search all the
possible i, with 1 ≤ 1 ≤ k, such that 0#w#w′wi#1n0 or 1#w#w′wi#1n0 is in L′. Once we
have identified these values, denoted by i1, . . . , ip, we add, nondeterministically, one
of the IDs wij , with j ∈ {1, . . . , p} to the sequence w′, and repeat the process described
above, until w′ contains n0 IDs.

3. The machine finally checks if the string 1#w#w′#1n0 , for a w′ obtained in one of the
possible computations, is in L′, and if it is so, the computation is accepting, or, if the
string 0#w#w′#1n0 , for a w′ obtained in one of the possible computations, is in L′, and,
in this case, the computation is rejecting.

It is not hard to see that M′ correctly computes the length n0 of the shortest compu-
tation of M on an input word w. Additionally, once this length computed, the shortest
computations of M′ are identified, and the machine simulates these computations nonde-
terministically. Thus, the computations of M can be put in a bijective correspondence with
the shortest computations of M′: one of the shortest computations of M corresponds to the
computation of M′ that simulates this shortest computation. Finally, note that M′ works in
nondeterministic polynomial time.

This concludes the proof of Theorem 5.

This Theorem is useful to show upper bounds on the complexity classes defined by
counting the accepting/rejecting shortest computations. Some examples in this direction

Axioms 2021, 10, 304 14 of 15

are: PPsc ⊆ PPNP (where PPsc is the class of decision problems solvable by a nondetermin-
istic polynomial Turing machine which accepts if and only if at least 1/2 of the shortest
computations are accepting, and rejects otherwise) or BPPsc ⊆ BPPNP

path (where BPPsc is
the class of decision problems solvable by a nondeterministic polynomial Turing machine
which accepts if at least 2/3 of the shortest computations are accepting, and rejects if at
least 2/3 of the shortest computations are rejecting).

Remark 3. However, in some cases, one can show stronger upper bounds; for instance, PPsc ⊆
PPNP[log]

ctree (where PPNP[log]
ctree is the class of decision problems solvable by a PP-machine which can

make a total number of O(log n) queries to an NP-language in its entire computation tree, on an
input of length n). It seems an interesting problem to find lower bounds for such classes, as well.

Proof. Let M be a nondeterministic Turing machine working in polynomial time. Addi-
tionally, let f be a polynomial such that the time complexity of the computation of M on
each word of length n is less than f (n).

Recall the language L′ = {x#w#w′#1k | w ∈ V∗, w′ is a sequence of consecutive IDs
of M, x ∈ {0, 1}, and, if x = 1 (respectively, x = 0), there exists an accepting (respectively,
rejecting) computation of M on the input word w of length less than k, starting with the
sequence of IDs w′}, from the proof of Theorem 3. Recall also that L′ is in NP.

We construct now a nondeterministic Turing machine M′, with oracle L′, that acts
as follows:

1. M′ searches (by binary search) the minimum length of a computation of M on w,
with length less or equal to f (|w|). In this search, the machine queries the oracle
L′ for O(log2(f (|w|))) times, asking, in each of these queries, if a string of the form
1#w#ε#1k and 0#w#ε#1k, with k ≤ f (|w|), is in L′. Let n0 be the minimum length
of a computation, with length less than or equal to f (|w|). This step is executed
deterministically.

2. Next, M′ simulates the computations of M, counting how many steps it has already
simulated. As soon as a computation has more than n0 steps, it makes a nondeter-
ministic move, with two possible continuations: one possibility is to accept the input,
while the other one is to reject it. The computations with n0 steps are fully simulated
(and the decision of M′ in those cases coincide with the decision of M).

It is not hard to see that M′ correctly computes the length n0 of the shortest compu-
tation of M on an input word w. It is also clear that the difference between the number
of accepting paths and the number of rejecting paths of M′ equals the difference between
the number of accepting shortest computations and rejecting shortest computations of M.
Finally, note that M′ works in nondeterministic polynomial time, and it makes O(log n)
queries to a NP language, summed up over all the possible computations. Therefore, if we
see M′ as a PP-machine, it makes exactly the same decision as M, seen as a PPsc-machine.

Clearly, this implies that PPsc ⊆ PPNP[log]
ctree , and our proof is concluded.

Alternatively, one can see that all the languages from PPsc can be accepted by deter-
ministic Turing machines working in polynomial time, that are allowed to make O(log n)
queries to NP and exactly one query to PP, which gives the decision of the machine, on an
input of length n. The only difference from the above idea is that step 2 of the algorithm is
replaced by a PP-language query.

Another remark is that the idea presented above holds in the case of other classes, like
⊕P (where ⊕P is the class of decision problems solvable by a nondeterministic polynomial
Turing machine which accepts if and only if the number of accepting paths is even), which
was introduced in [4].

One can show, similarly to the above, that ⊕Psc ⊆ ⊕PNP[log]
ctree (where ⊕PNP[log]

ctree is the
class of decision problems solvable by a ⊕P-machine which can make a total number of
O(log n) queries to an NP-language in its entire computation tree, on an input of length
n). The only difference from the above proof is that in step 2 of the algorithm, as soon as a

Axioms 2021, 10, 304 15 of 15

computation has more than n0 steps, the machine M makes a nondeterministic move with
three possible continuations: two possibilities are to accept the input, and the other is to
reject it.

The same idea applies to the class RP, of decision problems solvable by a nondetermin-
istic polynomial Turing machine which accepts if and only if at least half of the computation
paths accept and rejects if and only if all computation paths reject, introduced in [5]. In this

case we get RPsc ⊆ RPNP[log]
ctree (where RPNP[log]

ctree is the class of decision problems solvable
by a RP-machine which can make a total number of O(log n) queries to an NP-language
in its entire computation tree, on an input of length n).

According to Remark 2, one can see that the lower bounds PNP[log] ⊆ PPsc, PNP[log] ⊆
⊕Psc and PNP[log] ⊆ RPsc hold.

Funding: This research was done by the author while being a postdoctoral fellow at the University
of Magdeburg, funded by the Alexander von Humboldt Foundation, whose support is graciously
acknowledged.

Acknowledgments: An extended abstract of this paper was presented at the conference Computability
in Europe 2011: Models of Computation in Context [21]. We thank to all the reviewers of this paper for
their very useful comments and suggestions.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Köbler, J.; Schöning, U.; Wagner, K. The Difference and Truth-Table Hierarchies for NP. RAIRO Theor. Inform. Appl. 1987,

21, 419–435. [CrossRef]
2. Hemachandra, L. The Strong Exponential Hierarchy Collapses. J. Comput. Syst. Sci. 1989, 39, 299–322. [CrossRef]
3. Wagner, K.W. Bounded Query Classes. SIAM J. Comput. 1990, 19, 833–846. [CrossRef]
4. Papadimitriou, C.H.; Zachos, S. Two remarks on the power of counting. In Proceedings of the Theoretical Computer Science,

Dortmund, Germany, 5–7 January 1983; Volume 145, pp. 269–276.
5. Gill, J. Computational Complexity of Probabilistic Turing Machines. SIAM J. Comput. 1977, 6, 675–695. [CrossRef]
6. Beigel, R.; Hemachandra, L.A.; Wechsung, G. Probabilistic Polynomial Time is Closed under Parity Reductions. Inf. Process. Lett.

1991, 37, 91–94. [CrossRef]
7. Han, Y.; Hemaspaandra, L.; Thierauf, T. Threshold Computation and Cryptographic Security. SIAM J. Comput. 1997, 26, 59–78.

[CrossRef]
8. Papadimitriou, C.M. Computational Complexity; Addison-Wesley: Reading, MA, USA, 1994.
9. Manea, F.; Margenstern, M.; Mitrana, V.; Pérez-Jiménez, M.J. A New Characterization of NP, P, and PSPACE with Accepting

Hybrid Networks of Evolutionary Processors. Theory Comput. Syst. 2010, 46, 174–192. [CrossRef]
10. Pérez-Jiménez, M.J. A Computational Complexity Theory in Membrane Computing. In Proceedings of the International

Workshop on Membrane Computing, Curtea de Arges, Romania, 24–27 August 2009; Volume 5957, pp. 125–148.
11. Manea, F. Deciding Networks of Evolutionary Processors. In Proceedings of the International Conference on Developments in

Language Theory, Milano, Italy, 19–22 July 2011; Volume 6795, pp. 337–349.
12. Manea, F. Complexity results for deciding Networks of Evolutionary Processors. Theor. Comput. Sci. 2012, 456, 65–79. [CrossRef]
13. Alhazov, A.; Freund, R.; Rogozhin, V.; Rogozhin, Y. Computational completeness of complete, star-like, and linear hybrid

networks of evolutionary processors with a small number of processors. Nat. Comput. 2016, 15, 51–68. [CrossRef]
14. Alhazov, A.; Rogozhin, Y.; Verlan, S. Small Universal Devices. In Computing with New Resources—Essays Dedicated to Jozef Gruska

on the Occasion of His 80th Birthday; Calude, C.S., Freivalds, R., Iwama, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2014;
Volume 8808, pp. 249–263. [CrossRef]

15. Loos, R. On Accepting Networks of Splicing Processors of Size 3. In Proceedings of the Conference on Computability in Europe,
Siena, Italy, 18–23 June 2007; Volume 4497, pp. 497–506.

16. Negru, M.C. Networks of polarized splicing processors as problem solvers. Biosystems 2019, 186, 104037. [CrossRef]
17. Hartmanis, J.; Stearns, R.E. On the Computational Complexity of Algorithms. Trans. Amer. Math. Soc. 1965, 117, 533–546.

[CrossRef]
18. Hopcroft, J.E.; Ullman, J.D. Introduction to Automata Theory, Languages and Computation; Addison-Wesley: Reading, MA, USA 1979.
19. Wagner, K.W. More Complicated Questions About Maxima and Minima, and Some Closures of NP. Theor. Comput. Sci. 1987,

51, 53–80. [CrossRef]
20. Hemaspaandra, E.; Hemaspaandra, L.A.; Rothe, J. Exact Analysis of Dodgson Elections: Lewis Carroll’s 1876 Voting System is

Complete for Parallel Access to NP. J. ACM 1997, 1256, 214–224. [CrossRef]
21. Manea, F. Deciding According to the Shortest Computations. In Proceedings of the Conference on Computability in Europe 2011,

Sofia, Bulgaria, 27 June–2 July 2011; Volume 6735, pp. 191–200.

http://doi.org/10.1051/ita/1987210404191
http://dx.doi.org/10.1016/0022-0000(89)90025-1
http://dx.doi.org/10.1137/0219058
http://dx.doi.org/10.1137/0206049
http://dx.doi.org/10.1016/0020-0190(91)90140-D
http://dx.doi.org/10.1137/S0097539792240467
http://dx.doi.org/10.1007/s00224-008-9124-z
http://dx.doi.org/10.1016/j.tcs.2012.06.029
http://dx.doi.org/10.1007/s11047-015-9534-1
http://dx.doi.org/10.1007/978-3-319-13350-8_19
http://dx.doi.org/10.1016/j.biosystems.2019.104037
http://dx.doi.org/10.1090/S0002-9947-1965-0170805-7
http://dx.doi.org/10.1016/0304-3975(87)90049-1
http://dx.doi.org/10.1145/268999.269002

	Introduction
	Basic Definitions
	Shortest Computations
	The First Shortest Computation
	Ordered Turing Machines
	Ordering Functions

	Conclusions and Further Work
	References

