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1. Introduction

The prototype of the generalized Bochner technique is the celebrated classical Bochner
technique, first introduced by S. Bochner, K. Yano, A. Lichnerowicz, and others in the
1950s and 1960s to study the relationship between the topology and curvature of a compact
boundaryless Riemannian manifold (see [1]). This method is used to prove the vanishing
theorem for the kernel of the Laplace operator admitting a Weitzenböck decomposition
on compact manifolds (see [2] (p. 53)). As a result, we have a number of theorems based
on the classical Bochner technique, which usually show that the assumption of positive
or negative curvature sectional curvatures of compact Riemannian manifolds yields the
vanishing of some geometrically interesting tensor fields and mappings. The most famous
results of the classical Bochner technique are the theorem of D. Meyer and S. Gallot (see [3])
on the vanishing of Betti numbers of compact Riemannian manifolds and the theorem of J.
Eells and J. H. Sampson (see [4] (p. 465)) on the absence of harmonic mappings of compact
Riemannian manifolds.

The classical Bochner technique is used in a number of articles, monograph chapters,
and analytical reviews (see, for example, [1]; [4]; [5] (pp. 333–363); [6,7]). On the other hand,
since the 1970s, complete (non-compact) Riemannian manifolds have been included in the
circle of research carried out using the Bochner technique. For this, methods of geometric
analysis have been developed (see, for example, [4] (pp. 361–394); [8]; [9,10]). As a result,
vanishing theorems for the classical Bochner technique took the form of Liouville-type
theorems. The first outstanding achievement in this direction was the theorem of S.-T. Yau
and R. Schoen (see [11]), which generalized the result of J. Eells and J. H. Sampson to the
case of complete Riemannian manifolds. The new research method developed by S.-T. Yau,
R. Schoen, H. Wu, P. Li, and others was later called the generalized Bochner technique (see,
for example, [8]). This method studies the relationship between the geometry of a complete
Riemannian manifold and the behavior of its convex, subharmonic, and superharmonic
functions under the assumptions about either the curvature or the growth of the volume

Axioms 2021, 10, 333. https://doi.org/10.3390/axioms10040333 https://www.mdpi.com/journal/axioms

https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0003-0591-8307
https://orcid.org/0000-0003-1734-8874
https://orcid.org/0000-0001-9186-3992
https://doi.org/10.3390/axioms10040333
https://doi.org/10.3390/axioms10040333
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/axioms10040333
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms10040333?type=check_update&version=1


Axioms 2021, 10, 333 2 of 10

of geodesic balls. Today, the new research method is not as popular among geometers
as the classical Bochner method. Despite the availability of monographs (e.g., [4,8–10]),
there are not many practical applications. In this article, we discuss the global geometry of
conformal mappings of complete Riemannian and Kähler manifolds using a generalized
version of the Bochner technique. This article continues the series of works [12,13] and
can also demonstrate to both newcomers to the field and experienced geometers various
methods of the generalized Bochner technique for research on the example of conformal
mappings. All new results of the article are easily proved on the basis of known results of
geometric analysis, e.g., [1,4,5,7–10], so we only give a sketch of their proofs.

The article is organized as follows. In Section 2, along with basic information on
conformal mappings, we demonstrate the classical Bochner technique with examples for
compact manifolds. In the other four sections, we demonstrate applications of various
methods of the generalized Bochner technique to the study of conformal diffeomorphisms
of complete Riemannian manifolds.

2. Preliminaries on Conformal Mappings and the Classical Bochner Technique

Let (M, g) and (M̄, ḡ) be two n-dimensional (n ≥ 3) connected Riemannian manifolds
with the Levi–Civita connections ∇ and ∇̄, respectively, and let f :M → M̄ be a diffeo-
morphism of M onto M̄. Suppose that x is any point of M; then, by [14] (Theorem 2.2.11),
there exist a neighborhood U ⊂ M of this point with local coordinates x1, . . . , xn and a
neighborhood Ū ⊂ M̄ of x̄ = f (x) ∈ M̄ with local coordinates x̄1, . . . , x̄n such that the dif-
feomorphism f |U is given by the equalities x̄1 = x1, . . . , x̄n = xn. In this case, an arbitrary
pair of points y ∈ U and ȳ = f (y) ∈ f (U) must have the same coordinates. We will use
such special local coordinate systems as needed throughout this article (see also [1,6]).

Recall that a diffeomorphism f :M→ M̄ is a conformal mapping f :(M, g)→ (M̄, ḡ) of
Riemannian manifolds if there is a smooth function σ on M such that f ∗ ḡ = e2 σg, i.e., the
pull back of the metric ḡ is proportional to g (see [15]). The last equations can be rewritten
equivalently as

ḡij = e2 σgij, (1)

where gij = g(∂/∂xi, ∂/∂xj) and ḡij = ḡ(∂/∂xi, ∂/∂xj) with respect to common local
coordinates x1, . . . , xn (see also [16] (p. 89)). In other words, we suppose that all objects
under consideration (as connections, tensor fields, etc.), with bar or without, are defined
on the same underlying manifold. In particular, if σ is constant, then f is a homothetic
mapping, and if σ = 0, then f is an isometry. If we denote by Ric and Ric the Ricci tensors
of (M, g) and (M̄, ḡ), respectively, then for a conformal mapping f :(M, g) → (M̄, ḡ), the
following equations hold (see [15]; [16] (p. 90)):

R̄ij = Rij − (n− 2)(∇i(∂jσ)− ∂iσ∂jσ) + (∆σ + (n + 2)‖grad σ‖2)gij, (2)

where R̄ij and Rij are components of the Ricci tensors Ric and Ric, respectively;∇i = ∇∂/∂xi

and ‖grad σ‖2 = g(grad σ, grad σ) for (grad σ)i = ∂iσ = gij∂jσ with the components gkl

of the inverse of the metric tensor g and ∂iσ = ∂σ/∂xi. Here, ∆σ = div(grad σ) is the
well-known Laplace–Beltrami operator, similar to Laplacian (see, for example, [5] (p. 61; 74,
etc.)). From (2), we conclude that if f :(M, g) → (M̄, ḡ) is a homothetic mapping, then
Ric = f ∗Ric. If we denote by s̄ and s the scalar curvatures of (M, g) and (M̄, ḡ), respectively,
then contracting (2), we obtain the following equation (see [15] and [16] (p. 90)):

e2 σ s̄ = s− 2(n− 1)∆ σ− (n− 1) (n− 2) ‖grad σ‖2. (3)

The Schouten tensor S of (M, g) is introduced by the following equality:

S =
1

n− 2
(

Ric− s
2(n− 1)

g
)
.
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The Schouten tensor is especially important for conformal geometry because of its relatively
simple conformal diffeomorphism law

S̄ij = Sij −∇i(∂jσ) + ∂iσ∂jσ− (1/2)‖grad σ‖2gij. (4)

Note that (4) is a direct consequence of (2) and (3). From (4), we conclude that if f :(M, g)→
(M̄, ḡ) is a homothetic mapping, then f ∗S̄ = S.

Now, let (M, g) be compact. We can assume that s ≤ 0 and s̄ ≥ 0. Thus, from (3), it
follows that ∆ σ ≤ 0 . Then, by Bochner’s lemma (see [1] (p. 30) and Remark 3), we obtain
σ = const and ∆ σ = 0, and again by (3) and our assumptions, s = s̄ = 0. Setting

σ =
2

n− 2
ln u

for a smooth scalar function u > 0, from ḡ = e2 σg, we obtain

ḡ = u4/(n−2) g, u > 0,

where u is called the associated function of the conformal diffeomorphism f :(M, g) →
(M̄, ḡ) (see [15]). In this case, (3) can be rewritten in the following form (see [2] (p. 59)):

∆ u =
n− 2

4 (n− 1)
(
u s− u

n+2
n−2 s̄

)
. (5)

When M is compact, integrating (5) over (M, g) and using the Green theorem (see [1]
(p. 31)) gives ∫

M
s u d volg =

∫
M

u
n+2
n−2 s̄ d volg.

Assuming s̄ ≤ 0 and s ≥ 0 for the above integral formula, we obtain s̄ = s = 0. Thus,
from (3), we can conclude that σ = const. Hence, the conformal diffeomorphism f :(M, g)→
(M̄, ḡ) is a homothetic mapping. Therefore, we can formulate the following theorem.

Theorem 1. Let (M, g) be a compact without boundary Riemannian manifold of dimension n ≥ 3
with scalar curvature s ≤ 0 (or s ≥ 0), and let (M̄, ḡ) be another Riemannian manifold with
scalar curvature s̄ ≥ 0 (or s̄ ≤ 0, respectively). If there exists a conformal diffeomorphism
f :(M, g) → (M̄, ḡ), then it is a homothetic mapping; moreover, (M, g) and (M̄, ḡ) have zero
scalar curvature.

Remark 1. For the two-dimensional case, a conformal diffeomorphism f (in Theorem 1) is just a
holomorphic transformation between the underlying complex structures of M and M̄. Since the
scalar curvature is twice the Gaussian curvature, χ(M) ≤ 0 (or χ(M) ≥ 0) and χ(M̄) ≥ 0
(or χ(M̄) ≤ 0, respectively) by Gauss–Bonnet theorem; thus, χ(M) = χ(M̄) = 0. Therefore,
s = s̄ = 0.

Remark 2. Applying the Green theorem (see [1] (p. 31)) to ∆ σ, we obtain∫
M

∆ σ d volg = 0,

where d volg is the Riemannian volume form. Then, integrating (3) over (M, g) gives

s(M) =
∫

M
e2 σ s̄ d volg + (n− 1)(n− 2)

∫
M
‖grad σ‖2 d volg,

where s (M) =
∫

M s d volg is the total scalar curvature of (M, g) (see [2] (p. 119)). An analysis of
the above formulas allows us to conclude that the condition s ≤ 0 in Theorem 1 can be replaced by
the weaker condition s (M) ≤ 0 (see [15] (Theorem 2)).
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The following corollary of Theorem 1 generalizes Yau’s similar statement [15] (Corol-
lary 2.1) with constant scalar curvature.

Corollary 1. Let g and ḡ be two conformally equivalent metrics on an n-dimensional (n ≥ 3)
compact manifold M. If both metrics have nonvanishing scalar curvatures, i.e., s 6= 0 and s̄ 6= 0
everywhere, then these scalar curvatures have the same sign.

3. An Application of the Hopf Maximum Principle to the Study of Conformal Mappings

There are various formulations of the maximum principle, from its classical Hopf
form up to generalizations of the Omori–Yau maximum principle at infinity in [9], where
applications are given to a number of problems in the context of complete Riemannian
manifolds, under the assumption of either curvature or the volume growth of geodesic
balls. This is a part of the generalized Bochner technique. The Hopf maximum principle in
the theory of second order elliptic differential equations on Riemannian manifolds (e.g., [2])
tells us that “ if ∆ φ ≥ 0 and φ attains a local maximum value at some point, then φ is
constant”, and it has been described as the “classical and bedrock result” of that theory.
Here, we consider an application of the maximum principle of E. Hopf to the classical
theory of conformal mappings.

Theorem 2. Let (M, g) be a Riemannian manifold of dimension n ≥ 3 with scalar curvature
s ≥ 0, and let (M̄, ḡ) be another Riemannian manifold with scalar curvature s̄ ≤ 0. Suppose that
there exists a conformal diffeomorphism f : (U, g)→ (Ū, ḡ) for connected domains U ⊂ M and
Ū ⊂ M̄ such that ḡ = e2 σg on U. If the function −σ attains a local maximum at some point
x ∈ U, then f is a homothetic mapping; moreover, (M, g) and (M̄, ḡ) have zero scalar curvature
on U and Ū, respectively.

Proof. The function φ = −σ on U satisfies the following differential equation (see (3)):

∆ φ =
1

2(n− 1)
(e−2 φ s̄− s) +

1
2
(n− 2) g(∇φ,∇φ). (6)

Assuming s ≤ 0 and s̄ ≥ 0 for the scalar curvatures on U and Ū = f (U), respectively,
we get ∆ φ ≥ 0 for n ≥ 3. Hence, if φ attains a local maximum at some point of U, then
by the Hopf maximum principle, φ is constant on U. Then, from (6), we conclude that σ is
constant on U. Hence, f is a homothetic mapping, and s = s̄ = 0 on U. �

Remark 3. In the conditions of Theorem 2, let U = M, where M is a compact manifold without
boundary. Then, there exists a point x ∈ M at which the function φ = −σ reaches its maximum.
Thus, the case s ≥ 0 of Theorem 1 can be regarded as a consequence of Theorem 2.

4. An Application of the Theory of Superharmonic Functions to the Study of
Conformal Mappings

This section begins with a brief survey of the theory of parabolic manifolds, which is
related to superharmonic functions and is part of the generalized Bochner technique. The
concept of a parabolic manifold is related to a wide class of equivalent properties of a
Riemannian manifold, including Green’s kernel, linear capacity, Brownian motion, etc.
Thus, there are few equivalent definitions of the parabolicity of a complete Riemannian
manifold in various terms (see, for example, [17] (pp. 164–165)). Here is one of the points
of view on this concept. Recall that u ∈ C2(M) is a superharmonic function if ∆ u ≤ 0.
We will say that a Riemannian manifold is a parabolic manifold if it does not admit non-
constant positive superharmonic functions (see, e.g., [10] (p. 313) and [17] (p. 164)).
A complete Riemannian manifold of finite volume is an example of a parabolic manifold
(see [18]). Let us formulate an analogue of Theorem 1 (see also Remark 2) for the case of
complete manifolds.
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Theorem 3. Let (M, g) be a parabolic Riemannian manifold of dimension n ≥ 3 (in particular,
a complete Riemannian manifold of finite volume) with scalar curvature s ≤ 0, and let (M̄, ḡ) be
another Riemannian manifold with scalar curvature s̄ ≥ 0. If there exists a conformal diffeomor-
phism f : (M, g)→ (M̄, ḡ), then it is a homothetic mapping; moreover, (M, g) and (M̄, ḡ) have
zero scalar curvature.

Proof. From (5), we conclude that if s ≤ 0 and s̄ ≥ 0, then ∆u ≤ 0. Thus, the associated
function u of the conformal diffeomorphism f is superharmonic. In addition, if (M, g) is a
parabolic Riemannian manifold of dimension n ≥ 3 (in particular, a complete Riemannian
manifold of finite volume), then u = const. In this case, our diffeomorphism f :(M, g)→
(M̄, ḡ) is a homothetic mapping.

As another example, we consider conformal diffeomorphisms of complete Kählerian
manifolds. First, recall the necessary definitions. Let (M, J) be an almost complex manifold,
where M is a connected smooth 2m-dimensional manifold (without boundary), and J is a
smooth endomorphism of the tangent bundle TM such that J2 = −id TM. A Riemannian
metric g on (M, J) is Kähler if g(J, J) = g and ∇ J = 0 for the Levi–Civita connection
∇ of the metric g. The triplet (M, g, J) is called a Kähler manifold. Such (M, g, J) has a
quasi-positive Ricci curvature if the Ricci curvature is non-negative and is positive at one
point of (M, g, J). In turn, (M, g, J) has quasi-negative Ricci curvature if the Ricci curvature
is non-positive and is negative at one point of (M, g, J).

Theorem 4 (see [19]). Let (M, g, J) be a complete Kähler manifold with quasi-positive (respectively,
quasi-negative) Ricci curvature and the total scalar curvature s(M) < ∞ (respectively, s(M) >
−∞); then, (M, g, J) is a parabolic manifold.

Using the above, we can formulate the following corollary.

Corollary 2. Suppose (M, g, J) is a complete Kähler manifold with quasi-negative Ricci curvature
and scalar curvature such that s ≤ 0, and s(M) > −∞. Let (M̄, ḡ, J̄) be another Kähler manifold
with scalar curvature s̄ ≥ 0. If there exists a conformal diffeomorphism f :(M, g, J)→ (M̄, ḡ, J̄),
then it is a homothetic mapping; moreover, (M, g, J) and (M̄, ḡ, J̄) have zero scalar curvature.

Note that a parabolic manifold is stochastically complete. Recall that a diffusion process
on a Riemannian manifold is conservative or stochastically complete if the associated stochas-
tic process remains forever in the state space. Both stochastic completeness and parabolicity
have been the subject of systematic study, e.g., the survey by Grigor’yan [17]. In particular,
any complete Riemannian manifold with the Ricci curvature bounded from below by a
constant (possibly negative) is stochastically complete (see [20]). Moreover, if (M, g) is
stochastically complete, then any non-negative superharmonic function u ∈ L1(M, g) is
constant (see [17] (p. 204)). Therefore, the following theorem is valid.

Theorem 5. Let (M, g) be a complete Riemannian manifold with Ricci curvature bounded from
below and scalar curvature s ≤ 0, and let (M̄, ḡ) be another Riemannian manifold with scalar
curvature s̄ ≥ 0. If there exists a conformal diffeomorphism f :(M, g) → (M̄, ḡ) defined by
f ∗ ḡ = e2 σg, where σ ≥ 0 is a smooth function such that σ ∈ L1(M, g), then f is a homothetic
mapping; moreover, (M, g) and (M̄, ḡ) have zero scalar curvature.

Remark 4. In [15] the following was proved: let (M, g) be complete with sectional curvature
bounded from below and s > 0; then, there is no non-homothetic conformal mapping of (M, g) onto
a manifold (M̄, ḡ) with scalar curvature bounded from above by a negative constant. Therefore,
Theorem 5 complements this statement and Theorem 1. In addition, we note that the results stated
and proved above are new, since no one has considered conformal mappings of parabolic manifolds
before us.
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5. An Application of the Theory of Subharmonic Functions to the Study of
Conformal Mappings

Let f be a conformal diffeomorphism of a complete n-dimensional (n ≥ 3) Riemannian
manifold (M, g) onto another Riemannian manifold (M̄, ḡ). In particular, if the scalar
curvatures of (M, g) and (M̄, ḡ) satisfy the inequalities s ≥ 0 and s̄ ≤ 0, respectively,
then from (5), we obtain ∆u ≥ 0 (see Theorem 1). Thus, the associated function u of the
conformal diffeomorphism f is a subharmonic function, since by definition, the function
u ∈ C2(M) is subharmonic if ∆ u ≥ 0.

Many results on subharmonic functions on complete Riemannian manifolds have been
obtained by R. Green and H. Wu, A. Huber, L. Karp, S.-T. Yau, etc. Recall the following
famous Liouville-type theorem for subharmonic functions on complete (non-compact)
Riemannian manifolds: let u ≥ 0 be a smooth subharmonic function on (M, g); then,∫

M
up d volg = ∞

for any 1 < p < ∞, unless u is a constant (see [21]). In other words, if u ∈ Lp(M, g)
for any 1 < p < ∞, then u is a constant C > 0; hence, Cp ∫

M d volg < ∞. Therefore, if
Vol (M, g) = ∞, then u ≡ 0. On the other hand, if u > 0, then (M, g) has finite volume.
Recall that any complete non-compact Riemannian manifold with non-negative Ricci
curvature has infinite volume (e.g., [22]). Thus, there are no positive subharmonic Lp(M, g)-
functions for 0 < p < ∞ on a complete non-compact Riemannian manifold with non-
negative Ricci curvature. Using the above, we can generalize Theorem 1 for complete
Riemannian manifolds using the theory of subharmonic functions.

Proposition 1. Let (M, g) be a complete Riemannian manifold of infinite volume. Then, it has
no positive subharmonic Lp(M, g)-functions for any 1 < p < ∞. In particular, a complete non-
compact Riemannian manifold of non-negative Ricci curvature does not admit positive subharmonic
Lp(M, g)-functions for any 0 < p < ∞.

Proposition 1 is a refinement of the Yau result in [18]. On the other hand, by (5), if
s ≥ 0 and s̄ ≤ 0, then ∆ u ≥ 0; hence, u is a positive subharmonic function. In our case,
u > 0 according to the definition given above; thus, (M, g) has a finite volume. Thus, we
can formulate the following.

Theorem 6. Let (M, g) be a complete non-compact Riemannian manifold of dimension n ≥ 3 with
non-negative Ricci curvature, and let (M̄, ḡ) be another Riemannian manifold with a conformally
related metric ḡ = u4/n−2 g for some smooth function u > 0 and a diffeomorphism f :M→ M̄. If
u ∈ Lp(M, g) for some p ∈ (0, ∞), then the scalar curvature s̄ of (M̄, ḡ) cannot be non-positive.

Now, let (M, g) be a complete parabolic manifold of dimension n ≥ 3. In turn, in [23],
it was proved that a complete manifold (M, g) is parabolic if and only if any subharmonic
function φ ∈ C2(M) with finite Dirichlet integral

∫
M ‖grad φ‖2d volg is constant. Therefore,

if we assume in (5) that φ = −σ, s ≥ 0, and s̄ ≤ 0, then based on the above statement, we
conclude that φ is a subharmonic function, and therefore it is constant. We can formulate
the following statement.

Theorem 7. Let (M, g) be a complete parabolic Riemannian manifold of dimension n ≥ 3 with
scalar curvature s ≥ 0, and let (M̄, ḡ) be another Riemannian manifold with scalar curvature
s̄ ≤ 0. If there exists a conformal diffeomorphism f :(M, g)→ (M̄, ḡ) such that f ∗ ḡ = e2 σg, and
σ has a finite Dirichlet integral, then f is a homothetic mapping; moreover, (M, g) and (M̄, ḡ) have
zero scalar curvature.

This theorem complements Theorem 3 on conformal mappings of parabolic manifolds.
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Recall that a complete Riemannian manifold of finite volume is an example of a
parabolic manifold. On the other hand, in [11] (p. 318), the following was proved: on
a complete manifold of finite volume, any subharmonic function with a finite Dirichlet
integral is constant. Using this statement, we can formulate the following.

Corollary 3. Let (M, g) be an n-dimensional n ≥ 3 complete Riemannian manifold with finite
volume and scalar curvature s ≥ 0, and let (M̄, ḡ) be another Riemannian manifold with scalar
curvature s̄ ≤ 0. Suppose that there exists a conformal diffeomorphism f :(M, g)→ (M̄, ḡ) defined
by f ∗ ḡ = e2 σg. If σ has a finite Dirichlet integral, then f is a homothetic mapping; moreover,
(M, g) and (M̄, ḡ) have zero scalar curvature.

Remark 5. The use of the Dirichlet integral in the study of conformal mappings is new, which
guarantees us the originality of the results obtained.

6. An Application of the Theory of Convex Functions to the Study of
Conformal Mappings

Here, we apply two important theorems of the theory of convex functions on complete
Riemannian manifolds (see [21,24]) to the study of conformal mappings. Recall that
u ∈ C2(M) is a convex function if its Hessian

Hessgu := ∇ du

is positive semi-definite. Convex functions are an example of subharmonic functions. Using
the above definition and the theory of convex functions, we can formulate the following
theorem and its corollary.

Theorem 8. Let f :(M, g)→ (M̄, ḡ) be a non-homothetic conformal diffeomorphism of complete
Riemannian manifold (M, g) onto (M̄, ḡ) such that f ∗S̄ ≥ S for the Schouten tensors S and S̄ of
(M, g) and (M̄, ḡ), respectively. Then (M, g) has infinite volume.

Proof. By conditions and (1), Equation (4) can be rewritten in the following form:

Hessg σ = S− S̄ + d σ⊗ d σ− 1/2 ‖grad σ‖2 g.

Putting σ = − ln u for the associated function u > 0, we obtain ḡ = u−2g. Therefore,
Equation (3) can be rewritten in the following form:

Hessg u = u · (S̄− S) + (u/2) ‖grad σ‖2 g. (7)

From (7), we conclude that if S̄ ≥ S (that is S̄− S is a non-negative definite symmetric
tensor), then Hessg u ≥ 0. Hence, u is a convex function. On the other hand, Yau’s
theorem [21] states that a complete Riemannian manifold admitting a non-constant convex
function has infinite volume.

Recall the following theorem of Bishop and O’Neill [24]: if (M, g) is a connected
complete Riemannian manifold of finite volume, then any convex function on (M, g) is
constant. Therefore, using Theorem 8, we obtain the following corollary.

Corollary 4. Let f :(M, g) → (M̄, ḡ) be a conformal diffeomorphism of a complete Riemannian
manifold (M, g) of finite volume onto another Riemannian manifold (M̄, ḡ). If f ∗S̄ ≥ S for the
Schouten tensors S and S̄ of (M, g) and (M̄, ḡ), respectively, then f is a homothetic mapping.

Remark 6. From the inequality S̄ ≥ S, we obtain e2 σ s̄ ≥ s. Therefore, if s̄ ≥ 0 and s ≤ 0, then
the inequality e2 σ s̄ ≥ s holds. This fact agrees with the conditions of Theorem 3 and Proposition 1.
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7. An Application to the Study of Conformal Transformations of the Mixed
Scalar Curvature

There are three kinds of sectional curvatures for a pseudo-Riemannian manifold
(M, g) endowed with a smooth distribution (sub-bundle of the tangent bundle): tangential,
transversal, and mixed. The mixed plane is spanned by two vectors such that the first
(second) vector is tangent (orthogonal) to the distribution. Mixed curvatures stand for
the sectional curvatures of mixed planes. This concept has a long history and many
applications, e.g., [25].

Let D and D̄ be p-dimensional distributions on connected n-dimensional Riemannian
manifolds (M, g) and (M̄, ḡ) with the Levi–Civita connections ∇ and ∇̄ and the curvature
tensors R and R̄, respectively. Let f : M→ M̄ be a diffeomorphism of M onto M̄ preserving
the distributions, i.e., for any point x ∈ M, the image f∗(Dx) is D̄ f (x). Below, we will
assume that f is a conformal diffeomorphism; thus, ḡ = (1/φ2) g, i.e., φ = e−σ (see (1)), for
f -adjusted common coordinates on M and M̄. Let D⊥ be the orthogonal complement of D
in TM. Let (e1, . . . , en) be an adapted local orthonormal frame, i.e., ei ∈ D for i = 1, . . . , p,
and ea ∈ D⊥ for a = p + 1, . . . , n.

The mixed scalar curvature of a distribution D on a Riemannian manifold (M, g) is an
averaged mixed sectional curvature, i.e., the following function on M:

s mix = ∑ a,i g(R(ea, ei) ea, ei).

To avoid some technical difficulties, assume below that n = 2 p; thus, D and its orthog-
onal complement D⊥ become p-dimensional distributions corresponding to an almost
paracomplex structure on (M, g), and similarly for D̄ and D̄⊥ on (M̄, ḡ), see Remark 7.

Remark 7. An almost paracomplex structure on a manifold M of dimension n = 2p is a continuous
field of automorphisms of tangent spaces, the square of which is the identity operator, and the
eigensubspaces have dimension p (see [26–28]). This structure is a special case of an almost product
structure and is the antipode of an almost complex structure. Therefore, new facts for the geometry
of paracomplex manifolds will follow from the statements proved below.

The mixed scalar curvatures of (M, g,D) and (M̄, ḡ, D̄) under conformal diffeomor-
phism preserving the distribution are related by the following formula (see [29]):

p φ ∆ φ = −φ2 s mix + s̄ mix + p2‖∇φ‖2. (8)

Recall the following theorem (see [22]): “let u > 0 be a smooth function on a complete
Riemannian manifold (M, g) such that (q − 1)u∆ u ≥ 0, where q is a positive constant
number, then for q 6= 1 we have either

∫
M uq d volg = ∞, or u is a constant”. Applying this

theorem to the above formula, we obtain a Liouville-type theorem.

Theorem 9. Let D be a p-dimensional (p > 1) distribution on a 2p-dimensional complete
Riemannian manifold (M, g). Then, there are no conformal (non-homothetic) transformations
of the metric ḡ = (1/φ2) g with a positive smooth function φ ∈ Lq(M, g) for q 6= 1 such that
s̄ mix ≥ φ2 s mix and, in particular, when s̄ mix ≥ 0 and s mix ≤ 0.

Changing variables 1/φ2 = u4/(n−2), where u > 0 is a function on M, we rewrite (8)
in the following form (see [29] (Corollary 1)):

∆ u =
n− 2

n
(
u s mix − u

n+2
n−2 s̄ mix

)
.

Therefore, if s mix ≥ 0 and s̄ mix ≤ 0, then u is a positive superharmonic function. Therefore,
we can formulate the following theorem.
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Theorem 10. Let D be a p-dimensional (p > 1) distribution on a 2p-dimensional complete
Riemannian manifold (M, g) such that s mix ≤ 0. Then, there are no conformal (non-homothetic)
transformations of the metric g such that s̄ mix ≥ 0.

In particular, if M is a compact manifold, then the following two statements hold.

Corollary 5. Let D be a p-dimensional (p > 1) distribution on a 2p-dimensional compact
Riemannian manifold (M, g) such that s mix ≤ 0 (resp., s mix ≥ 0). Then, there are no conformal
(non-homothetic) transformations of g such that s̄ mix ≥ 0 (resp., s̄ mix ≤ 0).

Corollary 6. Let g and ḡ be two conformally equivalent metrics on a 2p-dimensional compact
manifold M with a p-dimensional (p > 1) distribution. If both metrics have non-vanishing
mixed scalar curvatures, i.e., s mix 6= 0 and s̄ mix 6= 0 everywhere, then these curvatures have the
same sign.

8. Conclusions

In conclusion, we add that the classical Bochner methods have been significantly
developed and successfully applied to Finsler manifolds (see, for example, survey [30])
and Lorentzian manifolds, including the theory of relativity (see, for example, [31–33]) over
the past 40 years. However, we have already entered the era of geometric analysis and its
applications, quite recently, to the use of nonlinear partial differential equations to study
geometric and topological properties of submanifolds of Euclidean space and complete
Riemannian manifolds. In the 1980s, fundamental contributions to this theory were made
by K. Uhlenbeck, C. Taubes, S.-T. Yau, R. Schoen, and R. Hamilton, initiating a particularly
productive era of geometric analysis that continues to this day, e.g., [34]. A well-known
achievement was the solution of the H. Poincaré conjecture by G. Perel’man, completing
the program started and carried out by R. Hamilton (see [35]). Geometric analysis awaits
new applications.
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