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Abstract: A probabilistic approach is developed for the exact solution u to a deterministic partial
differential equation as well as for its associated approximation u(k)

h performed by Pk Lagrange finite
element. Two limitations motivated our approach: On the one hand, the inability to determine
the exact solution u relative to a given partial differential equation (which initially motivates one
to approximating it) and, on the other hand, the existence of uncertainties associated with the
numerical approximation u(k)

h . We, thus, fill this knowledge gap by considering the exact solution u

together with its corresponding approximation u(k)
h as random variables. By a method of consequence,

any function where u and u(k)
h are involved are modeled as random variables as well. In this

paper, we focus our analysis on a variational formulation defined on Wm,p Sobolev spaces and
the corresponding a priori estimates of the exact solution u and its approximation u(k)

h in order to
consider their respective Wm,p-norm as a random variable, as well as the Wm,p approximation error
with regards to Pk finite elements. This will enable us to derive a new probability distribution to
evaluate the relative accuracy between two Lagrange finite elements Pk1

and Pk2 , (k1 < k2).

Keywords: error estimates; finite elements; Bramble–Hilbert lemma; Sobolev spaces

MSC: 65N15; 65N30; 65N75

1. Introduction

We recently proposed new perspectives on relative finite element accuracy [1,2] by
using a mixed geometrical-probabilistic interpretation of the error estimate in the case of
finite element approximation (see for example [3] or [4]) derived from the Bramble–Hilbert
lemma [5].

In [6], we further extended the results we had derived in the case of H1 to Sobolev
spaces Wm,p, (p 6= 2). To this end, we had to consider a more general framework, which
mainly relied on the Banach–Nečas–Babusȟka (BNB) abstract problem [7] devoted to
Banach spaces.

This enabled us to obtain two new probability distributions that estimate the relative
accuracy between two Lagrange finite elements Pk1 and Pk2 , (k1 < k2), by considering it as
a random variable.

Thus, we obtained new results that show, among others, which of Pk1 or Pk2 is the
most likely accurate, depending on the value of the mesh size h; this value is not considered
anymore as proceeding towards zero, as in the standard procedure.

However, while obtaining these probability distributions, we only considered the
standard error estimate dedicated to Pk Lagrange finite elements, which approximates
solution u to a variational problem (BNB), u being formulated in the present case in
Sobolev space Wm,p(Ω).

In the current study, we enrich the model published in [6] in multiple manners. Indeed,
considering the functional framework (BNB) in the case of the Wm,p Sobolev spaces, we
take into account the available a priori estimates one can deal with with respect to the
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solution of this kind of problem as well as for its approximation, together with the approxi-
mation error which corresponds to Pk Lagrange finite elements (see Section 2.2). This will
enable us to derive a new probabilistic model applied to the relative accuracy between
two finite elements Pk1 and Pk2 , (k1 < k2). To this end, we also generalize the discrete
probabilistic framework we considered in [1,6] by introducing continuous probabilistic
formalism based on an appropriate density of probability (see Section 3.1).

The paper is organized as follows. In Section 2, we recall the mathematical problem
we considered and introduce the basic definitions of functional tools to consider different
estimations in Wm,p Sobolev spaces. Section 3.1 is dedicated to the analysis of the relative
finite elements accuracy based on a probabilistic approach. In Section 4, we detail the
contribution of the a priori estimates and their interactions with the error estimate in the
probability distributions we derived in Section 3.1. Concluding remarks follow.

2. The Functional and Approximation Frameworks and Their
Corresponding Estimates
2.1. Abstract Problem in Banach Spaces and Corresponding Fundamental Results

In this section, we define an abstract framework that will enable us to consider the
solution of a variational problem in Banach Wm,p Sobolev spaces when p 6= 2 and its
corresponding approximation computed by Pk Lagrange finite elements.

In order to conduct this, we follow the presentation of A. Ern and J. L. Guermond [7],
where two general Banach spaces W and V are involved where V is reflexive. We also
recall the different assumptions needed in order to apply the (BNB) Theorem valid in
Banach spaces.

Let u ∈W be the solution of the variational formulation (VP) defined by the following:

(VP)

{
Find u ∈W such that:

a(u, v) = l(v), ∀v ∈ V,
(1)

where the following is the case:

1. W and V are two Banach spaces equipped with norms denoted by ‖.‖W and ‖.‖V ,
respectively; moreover, V is reflexive;

2. a is a continuous bilinear form on W ×V, i.e, a ∈ L(W ×V;R) :

∀(u, v) ∈W ×V, |a(u, v)| ≤ ‖a‖W,V‖u‖W‖v‖V ,

with ‖a‖W,V ≡ inf{C ∈ R∗+, ∀(u, v) ∈W ×V : |a(u, v)| ≤ C‖u‖W‖v‖V}.;
3. l is a continuous linear form on V, i.e, l ∈ V′ = L(V;R).

We further make the two following assumptions.

(BNB1) ∃α > 0, inf
w∈W

sup
v∈V

a(w, v)
‖w‖W‖v‖V

≥ α,

(BNB2) ∀v ∈ V, (∀w ∈W, a(w, v) = 0) =⇒ (v = 0).

Then, one can prove the (BNB) Theorem ([7], Theorem 2.6), which claims that the
variational problem (VP) has one and only one solution in W and that the following a
priori estimate holds.

∀l ∈ V′ : ‖u‖W ≤
‖l‖V′

α
. (2)

We also define the approximation u(k)
h of u solution to the approximate variational formulation:

(VP)h

 Find u(k)
h ∈W(k)

h such that:

a(u(k)
h , v(k)h ) = l(v(k)h ), ∀v(k)h ∈ V(k)

h ,
(3)
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where we assume that W(k)
h and V(k)

h are two finite-dimensional subsets of W and V, respectively.
Moreover, as observed in [7] (Remark 2.23, p.92), neither condition (BNB1) nor condi-

tion (BNB2) imply its discrete counterpart. Then, the well-posedness of (3) is equivalent to
the two following discrete conditions.

(BNB1h) ∃α
(k)
h > 0, inf

w(k)
h ∈W(k)

h

sup
v(k)h ∈V(k)

h

a(w(k)
h , v(k)h )

‖w(k)
h ‖W(k)

h
‖v(k)h ‖V(k)

h

≥ α
(k)
h ,

(BNB2h) ∀v(k)h ∈ V(k)
h , (∀w(k)

h ∈W(k)
h , a(w(k)

h , v(k)h ) = 0) =⇒ (v(k)h = 0).

If we further assume that dim(W(k)
h ) = dim(V(k)

h ), a direct application of Theorem 2.2
in [7] enables us to write the following a priori estimate.

∀l ∈ V′ : ‖u(k)
h ‖Wh ≤

‖l‖V′

α
(k)
h

. (4)

In the next section, we will apply these results to the particular case where the exact
solution u belongs to Wm,p Sobolev spaces and the approximation u(k)

h is computed by the
help of Pk Lagrange finite elements.

2.2. Application to Wm,p Sobolev Spaces and the Corresponding Error Estimate

We introduce an open-bounded subset Ω ⊂ Rn exactly recovered by a mesh Th
composed by NK n-simplexes Kµ, (1 ≤ µ ≤ NK), which respect the classical rules of regular
discretization (see, for example, [4] or [8]). Moreover, we denote by h the mesh size of
Th (the largest diameter in the mesh Th) and the space of polynomials defined on a given
n-simplex Kµ of degree less than or equal to k (k ≥ 1) by Pk(Kµ).

Henceforth, we assume that approximate spaces W(k)
h and V(k)

h satisfy

dim(W(k)
h ) = dim(V(k)

h ) and that they are included in the space of functions defined on Ω
and composed of polynomials belonging to Pk(Kµ), (1 ≤ µ ≤ NK).

Finally, we also specify the functional framework of the abstract problem (VP) by
introducing Wm,p Sobolev spaces as follows.

For any integer m ≥ 1 and any 1 ≤ p ≤ +∞, we denote by Wm,p(Ω) the Sobolev
space of (class of) real-valued functions that, together with all their partial distributional
derivatives of order less or equal to m, belongs to Lp(Ω):

Wm,p(Ω) =
{

u ∈ Lp(Ω) / ∀ α, |α| ≤ m, ∂αu ∈ Lp(Ω)
}

, (5)

α = (α1, α2, . . . , αn) ∈ Nn being a multi-index for which its length |α| is given by
|α| = α1 + · · ·+ αn, and ∂αu is the the partial derivative of order |α| defined by the following.

∂αu ≡ ∂|α|u
∂xα1

1 . . . ∂xαn
n

. (6)

We also consider norm ‖.‖m,p,Ω and semi-norms |.|l,p,Ω, which are, respectively, de-
fined by the following:

∀u ∈ Wm,p(Ω): ‖u‖m,p,Ω =

 ∑
|α|≤m

‖∂αu‖p
Lp

1/p

, |u|l,p,Ω =

 ∑
|α|=l
‖∂αu‖p

Lp

1/p

, 0 ≤ l ≤ m, (7)

where ‖.‖Lp denotes the standard norm in Lp(Ω).
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Then, in order to fulfill the conditions of the (BNB) Theorem, particularly so that W is
a Banach space and V a reflexive one, in the sequel of the paper, the following definitions
of spaces W and V hold:

W ≡Wm,p(Ω) and V ≡Wm′ ,p′(Ω), (8)

where m and m′ are two non zero integers, and p and p′ two real positive numbers that
satisfy p 6= 2 and p′ > 1 such that the following is the case.

1
p
+

1
p′

= 1. (9)

Regarding these choices, Sobolev’s space
(
Wm,p(Ω), ‖.‖m,p,Ω

)
is a Banach space and(

Wm′ ,p′(Ω), ‖.‖m′ ,p′ ,Ω

)
is a reflexive one [9]. Moreover, we have: W(k)

h ⊂ Wm,p(Ω) and

V(k)
h ⊂Wm′ ,p′(Ω).

We can now recall the Wm,p a priori error estimate for Pk Lagrange finite elements we
derived in [6]:

‖u− u(k)
h ‖m,p,Ω ≤ Ck hk+1−m |u|k+1,p,Ω , (10)

where Ck is a positive constant independent of h.

Remark 1. Since we noticed that W(k)
h is included in Wm,p(Ω), by considering for the topology of

W(k)
h that was induced from Wm,p(Ω) thanks to the triangle inequality, (2)–(4) and (10) result in

the following error estimate:

‖u− u(k)
h ‖m,p,Ω ≤ min

([
1
α
+

1

α
(k)
h

]
‖l‖V′ , Ck hk+1−m |u|k+1,p,Ω

)
, (11)

where V′ is the duality of Wm′,p′(Ω).
As one can observe, the right-hand side of (11) contains α

(k)
h for which its dependency on h is

usually unknown, except for particular cases. This is the reason why we will assume it is bounded
from below by a positive constant δ independent of h:

∀h > 0, 0 < δ ≤ α
(k)
h .

This uniform boundedness property of α
(k)
h , crucial to guaranteeing optimal error estimates [7],

is valid in multiple cases (see Chapters 4 and 5 in [7] or [10]) but not systematically (see for example
first-order PDEs in [7]).

Next, from (11), we obtain the following:

‖u− u(k)
h ‖m,p,Ω ≤ min

(
‖l‖V′

α∗
, Ck hk+1−m |u|k+1,p,Ω

)
, (12)

where
1
α∗

=
1
α
+

1
δ

.

In the sequel, we will denote by βk the following expression.

βk ≡ min
(
‖l‖V′

α∗
, Ck hk+1−m |u|k+1,p,Ω

)
. (13)
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Finally, we also observe that there exists a critical value }k of h defined by the following:

}k ≡
(

‖l‖V′

α∗ Ck |u|k+1,p,Ω

) 1
k+1−m

, (14)

such that the error estimate (12) can be split according to the following.

‖u− u(k)
h ‖m,p,Ω ≤

∣∣∣∣∣∣∣
‖l‖V′

α∗
, if h ≥ }k,

Ck hk+1−m |u|k+1,p,Ω , if h ≤ }k.
(15)

Based on this error estimate, the following section is devoted to deriving a probabilistic
model applied to the relative accuracy between two Lagrange finite elements Pk1 and
Pk2 , (k1 < k2), when the mesh size h has a given and fixed value.

3. The Probabilistic Analysis of the Relative Finite Elements Accuracy

In [6], we proposed two probability distributions that enabled us to obtain an evalu-
ation of the more likely Wm,p accurate between two Lagrange finite elements Pk1 and
Pk2 , (k1 < k2). These distributions were essentially derived by considering the error
estimate (10).

In the present paper, we generalize these probability distributions by introducing two
new inputs, which are the following:

1. The error estimate (10) is enriched by the a priori estimates (2) and (4) finally considers (15).
2. The probabilistic approach we develop is an extension of those we considered in [1,6].

More precisely, by the help of an ad hoc density probability, we derive the probability
distribution of a suitable random variable so that we can compare two approxima-
tion errors ‖u − u(k1)

h ‖m,p,Ω and ‖u − u(k2)
h ‖m,p,Ω, (k1 < k2), considered as random

variables, as will be introduced now.

3.1. Random Solution and Random Approximations of Deterministic Partial Differential Equation

The purpose of this section is based of the following fundamental remark: the solution
u to the variational problem (VP), except for particular cases, is totally unknown (being
impossible to calculate it analytically); this motivates the numerical schemes one will
choose to implement.

This inability to determine, in most cases, the exact solution u is mainly due to the
complexity of the involved PDE’s operator; it indeed depends on complex combinations
of integrals, partial derivatives and boundary conditions, as well as on the bent geomet-
rical shape of the domain of integration Ω. All of these ingredients hence participate in
the incapability to analytically determine exact solution u as their relationship with u is
inextricable and unknown.

As a consequence, this lack of knowledge and information regarding the dependency
between these ingredients and solution u motivates us to consider u as a random variable,
as well as any function of u. This paper is dedicated to the Wm,p approximation error of
u− u(k)

h , considered as a random variable.
In this frame, we view solution u with respect to variational formulation (VP) defined

by (1) in the same manner as it normally is viewed to consider the trajectory and contact
point with the ground of any solid body that is thrown, i.e., as random. Indeed, in this
case, due to the lack of information concerning the initial conditions of the trajectory of the
body, the solution of the concerned inverse kinematic operator is inaccessible and is, thus,
observed as a random variable.

In the case analyzed in this paper, the situation is much worse. Indeed, we investigate
a general variational formulation (VP) where the analog of the inverse kinematic operator
is too complex to enable us to analytically determine the corresponding solution of (VP)
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by any mathematical expression. It is one of the reasons that motivate us to view solution
u and its approximation u(k)

h as random variables, since the corresponding approximate
operator conserves the complexity of the original one described above.

3.2. The Probabilistic Distribution of the Relative Finite Elements Accuracy

In the previous section, we expressed the reason for why we consider solution u and
its approximation u(k)

h as random variables.
In order to complete the description of the randomness feature of approximation error

‖u− u(k)
h ‖m,p,Ω, we also remark that since the manner a given mesh grid generator will

produce any mesh is random, the corresponding approximation u(k)
h is random too.

For all of these reasons, based on the error estimate (12) and (13), we can only affirm
that the value of approximation error ‖u(k)

h − u‖m,Ω is somewhere within interval [0, βk].

As a consequence, we decide to view norm ‖u − u(k)
h ‖m,p,Ω as a random variable

defined as follows.
Let k, m and p be fixed. We introduce the random variable X(k)

m,p defined by the following.

X(k)
m,p : Wm,p(Ω)×W(k)

h −→ [0, βk] (16)

ω ≡ (u, u(k)
h ) 7−→ X(k)

m,p(ω) = X(k)
m,p(u, u(k)

h ) = ‖u− u(k)
h ‖m,p,Ω. (17)

Thus, space product Wm,p(Ω)×W(k)
h plays the role of the usual probability space

introduced in this context.
Now, regarding the absence of information concerning the more likely or less likely

values of norm ‖u− u(k)
h ‖m,p,Ω within interval [0, βk], we assume that random variable

X(k)
m,p is uniformly distributed over interval [0, βk] with the following meaning.

∀(a, b) ∈ R2, 0 ≤ a < b ≤ βk : Prob
{

X(k)
m,p ∈ [a, b]

}
=

b− a
βk

. (18)

Equation (18) means that if one slides interval [a, b] anywhere in [0, βk], the probability
of event

{
X(k)

m,p ∈ [a, b]
}

does not depend on where interval [a, b] is located in [0, βk], but

only on its length; this corresponds to the property of uniformity of random variable X(k)
m,p.

Let us now consider two families of Lagrange finite elements Pk1 and Pk2 correspond-
ing to a set of values (k1, k2) ∈ N2 such that 0 < k1 < k2.

The two corresponding inequalities given by (12) and (13), assuming that solution u
to (VP) belong to Hk2+1(Ω), are as follows:

X(k1)
m,p ≡ ‖u− u(k1)

h ‖m,p,Ω ≤ βk1 , (19)

X(k2)
m,p ≡ ‖u− u(k2)

h ‖m,p,Ω ≤ βk2 , (20)

where u(k1)
h and u(k2)

h , respectively, denote Pk1 and Pk2 Lagrange finite element approxima-
tions of u and βki

, (i = 1, 2), as defined by (13).

Remark 2. If one considers a given mesh for finite element Pk2 that contains that of Pk1 , then for
the particular class of problems where (VP) is equivalent to a minimization formulation (MP)
(see for example [11]), one can show that the approximation error of the Pk2 finite element is always
smaller than that of Pk1 , and Pk2 is more accurate than Pk1 for all values of the mesh size h.

Therefore, in order to avoid this situation, for a given value of h, we consider two
independent meshes built by a mesh generator for Pk1 and Pk2 . Now, usually, in order to
compare the accuracy between these two finite elements, one asymptotically considers
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inequalities (19) and (20) to conclude that, when h proceeds to zero, Pk2 is more accurate
than Pk1 , since hk2 proceeds faster to zero than hk1 .

However, for a given application, h has a given and fixed value; thus, this method
of comparison is not valid anymore. For this reason, our purpose is to determine the
relative accuracy between two finite elements Pk1 and Pk2 , (k1 < k2) for a fixed value of h
corresponding to two independent meshes.

Moreover, since we chose to consider two random variables X(ki)
m,p , (i = 1, 2), as uni-

formly distributed on their respective interval of values [0, βki
], (i = 1, 2), we also assume

that they are independent. This assumption is, once again, the result of the lack of informa-
tion which led us to model the relationship between these two variables as independent,
since any knowledge is available for more precisely localizing the value of ‖u− u(k1)

h ‖m,p,Ω

if the value of ‖u− u(k2)
h ‖m,p,Ω was known and vice versa.

By the following result, we establish the density of probability of the random variable
Z defined by the following: Z = X(k1)

m,p − X(k2)
m,p .

Theorem 1. Let X(ki)
m,p , (i = 1, 2), be the two uniform and independent random variables defined

by (16) and (17): X(ki)
m,p ∼ U([0, βki

]), where βki
is defined by (13).

Then, random variable Z defined on R has the following density of probability.

fZ(z) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 if
(
z≤−βk2 or z≥βk1

)
, (21)

βk2 + z
βk1 βk2

if
(

βk1≤βk2 : −βk2≤ z≤βk1− βk2

)
or
(

βk1≥βk2 : −βk2≤ z ≤ 0
)
, (22)

1
βk2

if
(

βk1≤βk2 : βk1− βk2≤ z ≤ 0
)
, (23)

1
βk1

if
(

βk1≥βk2 : 0≤ z ≤ βk1− βk2

)
, (24)

βk1 − z
βk1 βk2

if
(

βk1 ≤ βk2 : 0≤ z≤βk1

)
or
(

βk1≥βk2 : βk1− βk2≤ z≤βk1

)
. (25)

Proof. Let us now remark that since the support of two random variables X(ki)
m,p , (i = 1, 2),

is [0, βki
], the support of density fZ is, therefore, [−βk2 , βk1 ], which corresponds to (21).

Let us consider the case where βk1 ≤ βk2 .
If f

X
(ki)
m,p

(xi) denotes the density of probability defined on R associated to each random

variable X(ki)
m,p , since we assume that they are independent variables, density fZ(z) is

given by the following:

fZ(z) =
∫
R

f
X(k2)

m,p
(x2) f

X
(k1)
m,p

(x2 + z)dx2, (26)

where
f
X
(ki)
m,p

(xi) =
1

βki

1[0,βki
](xi), (i = 1, 2), (27)

and 1[c,d] is the indicator function of the interval [c, d], ∀(c, d) ∈ R2.

Furthermore, due to the definition (27) of the density for each variable X(ki)
m,p , (i = 1, 2),

the integrand of (26) can be expressed as follows:
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f
X(k2)

m,p
(x2) f

X
(k1)
m,p

(x2 + z) =

∣∣∣∣∣∣∣∣∣
1

βk1 βk2

if 0 ≤ x2 ≤ βk2 and 0 ≤ x2 + z ≤ βk1 , (28)

0 if not. (29)

As a consequence, x2 ∈ [0, βk2 ] ∩ [−z,−z + βk1 ], which leads one to consider the five
following cases corresponding to the significant relative positions between intervals [0, βk2 ]
and [−z,−z + βk1 ]:

1. Let us assume that −z + βk1 ≤ 0. If z ≥ βk1 , then [0, βk2 ] ∩ [−z,−z + βk1 ] = ∅ and
fZ(z) = 0, which is again a result of (21);

2. We consider now the values of z such that −z ≤ 0 and 0 ≤ −z + βk1 ≤ βk2 .
If 0 ≤ z ≤ βk1 , then x2 ∈ [0,−z + βk1 ] and by (26) we obtain the expected expression
of (25) since we have the following.

fZ(z) =
∫ −z+βk1

0

dx2

βk1 βk2

=
βk1 − z
βk1 βk2

, (0 ≤ z ≤ βk1). (30)

3. The following case concerns the values of z such that −z ≥ 0 and −z + βk1 ≤ βk2 . If
βk1 − βk2 ≤ z ≤ 0, then x2 ∈ [−z,−z + βk1 ] and we obtain (23) since the following is
the case.

fZ(z) =
∫ −z+βk1

−z

dx2

βk1 βk2

=
1

βk2

, (βk1 − βk2 ≤ z ≤ 0). (31)

4. If −z ≤ 0 and −z + βk1 ≥ βk2 , then 0 ≤ z ≤ βk1 − βk2 , which is impossible since
βk1 ≤ βk2 .

5. We consider now the values of z such that 0 ≤ −z ≤ βk2 and −z + βk1 ≥ βk2 .

If −βk2 ≤ z ≤ βk1 − βk2 , then x2 ∈ [−z, βk2 ] and since we have the following:

fZ(z) =
∫ βk2

−z

dx2

βk1 βk2

=
βk2 + z
βk1 βk2

, (−βk2 ≤ z ≤ βk1 − βk2), (32)

we obtain the expected expression of (22).

6. Finally, if −z ≥ βk2 , then [0, βk2 ] ∩ [−z,−z + βk1 ] = ∅ and fZ(z) = 0, which
corresponds to (21).

The other cases corresponding to βk1 ≥ βk2 can be deduced by using the same
arguments.

From Theorem 1, one can infer the entire cumulative distribution function FZ(z)
defined by the following.

FZ(z) =
∫ z

−∞
fZ(z)dz. (33)

However, since we are interested in determining the more likely finite element between
Pk1 and Pk2 , (k1 < k2), we focus the following corollary to the value of FZ(0), which

corresponds to Prob
{

X(k1)
m,p ≤ X(k2)

m,p

}
.

Corollary 1. Let X(ki)
m,p , (i = 1, 2), be the two uniform and independent random variables defined

by (16)–(17): X(ki)
m,p ∼ U([0, βki

]), where βki
is defined by (13). Then, we have:
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Prob
{

X(k1)
m,p ≤ X(k2)

m,p

}
=

∣∣∣∣∣∣∣∣∣
1− 1

2
βk1

βk2

i f βk1 ≤ βk2 , (34)

1
2

βk2

βk1

i f βk1 ≥ βk2 . (35)

Proof.

— Let us consider the case where βk1 ≤ βk2 . Then, by definition (33) of the entire
cumulative distribution function FZ(z), at z = 0, we have the following:

FZ(0) =
∫ 0

−∞
fZ(z)dz =

∫ βk1
−βk2

−βk2

βk2 + z
βk1 βk2

dz +
∫ 0

βk1
−βk2

dz
βk2

= 1− 1
2

βk1

βk2

, (36)

where we used the values of the density fZ(z) given by (22) and (23).
— In the same manner, when βk1 ≥ βk2 , we have the following.

FZ(0) =
∫ 0

−∞
fZ(z) dz =

∫ 0

−βk2

βk2 + z
βk1 βk2

dz =
1
2

βk2

βk1

. (37)

We can now explicate the probability distribution of event
{

X(k1)
m,p ≤ X(k2)

m,p

}
given by

(34) and (35) as a function of the mesh size h.
To this end, we remark that, since each βki

(i = 1, 2) has two possible values depending
on the relative position between h and }ki

defined by (14), the probability distribution we
are looking for must be splitted in the corresponding cases as well.

Let us, hence, introduce constants Cki
, (i = 1, 2), defined by the following:

Cki
= Cki

|u|ki+1,p,Ω, (38)

and the specific value h∗k1,k2
of h which corresponds to the intersection of the curves

ϕki
, (i = 1, 2), defined by ϕki

(h) ≡ Cki
hki+1−m (see Figure 1).

Figure 1. Relative positions between the curves Cki
hki+1−m and the line ‖l‖V ′/α∗.
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Then, we have the following.

h∗k1,k2
=

(
Ck1

Ck2

) 1
k2−k1 ≡

(
Ck1

Ck2

|u|k1+1,p,Ω

|u|k2+1,p,Ω

) 1
k2−k1

. (39)

We notice that h∗k1,k2
and }ki

, (i = 1, 2), strongly depend on m and p, since Cki
and βki

depend on these two parameters as well. As a consequence, in the following theorem, the
different formulas of Prob

{
X(k1)

m,p ≤ X(k2)
m,p

}
will contain this dependency on m and p.

Theorem 2. Let X(ki)
m,p , (i = 1, 2), be the two uniform and independent random variables defined

by (16) and (17). Then, Pk1,k2(h) ≡ Prob
{

X(k1)
m,p ≤ X(k2)

m,p

}
is determined by the following.

If h∗k1,k2
≥ max(}k1 ,}k2), then }k1 ≤ }k2 and we have:

Pk1,k2(h) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
2

(
h

h∗k1,k2

)k2−k1

i f 0 ≤ h ≤ }k1 , (40)

1
2

(
h
}k2

)k2+1−m
i f }k1 ≤ h ≤ }k2 , (41)

1
2

i f h ≥ }k2 . (42)

If h∗k1,k2
≤ min(}k1 ,}k2), then }k2 ≤ }k1 and the following:

Pk1,k2(h) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
2

(
h

h∗k1,k2

)k2−k1

i f 0 ≤ h ≤ h∗k1,k2
, (43)

1− 1
2

(
h∗k1,k2

h

)k2−k1

i f h∗k1,k2
≤ h ≤ }k2 , (44)

1− 1
2

(
h
}k1

)k1+1−m
i f }k2 ≤ h ≤ }k1 , (45)

1
2

i f h ≥ }k1 . (46)

Proof. In order to establish the proof of Theorem 2, we will consider a geometrical inter-
pretation of error estimate (19) and (20).

These two inequalities can indeed be geometrically viewed with the help of the relative
position between the two curves ϕki

(h), (i = 1, 2), introduced above and the horizontal

line defined by ψ(h) ≡ ‖l‖V′

α∗
(see Figure 1).

Then, depending on the position of the horizontal line ψ(h) with particular value
Cki

h∗k1,k2
, (i = 1, 2), we have to consider the two following cases:

— If
‖l‖V′

α∗
≤ Ck1 h∗k1,k2

= Ck2 h∗k1,k2
, then }k1 ≤ }k2 ≤ h∗k1,k2

;

— If
‖l‖V′

α∗
≥ Ck1 h∗k1,k2

= Ck2 h∗k1,k2
, then h∗k1,k2

≤ }k2 ≤ }k1 .
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Thus, let us consider the first case when
‖l‖V′

α∗
≤ Ck1 h∗k1,k2

= Ck2 h∗k1,k2
or equivalently

h∗k1,k2
≥ max(}k1 ,}k2). Therefore, due to the relative positions between the three curves

ϕk1 , ϕk2 and ψ, we have the following results:

1. ∀h ≤ }k1 : Ck2 hk2+1−m ≤ Ck1 hk1+1−m ≤ ‖l‖V′

α∗
and βk2 ≤ βk1 with βki

= Cki
hki+1−m,

(i = 1, 2). Then, from (35), we obtain (40);

2. ∀}k1 ≤ h ≤ }k2 : Ck2 hk2+1−m ≤ ‖l‖V′

α∗
≤ Ck1 hk1+1−m and βk2 ≤ βk1 with βk1 =

‖l‖V′

α∗
and βk2 = Ck2 hk2+1−m. Then, again from (35), we obtain (41);

3. ∀}k2 ≤ h ≤ h∗k1,k2
:
‖l‖V′

α∗
≤ Ck2 hk2+1−m ≤ Ck1 hk1+1−m and βk1 = βk2 =

‖l‖V′

α∗
. Then,

from (34) or (35), we obtain (42);

4. ∀h∗k1,k2
≤ h :

‖l‖V′

α∗
≤ Ck1 hk1+1−m ≤ Ck2 hk2+1−m and βk1 = βk2 =

‖l‖V′

α∗
. Then, again

from (34) or (35), we also obtain (42).

We now consider the case where
‖l‖V′

α∗
≥ Ck1 h∗k1,k2

= Ck2 h∗k1,k2
which corresponds to

h∗k1,k2
≤ min(}k1 ,}k2). Therefore, using once again the relative positions between curves

ϕk1 , ϕk2 and ψ, we deduce the following results:

1. ∀h ≤ h∗k1,k2
: Ck2 hk2+1−m ≤ Ck1 hk1+1−m ≤ ‖l‖V′

α∗
and βk2 ≤ βk1 with βki

= Cki
hki+1−m,

(i = 1, 2). Then, from (35), we obtain (43);

2. ∀h∗k1,k2
≤ h ≤ }k2 : Ck1 hk1+1−m ≤ Ck2 hk2+1−m ≤ ‖l‖V′

α∗
and βk1 ≤ βk2 with βki

=

Cki
hki+1−m, (i = 1, 2). Then, from (34), we obtain (44);

3. ∀}k2 ≤ h ≤ }k1 : Ck1 hk1+1−m ≤ ‖l‖V′

α∗
≤ Ck2 hk2+1−m and βk1 ≤ βk2 with βk1 =

Ck1 hk1+1−m and βk2 =
‖l‖V′

α∗
. Then, again from (34), we obtain (45);

4. ∀h ≥ }k1 :
‖l‖V′

α∗
≤ Ck1 hk1+1−m ≤ Ck2 hk2+1−m and βk1 = βk2 =

‖l‖V′

α∗
. Then,

from (34) or (35), we obtain (46).

Remark 3. We notice that the probability distribution Pk1,k2(h) given by Theorem 2 generalizes
those that we found in [1,6]. Indeed, when we derived probability distribution Pk1,k2(h) without
taking into account the a priori estimates (2) and (4), we obtained the following.

Pk1,k2(h) =

∣∣∣∣∣∣∣∣∣∣∣∣

1
2

(
h

h∗k1,k2

)k2−k1

i f 0 ≤ h ≤ h∗k1,k2
, (47)

1− 1
2

(
h∗k1,k2

h

)k2−k1

i f h ≥ h∗k1,k2
. (48)

In this case, we showed in [12] two numerical examples based on PDE’s formulation where
exact solutions may be computed to illustrate probabilistic law (47) and (48).

In particular, we highlighted the statistical methodology that enabled us to determine a
statistical estimator of the threshold h∗k1,k2

given by (39).
Based on this study, one may adapt it in order to obtain applications that will illustrate the

new probabilistic value we derived in Theorem 2.
Moreover, in Theorem 2, the contribution of a priori estimates (2) and (4) modifies the proba-

bility distribution given by (47) and (48), since the horizontal line ψ(h) =
‖l‖V′

α∗
interferes with

the two polynomials Cki
hki+1−m, (i = 1, 2) (see Figure 1).
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This phenomenon will be analyzed in the following section.

4. Discussion

First of all, let us plot the shape of the two cases of the probability distribution we
derived in Theorem 2 and those we obtained in [1,6] that we recalled in (47) and (48).

As one can observe, the distribution (47) and (48) plotted in Figure 4 resembles more
of the second case of Theorem 2 plotted in Figure 3 than its first case, as plotted in Figure 2.

In fact, in the latter case, when }k1 ≤ }k2 , line ψ(h) =
‖l‖V′

α∗
interacts with two polyno-

mials Cki
hki+1−m, (i = 1, 2), before critical value h∗k1,k2

. As a consequence, its contribution
correspondingly takes place in the expression of the probability distribution for h ≥ }k1 .

On the contrary, when }k1 ≥ }k2 , the contribution of line ψ(h) =
‖l‖V′

α∗
only has to be

taken into account after the value of h∗k1,k2
. However, in this case, when h ≥ }k2 , once again

line ψ(h) interacts with two polynomials Cki
hki+1−m, (i = 1, 2), and the equivalent distri-

bution we found in (47) and (48) is cut to provide the corresponding one in (45) and (46)
plotted in Figure 3.

Figure 2. Probability distribution Pk1,k2 (h) when h∗k1,k2
≥ max(}k1

,}k2 ).

Figure 3. Probability distribution Pk1,k2 (h) when h∗k1,k2
≤ min(}k1

,}k2 ).
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This shows the importance of the a priori estimates (2) and (4), which are not consid-
ered in the classical point of view limited to the asymptotic behavior of error estimate (10),
when the mesh size h proceeds to zero. The reason for this is the fact that the right hand
sides of (2) and (4) do not depend on h; it does not bring any influence for the desired
asymptotic behavior.

The goal of the probabilistic approach we developed in this paper is to evaluate, for
any fixed value of the mesh size h, the relative accuracy between two Lagrange finite
elements Pk1 and Pk2 , (k1 ≤ k2). The probability distributions of Theorem 2 adjust those
that we had found in [1,6].

Indeed, probability distribution (47) and (48) claim that finite element Pk1 is more
likely to be accurate than Pk2 with a high level of probability when h ≥ h∗k1,k2

. Actually, this
probability can reach the value of one, as it can be observed in Figure 4 and Pk1 could be
almost surely more accurate than Pk2 . Thus, distributions (40)–(42) and (43)–(46) limit the
value of this probability.

Figure 4. Probability distribution Pk1,k2 (h) published in [1].

More precisely, if }k1 ≤ }k2 , then the probability such that Pk1 is more likely accurate
than Pk2 will never be greater than 0.5 (see Figure 2), and if }k1 ≥ }k2 , then for h ≥ }k2 the
corresponding probability will decrease to the limit value of 0.5, even if it increases with
values greater than 0.5 for h values between h∗k1,k2

and }k2 (see Figure 3).

5. Conclusions
5.1. The Relative Accuracy between Two Finite Elements

In this paper, we presented a generalized probability distribution that takes into
account the three available standard estimates one can confront with respect to solution u
to a variational formulation together with its approximation u(k)

h performed by Lagrange
finite elements Pk.

Those include the a priori estimates for solution u and its approximation u(k)
h carried

out by finite elements, on the one hand, and the error estimate, on the other hand.
More precisely, by taking into account a priori estimates (2) and (4), we enriched

probability distribution (47) and (48) that we obtained in [1,6] to find new ones (40)–(46),
which were derived in Theorem 2.

As we observed in the previous paragraph, if the contribution of a priori estimates
(2) and (4) are not considered when one limits the analysis of the relative accuracy between
two finite elements to the asymptotic rate of convergence when the mesh size h proceeds
to zero, one must deal with these two estimates in order to conclude about the more likely
accurate one when h has a fixed value.
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Moreover, regarding the probabilistic approach we developed in this paper, the a
priori estimates (2) and (4) brought a more realistic behavior of distributions (40)–(46) in
comparison with (47) and (48). Indeed, the probability given by (40)–(46) cannot reach a
value of one since it was quite a surprise in (47) and (48) to obtain this theoretical value.
This result meant that event “Pk1 is more accurate than Pk2” is an almost certain event when
k1 < k2.

5.2. Generalization to Other Numerical Methods

Finally, we would like to mention that the probabilistic approach we proposed in
this study is not restricted to the finite elements method but may be extended to other
types of approximation: given a class of numerical schemes and their corresponding
approximation error estimates, one is able to order them not only in terms of asymptotic
rate of convergence but also by evaluating the most probably accurate one.

It is, for example, the case of the numerical integration where the composite quadrature
error has a mathematical structure, which looks similar to error estimate (10) we considered
in the present study.

More precisely, as an example, for a composite quadrature of order k on a given interval
[a, b], if f ∈ Ck+1([a, b]) is a given function, the corresponding composite quadrature error
can be written [13] as follows:∣∣∣∣∣

∫ b

a
f (x)dx−

N

∑
i=0

λi f (xi)

∣∣∣∣∣ ≤ Ck hk+1, (49)

where h denotes the size of the equally spaced panels that discretized the interval [a, b],
(λi, xi), (i = 0, N), are (2N + 2) given numbers such that all xi belong to [a, b], and Ck is a
constant independent of h that mainly depends on f and k.

As a consequence, due to the similar mathematical structure between (10) and (49),
with the same arguments we introduced to compare the accuracy between two Lagrange
finite elements Pk1 and Pk2 , (k1 < k2), one can evaluate the probability of the more accurate
numerical composite quadrature associated to two different parameters k1 and k2, (k1 ≤ k2)
for a fixed value of h.

This will make sense because, normally, to bypass the lack of information associated
with the unknown value of the left hand side of (49) in interval [0, Ckhk+1], only the
asymptotic convergence rate comparison is concerned for evaluating the relative accuracy
between two numerical quadratures of order k1 and k2, (k1 < k2).

Nevertheless, this procedure is no longer available when one wants to compare two
composite quadratures in the case when the size of the equally panels h is fixed, as it is
for any application. Thus, the probabilistic approach we propose here could be a relevant
alternative.

The same consideration may be developed in order to compare the accuracy between
two numerical schemes of order k1 and k2, which are performed to approximate the exact
solution of ordinary differential equations. To make precise these ideas, let us consider
solution y of the first order ordinary differential initial value problem defined on a given
interval [t0, t0 + T]:

(CP)

{
y′(t) = f (t, y(t)), t ∈ [t0, t0 + T],

y(t0) = y0,
(50)

where y0 is given.
Let us also restrict ourselves by considering one-step numerical methods to approxi-

mate function y solution to problem (CP).
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Namely, if we introduce a constant mesh size h = tn+1 − tn, where (tn)n=0,N denotes
the sequence of (N + 1) values of t within the interval [t0, t0 + T], then the corresponding
one-step numerical scheme is given by the following:

(CP)h

{
yn+1 = yn + hΦ(tn, yn), n > 0,

y0 = y0,
(51)

where Φ is a given function “sufficiently” smooth that characterizes the numerical scheme (CP)h.
Moreover, (CP)h is called a numerical scheme of order k if [13]:

N−1

∑
n=0
|y(tn+1)− y(tn)− hΦ(tn, y(tn))| ≤ Ck hk, (52)

where Ck is a constant independent of h that depends on y, Φ and k (see [14] for the
dependency on k).

Thus, when considering two one-step numerical methods of order k1 and k2, (k1 < k2),
defined by two functions Φ1 and Φ2, and due to the similar structure between (10) and (52),
one would be able to evaluate the probability of the more accurate scheme with the same
arguments we implemented when comparing accuracy between Pk1 and Pk2 Lagrange
finite elements.

In summary, when one wants to evaluate the relative accuracy between two numerical
methods that belong to a given family of approximations, the probabilistic approach we
propose in this study essentially depends on the ability to determine the constant Ck, which
appears in different corresponding approximation errors (10), (49) or (52).

Indeed, for each of these errors of approximation, the complexity of the constant Ck
will suggest appropriate investigations. In the current study, we were devoted to the finite
elements method, and we pointed out the important role of the a priori estimates (2) and (4),
which are usually neglected, since they do not bring any asymptotic information/behavior
when mesh size h proceeds to zero.

As a consequence, in order to render probability distribution (40)–(46) derived in
Theorem 2, one will have to consider appropriate techniques that will make the determi-
nation (or at least the approximation) of different constants that are involved in (40)–(46)
possible. This is mainly due to the contribution of the three estimates (2), (4) and (10), which
results in (12), namely, }k1 ,}k2 and h∗k1,k2

.
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