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Abstract: Meningiomas are the most prevalent benign intracranial life-threatening brain tumors, with
a life expectancy of a few months in the later stages, so this type of tumor in the brain image should
be recognized and detected efficiently. The source of meningiomas is unknown. Radiation exposure,
particularly during childhood, is the sole recognized environmental risk factor for meningiomas. The
imaging technique of magnetic resonance imaging (MRI) is commonly used to detect most tumor
forms as it is a non-invasive and painless method. This study introduces a CNN-HHO integrated
automated identification model, which makes use of SeaLion optimization methods for improving
overall network optimization. In addition to these techniques, various CNN models such as Resnet,
VGG, and DenseNet have been utilized to give an overall influence of CNN with SeaLion in each
methodology. Each model is tested on our benchmark dataset for accuracy, specificity, dice coefficient,
MCC, and sensitivity, with DenseNet outperforming the other models with a precision of 98%. The
proposed methods outperform existing alternatives in the detection of brain tumors, according to the
existing experimental findings.

Keywords: convolutional neural network (CNN); boosted anisotropic diffusion filter; modified
K-means clustering; magnetic resonance imaging; meningioma; sealion optimization

1. Introduction

The brain tumor and its analysis are of tremendous interest because of the growing
innovations in medical image processing. An abnormal tissue development within the
brain causes a tumor. According to the National Brain Tumor Foundation’s (NBTF) global
review, the improvement of brain tumor diagnoses among patients and the death rate
due to brain tumors are outpacing earlier years’ findings clinical experts can give patients
more effective e-health care services, thanks to developments in medical imaging for this
enhancement [1]. E-health care systems have a wide range of applications in medicine [2].
Due to their high accuracy and efficient results as presented by the radiologist, computer-
vision-based biomedical imaging systems have gained appeal among clinical specialists,
allowing them to handle treatment-related concerns more efficiently. Positron emission
tomography (PET), magnetic resonance imaging (MRI), and computed tomography (CT)
are the most popular modalities used to examine a brain tumor [3]. Magnetic resonance
imaging (MRI) is well-known medical equipment that can be used to diagnose and study a
variety of disorders, including brain tumors, neurological ailments, and epilepsy, among
others. Typically, a system that is entirely processed by hardware/computer aids in the
automation of this process, in order to produce correct and timely results. Machine learning
(particularly deep learning) improvements have made it easier to discover, classify, and
measure trends in medical images.

Axioms 2022, 11, 15. https://doi.org/10.3390/axioms11010015 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms11010015
https://doi.org/10.3390/axioms11010015
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0003-0459-9260
https://orcid.org/0000-0002-0169-6738
https://doi.org/10.3390/axioms11010015
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms11010015?type=check_update&version=1


Axioms 2022, 11, 15 2 of 30

The major focus of this research is identifying tumor growth in the brain through
the use of MRI scans. Moosa et al. discovered that these cancerous cells influence the
health and functioning of the patient’s brain. The most frequent benign intracranial tumor
is meningioma [4]. Arachnoid cap cells, which are cells within the thin spiderweb-like
membrane that protects the brain and spinal cord, give rise to these types of tumors.
The arachnoid is one of three protective layers that surround the brain and spinal cord,
commonly known as the meninges. These tumors normally grow inward, forcing on
the brain or spinal cord, but they can also grow outward, thickening the skull. The
majority of meningiomas are benign tumors that grow slowly. Certain blood vessels
have cysts (fluid sacs), calcifications (mineral deposits), and tightly packed groupings of
blood veins. Meningiomas are responsible for 30% of all types of brain tumors. They can
occur in a variety of areas across the brain [5]. Many image processing technologies and
methodologies have been used in the diagnosis and treatment of brain tumors. Artificial
intelligence and machine learning, in particular, have played an essential role in the medical
industry, as well as providing a key tool for supporting various medical professions.
Several machine learning algorithms are employed to construct completely automated
CAD systems, particularly for image segmentation and classification, which are used to aid
radiologists as a second view [6].

1.1. Research Challenges and Related Problems

Normally, it is found that segmenting and classifying images in a database with a
huge number of images needs more calculation time. The MRI images are recorded in
numerous sagittal planes so that the database can be enlarged to include all possible planes.
Preprocessing is the first step in creating a CAD system, and it is used to avoid overfitting
by deleting undesirable areas and improving classification accuracy. It also aids in the
removal of noise, which can cause visual blurring. In some circumstances, pixel correlation
is ignored for greater speed, which can have an impact on the final result of the CAD
system. The goal of this study is to use CNN architecture to solve the difficulty indicated
above, as well as to categorize three different tumor types from an uneven database [7]. The
efficiency of a system is determined by how effectively it performs in a complex context, as
most existing systems are constrained to making minimal use of available resources.

1.2. Key Contribution

This paper focuses on detecting and efficiently classifying meningioma tumors using
reformed DL models, with the following highlights:

• Image features are improved using a unique enhancing technique, and objective
parameters such as PSNR, MSE, and SSIM are calculated.

• Clustering is a powerful, exploratory data analysis tool for gaining an intuition of the
data’s structure. The K-means algorithm is an iterative technique that attempts to split
a dataset into K distinct non-overlapping subgroups (clusters), each of which has a
data point that belongs to a single group. The proposed work made an attempt to
make intra-cluster data points as comparable as possible while maintaining clusters as
distinct one. The segmentation is performed by K-means and with modified K-means
clustering methods. Performance measures from both techniques are calculated, and
the best one is selected for further processing.

• After the optimized feature extraction technique, Sealion optimization (SLA12), the
brain image is classified using Harris hawks optimization (HHO) [8]. The features are
obtained with high accuracy and precision, and with much less computational time.

The paper is organized as follows: Section 1.3 provides a related study on the tumor
from other researchers. Section 2 describes the details of the suggested approach and also
includes experimental information and findings. Section 3 presents the conclusion and
future work.
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1.3. Related Works

Numerous steps have been taken to establish a highly accurate and reliable system for
brain tumor identification. However, due to high inter and intra shape, texture, and contrast
variations, it remains a challenging problem. On the basis of traditional ML and deep
learning algorithms, a number of techniques for automatic brain tumor classification from
MR images have been presented. Preprocessing is the first step in this process. Despite the
numerous technologies available, extracting characteristics and identifying brain tumors
remains a bit problematic. Furthermore, a universal approach for categorizing and detecting
brain cancers is difficult to come by. A few alternative approaches have been explored
using a variety of datasets and based on the methodology used for segmentation and
classification. The number of images in the database is the largest issue with using neural
networks to classify and segment MRI images. Furthermore, because MRI images are taken
in many planes, the possibility of using all accessible planes could expand the database.
Preprocessing is essential before inputting the images into the neural network, as this
could impact the classification output by overfitting. The main focus of this research is to
develop a system that properly recognizes and classifies tumors with a narrow percentage
of interpretation error. For the classification of brain tumors in MRI scans, a variety of
approaches and methodologies have been proposed. FCM, ANN, SVM, PCA, CNN, MLP,
DWT, RF, KNN, K-means, EM, and others are some of the most commonly used algorithms
in the classification and segmentation processes to extract vital information from medical
imaging modalities. The findings of some of the most significant and well-known studies
are summarized in Table 1.

Table 1. Overview of recent work using CNN method used for tumors detection.

Author Methodology Proposed Solution
and Approach

Software/Tools/
Languages/Simulation/

Implementation
Libraries

Evaluation Challenges

Md Ahasan Kabir
(2020)

[9]

GLCM for feature
extraction and ANN

for classification

GA for feature
selection, ANN

classification model
Not mentioned

Accuracy: 99.5% for
the BRATS, 98.3% for
augmented BRATS

Specificity: 97%

High dimensionality
of matrix

S. Deepak
(2019)
[10]

Deep convolutional
neural networks

using transfer
learning

GoogLeNet,
deep CNN-SVM MATLAB 2018b Accuracy: 97.1%

Poor performances of
the transfer learning

model,
misclassification of
samples from the

meningioma class.

Banerjee et al., (2018)
[11]

Deep convolutional
neural networks

(ConvNets) trained
on multi-sequence

MR images.

DenseNet, VGG16 Terser flow and
Python Accuracy: 97% Computational

complexity is high

Arasi,1 P et al., (2019)
[12]

GLCM feature
extraction method.

Lion-optimized
boosting SVM

Genetic optimized
median, hierarchical

fuzzy clustering
algorithm, SVM

MATLAB software Accuracy: 97.69%
Specificity: 96.7%

The correlation of
pixels is not
considered

Khaleda A Sathi
et al., (2020)

[13]

GLCM for feature
extraction and ANN

for classification
Gabor, DWT Not mentioned Accuracy: 97.99

Specificity: 98.34
Takes more time in

image analysis

Zhou et al., (2018)
[14]

Convolutional neural
networks

DenseNet-RNN,
DenseNet-LSTM,

DenseNet-
DenseNET

Tensor Flow, Nvidia
Titan

Xp GPU
Accuracy: 92.13% Time consumption is

high
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Table 1. Cont.

Author Methodology Proposed Solution
and Approach

Software/Tools/
Languages/Simulation/

Implementation
Libraries

Evaluation Challenges

Abdu, Hassan (2019)
[15] PCA-NGIST

PCA-NGIST for
feature extraction

and RELM for
classification

MATLAB Accuracy: 94.23
Specificity: 96.56

Information loss
Overfitting problem

Nyoman et al.,
(2019)
[16]

Convolutional neural
network

AlexNet, VGG16,
ResNet MATLAB Accuracy: 84.19%

Not satisfactory for
noisy, nonuniform,
and high-intensity

images.

Narendra Mohan,
(2020)
[17]

Modified sea-lion-
optimization-based

KELA

SGLDM and LESH
based feature
extraction and

MSLO-based KELM
for classification

Not mentioned Accuracy: 94.67%
Specificity: 97.78% Slow process

Roy, (2012)
[18]

Modular approach to
solve MRI

segmentation
Symmetry analysis Not mentioned Accuracy: 91% Time

Consuming

Mohsen et al., (2018)
[19]

Deep learning neural
networks

Feature extraction
using

DWT and reduction
using PCA technique

and classification
using DNN

MATLAB R2015a Accuracy: 98
Specificity: 97.45

Time
Consuming

Fatih Özyurt et al.
(2019)
[20]

Convolutional neural
network

NS-EMFSE-CNN,
SVM and KNN Not mentioned Accuracy: 95.62% Long calculation time

Praveen G.B., Anita
Agrawal, 2015

[21]
Machine learning

GLCM for feature
extraction & SVM for

classification

MATLAB 2014
resolution 256*256
using a 2.2 GHz, I3

windows OS
machine.

Accuracy: 96.63
Specificity: 98.63 Takes more time

Mohsen et al., (2018)
[19] Deep neural network

Principal
Components

Analysis (PCA),
Discrete Wavelet

Transform (DWT)

Weka 3.9 and
MATLAB R2015a Accuracy: 96.97% Long calculation time

Meenakshi, 2012
[22]

BPN classifier and
orthonormal

operators

K-means clustering,
BPN classifier MATLAB Accuracy: 92%

Accuracy
can be improved

in less time

S. U. Aswathy et al.,
(2018)
[23]

Wrapper-based
genetic algorithm

Texture-based feature
extraction,

wrapper-based GA
for feature selection,

and SVM as classifier.

Not mentioned Accuracy: 98.2
Specificity: 97.90

High dimensionality
of matrix

Afshar et al., (2018)
[7]

Convolutional neural
networks (CNNs)

Capsule networks
(CapsNets)

Python 2.7 and Keras
library Accuracy: 86.56% Applicable for tumor

core only

Manorama Sharma,
G.N. Purohit and

Saurabh Mukherjee,
2018
[24]

K-means and
artificial neural

network (KMANN)

GLCM is used for
feature extraction

and tumor
classification by

(KMANN)

Not mentioned Accuracy: 98.65
Specificity: 97.89 Information loss

S. Deepak
(2019)
[10]

Deep convolutional
neural networks

using transfer
learning

GoogLeNet,
deep CNN-SVM MATLAB 2018b Accuracy: 97.1%

Poor performances of
the transfer learning

model,
misclassification of
samples from the
meningioma class
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2. Methodology

The goal of this research is to use deep learning techniques to implement various
stages of detection and segmentation techniques in MRI brain imaging. To determine
abnormality in the brain image, the proposed method employs an augmenting approach,
as well as segmentation and classification techniques. The system’s suggested framework
is depicted in Figure 1. BRATS 2015 is the database used by the system. These input images
are first preprocessed to eliminate noise and adjust the image’s brightness and contrast
for preprocessing, an adaptive diffusion filter and a boosted anisotropic diffusion filter
were used; this outperforms the existing anisotropic diffusion filter and is compared to
other filters to validate the performance. The ROI is retrieved from the preprocessed image
using the modified K-means technique. Swallow swarm optimization (SSO) and adaptive
swallow swarm optimization (ASSO) are used in identifying and extracting features from
the segmented image, and SLA12 is used to optimize the extracted features. This improved
feature is fed to the classifier, which divides images into normal and abnormal categories.
CNN is the classifier utilized in this case.
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Figure 1. Schematic representation of the proposed research study.

2.1. Image Acquisition

The BRATS 2015 data set was employed in this analysis, and it contains 325 high-grade
(HGG) and 54 low-grade (LGG) images scanned for meningioma patients. In the 2015
BRATS multimodal MRI dataset, there were also four scanning sequences available for
each patient, using weighted T1, gadolinium-enhancing contrast (T1C), weighted T2, and
FLAIR. Each subject was scanned with T1. The HGG picture from BRATS 2015 is used
in this report. Table 2 shows the most commonly used dataset for brain tumors. Figure 2
gives the most frequently used dataset details, and Table 2 gives the link for the online
data repository.
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Table 2. Different sources of data and techniques of acquisition.

Sl.No Dataset Sources Link (Access on: 6 April 2020)

1 Medical images from
BRAINIX T1w, T2w https://www.medicalimages.com/search/brain.html

2 BraTS 2018 T1 w, T1 contrast-enhanced MRI, T2 MRI,
and T2 FLAIR MRI https://www.med.upenn.edu/sbia/brats2017/data.html

3 Harvard Medical School
website

T1w, T2w, FLAIR, ASL, SWI, time of flight,
resting state BOLD, and DTI sequences. http://med.harvard.edu/AANLIB/

4 TCGA-GBM, TCGA-LGG T1w, T2w, FLAIR https://wiki.cancerimagingarchive.net/display/Public/
TCGA-LGG

5 BraTS-2018 ISLES-2018 T1w, T2w, FLAIR, ASL, SWI, time of flight,
resting state BOLD, and DTI sequences. http://www.isles-challenge.org/

6 IBSR dataset Cyprus T1w, T2w, FLAIR http://www.medinfo.cs.ucy.ac.cy/

7 BraTS 2015 and BraTS 2017 T1 w, T1 contrast-enhanced MRI, T2 MRI,
and T2 FLAIR MRI https://www.med.upenn.edu/sbia/brats2017/data.html

8 Brain web (simulated brain
database) T1w, T2w, FLAIR http://brainweb.bic.mni.mcgill.ca/brainweb/

9 Brain MRI T1-w, FLAIR https://figshare.com/articles/dataset/brain_tumor_
dataset/1512427

10 Harvard Medical School T1w, T2w http://www.med.harvard.edu/aanlib/home.html
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searchers.

2.2. Preprocessing: Image Enhancement

Preprocessing of the image is done to enhance the image quality. The dynamic range
of the selected characteristics is increased so that they may be easily spotted. To extract the
relevant information, the MRI images of the brain are first obtained and preprocessed. The
quality of photographs might decline during the image production process due to a variety
of factors, such as being out of focus, noise, the optical system, distortion, relative motion
between the camera and the scene, and so on. A variety of preprocessing approaches is used.
The goal of image enhancement is to make information in images more interpretable or to
give better input for other automated image processing techniques. Film artefacts such as
labels and marks on the MRI image, as well as the high-frequency components, are removed
during the enhancing stage. The MRI picture is turned into a standard image without noise,
film artefacts, or labels after enhancing techniques are applied. MRI images are frequently
contaminated by noise, such as Gaussian and Poisson noise [25]. The great majority of
de-noising methods assume white Gaussian noise is additive. Edge-preserving bilateral
filter, total variation, and non-local means are some of the strategies meant to remove
Gaussian noise. Various image enhancing techniques are used in this study, including
bilateral filtering (BF), curvelet transform (CT), adaptive histogram equalization (AHE),
and boosted anisotropic diffusion filter (BADF).

• Bilateral filtering

https://www.medicalimages.com/search/brain.html
https://www.med.upenn.edu/sbia/brats2017/data.html
http://med.harvard.edu/AANLIB/
https://wiki.cancerimagingarchive.net/display/Public/TCGA-LGG
https://wiki.cancerimagingarchive.net/display/Public/TCGA-LGG
http://www.isles-challenge.org/
http://www.medinfo.cs.ucy.ac.cy/
https://www.med.upenn.edu/sbia/brats2017/data.html
http://brainweb.bic.mni.mcgill.ca/brainweb/
https://figshare.com/articles/dataset/brain_tumor_dataset/1512427
https://figshare.com/articles/dataset/brain_tumor_dataset/1512427
http://www.med.harvard.edu/aanlib/home.html
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Bilateral filtering is a technique for smoothing images while keeping the edges. The
use of bilateral filtering has rapidly advanced, and it is now employed in image processing
applications such as image de-noise, picture enhancement, and so on [26]. The pixel of each
point in conventional low-pass filtering is assumed to be equal to that of the nearby points:

k−1
d (x)||

∫ ∞

−∞
f (δ)c(δ, x)dδ (1)

where (c(δ, x)) is the arithmetic contact between the region centre x and a nearby point δ. It
is possible that both input (f) and output (h) images are multiband. Furthermore,

kd(x) = ||
∫ ∞

−∞
c(δ, x)dδ (2)

Nevertheless, the pixels of points at borders are essentially identical to the closing
points. Hence, the lines are blurred. This filter blends gray rates based on both numerical
proximity and multispectral similarities, thus allowing values that are identical in both
domains. Similarly, the filtering range is specified as follows:

h(x) = k−1
r (x)||

∫ ∞

−∞
f (δ)s( f (δ), f (x)dδ (3)

where s( f (δ), f (x) computes the photographic similarity between the region center x and a
nearby point δ, and the kernel assesses pixel similarity in this situation. In this instance, the
ongoing standardization is as follows:

k−1
r (x) = ||

∫ ∞

−∞
s( f (δ), f (x)dδ (4)

The bilateral filtering is described as given below:

h(x) = k−1(x)||
∫ ∞

−∞
f (δ)c(δ, x)s( f (δ), f (x)dδ (5)

where k(x) =
∫ ∞
−∞ c(δ, x) f ( f (δ), f (x)dδ. Each region combines filtration area, and their

distance will be defined as bilateral filtration. It substitutes the pixel value at a related and
near-average pixel value. In flat regions, pixel values in a small neighborhood are related
to each other, and the bilateral filter effectively acts as a normal domain filter, averaging the
weak, inadequately associated variations between the pixel values produced by the noise.
Figure 3a depicts the clinical database input, while Figure 3b depicts the bilateral filtering
image for all of those inputs.

• Curvelet Transform
The curvelet transform is a multi-scale transform that is based on the wavelet trans-

form. The basic elements of the curvelet transform are dimension, location, and orientation.
It has excellent orienting characteristics [27]. In comparison to the wavelet transform, the
curvelet transform is the best method for removing noise. It accurately depicts curved
objects, allowing them to be used in graphical applications [28]. The main applications are
edge detection and picture de-noising. The bilateral filtering image for all of those inputs is
shown in Figure 3c.

A curvelet coefficient t (a,b,c) is given by the following:

t ( a, b, c) :
〈

f , ϕa,b,c
〉

(6)

where a = 0, 1. . . —scale limit; b = 0, 1. . . —orientation limit; c = (c1, c2), c1, c2 ∈ Z-
translation limit.
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Figure 3. (a) Depiction of three different input image grades. (b) Image of bilateral filtering. The 
curvelet transform image is shown in (c). (d) Image with an adaptive histogram equalized histo-
gram. (e) Adaptive boosted anisotropic diffusion filter. 

Figure 3. (a) Depiction of three different input image grades. (b) Image of bilateral filtering. The
curvelet transform image is shown in (c). (d) Image with an adaptive histogram equalized histogram.
(e) Adaptive boosted anisotropic diffusion filter.
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A curvelet coefficient is the internal multiplication among elements f ∈ K2 (M2) and
curvelet ϕa,b,c, as follows:

t(ϕa,b,c) =
〈

f , ϕa,b,c
〉 ∫

M2
f (X)ϕA,B,C(X) dX=

2

(2π)2

∫
F̂(y)Ua(Mθ, y)ei〈X(A,B),y

C 〉dy (7)

The curvelets with a scale of 2−a, orientation θ1, and position XC(A,B) = R−1
θ1 (c1.2a,c2.2−a/2)

can be represented as:
ϕa,b,c = ϕa,(Rθ1

(
X− XA,B)

c

)
) (8)

where θ1 = 2π.2a/2.1, with l = 0, 1 . . . 0 < θ1< 2π, and Rθ being rotation by θ1 radians.
The following is a description of the curvelet transform algorithm. The photo was

taken as I.

• Using additive wavelet transform, the image ‘I’ is separated into three sub-bands: s1,
s2, and s3.

• The tiling procedure is carried out in sub-bands s1 and s2.
• After that, the ridgelet transform is applied to each of the tiling sub bands s1 and s2.

It is mostly concerned with the sharpening of curves. Curvelet transforms are based on
partitioning a picture into minute overlapping tiles and then applying a ridgelet transform.
This is primarily utilized in the medical field. The curvelet has a number of important
qualities, one of which is:

L = W2 (9)

where L = length = 2−A, W = width = 2−(2*A), and A = scale.
In a tiling procedure, the altered image’s sub-bands s1 and s2 are separated into

overlapping tiles, resulting in a reduced dimension, and then the curving line is changed
into a straight line, avoiding edge effects. To approximate the curving line into overlapping
tiles, segmentation is used. Discrete segmented tiles are subjected to the ridgelet transform.
This ridgelet transform is used to detect shapes. The ridgelet transform calculation is
highly complex since it involves many stages, but nowadays it is simple because it does not
employ the ridgelet transform, therefore the time complexity is substantially decreased [29].

The waveform ϕa(x) is defined as FT ϕa(y)Ua(y).
Let the frequency window Ua be defined in the Fourier domain by:

U (p, θ) = 2− 2a
4M

(2 p)N
(
2 a

2 θ
)

2π
(10)

where M is the radial window, N is the angular window, and a/2 is the truncated integer
of a/2.

• Adaptive Histogram Equalization
The main purpose of image enhancement is to improve certain characteristics of an

image to improve its visual quality. This is a variation on the classic histogram equalization
method. It improves visual contrast by altering the image’s intensity values. The bilateral
filtering image for all of those inputs is shown in Figure 3d. Every bar on the equalized
histogram is of the same height, according to the physical meaning of the histogram. That is:

ps(s)ds = pr(r)dr (11)

Assume that s = T(r) is a monotonically increasing function in the interval, and that
its inverse, r = T−1 (s), is similarly monotonic. We can conclude (12) from (11):

ps(s) =

[
pr(r)

1
ds
dr

]
r=T−1 (s)

= pr(r)
1

pr(r)
= 1 (12)
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The traditional histogram equalization algorithms mapping relationship is as follows:
the relationship between I (the grey value of the pixel in the original image) and fi (the
grey value of the pixel in the enhanced image) is discrete in discrete conditions.

fi = (m− 1)T(r) = (m− 1)
i

∑
k=0

qk
Q

(13)

where m is the number of gray levels in the original image, q k denotes the number of pixels
in the image with kth gray level, and Q denotes the total number of pixels in the image. If
an image comprises n different gray levels, and each grey level’s occurrence probability of
ith gray level is pi, the grey level’s entropy can be described as follows:

e(i) = −pilogpi (14)

The entropy of the whole image is as follows:

E =
n−1

∑
i=0

e(i) = −
n−1

∑
i=0

pilogpi (15)

• Adaptive Boosted Anisotropic Diffusion filter (BADF)
The original image undergoes anisotropic diffusion, which is a non-linear and space-

variant modification. This filter was first introduced in 1990 (Perona and Malik, 1990). Its
main aim is to smooth an image without blurring it while keeping its important details.
This filter starts by setting the required iterations number. Figure 3e shows the bilateral
filtering image for all those inputs [30]. After creating the diffused image, the proposed
BADF adds a partial differential equation (PDE) that enhances the existing anisotropic
diffusion filter diffusion, which is missing at the borders and boundaries, and can also be
used to smooth the surface. It is a powerful picture enhancing tool that uses unsupervised
machine learning. It not only smooths out the image, but it also keeps certain key details
like edges and textures [31]. Depending on intensive tests, good results were attained
when the iterations number was set to 20. Next, the size of the image is determined
so that it can be used when calculating the four nearest-neighbor differences. At this
point, the iterative process starts by computing the four nearest-neighbor differences using
Equations (16)–(19).

∇N Ii,j = Ii−1,j − Ii,j (16)

∇S Ii,j = Ii+1,j − Ii,j (17)

∇S Ii,j = Ii+1,j − Ii,j (18)

∇W Ii,j = Ii,j−1 − Ii,j (19)

where Ii,j is the smoothed image at each iteration, in which at the first iteration, it should
fulfil Ii,j = fi,j, where fi,j represents the input image. i, j are image coordinates; ∇N , ∇S,
∇E, ∇W represent the detected differences at the east, west, north, and south, respec-
tively. The image’s high-frequency components are held by the identified differences. The
high-frequency components in each direction are then attenuated using four conduction
operators computed using Equations (20) and (21).

gN =
1

1 +
(∇N Ii,j

k

)2 (20)

gs =
1

1 +
(∇S Ii,j

k

)2 (21)
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gE =
1

1 +
(∇E Ii,j

k

)2 (22)

gW =
1

1 +
(∇W Ii,j

k

)2 (23)

where K is a scalar that controls the smoothness degree, in that K should satisfy (K > 1),
as increasing the value of K produces a smoother output. The value of K is set to 7 in the
standard anisotropic diffusion filter. In this study, parameter K is computed automatically
based on local statistics using Equation (24)

k = 2 ∗
∣∣∣∣∣ mean

(
fi,j
)(

0.75 ∗ σ
(

fi,j
)) ∣∣∣∣∣ (24)

where σ represents the standard deviation. Next, the entire image is smoothed using the
divergence, which can be calculated using Equation (10).

Ii,j = Ii,j + 0.25
[(

gN ∗ ∇N Ii,j
)
+
(

gS ∗ ∇S Ii,j
)
+
(

gE ∗ ∇E Ii,j
)
+
(

gW ∗ ∇W Ii,j
)]

(25)

where Ii,j is a smoothened image.
Outputs for the different stages of the preprocessing method, such as bilateral filtering,

curvelet transform, adaptive histogram equalization, and adaptive boosted anisotropic
diffusion filter are clearly depicted in Figure 3. Statistical analysis for both normal and
abnormal brain images for the preprocessing method in terms of signal-to-noise ratio,
mean square error, and structural similarity index measure for all the methods, such
as bilateral filtering, curvelet transform, adaptive histogram equalization, and adaptive
boosted anisotropic diffusion filter, is given in Tables 3 and 4.

Table 3. Parameters for measuring preprocessed images. The peak signal-to-noise ratios for various
filters in five abnormal and normal images are tabulated.

Sl.no

Peak Signal-to-Noise Ratio

BF CT AHE BADF

Abnormal
Images

Normal
Images

Abnormal
Images

Normal
Images

Abnormal
Images

Normal
Images

Abnormal
Images

Normal
Images

1 32.9735 32.65366 32.16707 33.37299 34.37233 33.28870 40.65289 41.84186

2 32.70056 32.80955 30.69373 34.12845 34.18057 33.80906 39.17468 42.63007

3 33.36560 32.71030 30.97869 33.37448 34.31471 32.95532 39.46799 41.82132

4 33.12597 32.69257 31.57909 34.03285 34.38220 33.62941 40.06339 42.52042

5 32.44922 32.67565 28.05704 34.01673 34.05173 33.58372 36.54817 42.55479

2.3. Segmentation

The objective of the segmentation of the brain tumor image is to identify the tumor
location and spread, that is the active tumorous tissue, edema, and necrotic tissue. In this
study, modified K-means and HHO algorithms are used for segmentation [32,33]. The
modified K-means algorithm helps to enhance the boundary region, thereby being able to
remove noise in that area, and it also helps to speed up the K-means clustering method by
avoiding the empty clusters in the iterative process. Moreover, a combination of modified
K-means with HHO helps to deal with false detection problems at the time of segmentation
by increasing the efficiency and accuracy of the system. Segmented results of MRI images
using hybrid structure of modified K-means and HHO is given in Figure 4.
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Table 4. (a) Gives the mean square error for various filters in five abnormal and normal images.
(b) Gives the structural similarity index measure for various filters in five images of abnormal and
normal. (c) The signal-to-noise ratios for various filters in five abnormal and normal images are
tabulated as follows.

(a)

Sl.no

Mean Square Error

BF CT AHE BADF

Abnormal
Images

Normal
Images

Abnormal
Images

Normal
Images

Abnormal
Images

Normal
Images

Abnormal
Images

Normal
Images

1 2.8210 3.5294 5.3272 2.6581 2.8417 3.5688 2.6162 1.3523

2 3.2408 2.7786 7.5974 1.9599 2.8566 2.8153 3.7525 0.9324

3 2.1503 3.4102 9.4781 2.5466 2.8734 4.3340 4.6476 1.4266

4 2.3436 3.5045 7.7107 2.2084 2.8364 3.0331 3.9181 1.0669

5 4.4340 3.3660 1189491 1.6722 2.0711 3.0867 5.9822 0.9888

(b)

Sl.no

Structural Similarity Index Measure

BF CT AHE BADF

Abnormal
Images

Normal
Images

Abnormal
Images

Normal
Images

Abnormal
Images

Normal
Images

Abnormal
Images

Normal
Images

1 0.942638 0.940807 0.912608 0.893660 0.9706 0.9577 0.975781 0.987964

2 0.937472 0.943480 0.87453 0.912453 0.9597 0.9388 0.954054 0.957021

3 0.953744 0.944687 0.932535 0.904303 0.9809 0.9780 0.997524 0.949472

4 0.952283 0.940735 0.898987 0.903351 0.9415 0.9580 0.962998 0.997604

5 0.928484 0.939251 0.854447 0.863688 0.9992 0.9280 0.932256 0.929219

(c)

Sl.no

Signal-to-Noise Ratio

BF CT AHE BADF

Abnormal
Images

Normal
Images

Abnormal
Images

Normal
Images

Abnormal
Images

Normal
Images

Abnormal
Images

Normal
Images

1 32.6522 31.7686 28.9581 31.7647 34.8183 28.6770 32.9704 35.7544

2 31.9678 32.5590 27.3717 33.4359 33.6773 31.5151 31.3449 37.4646

3 33.7956 32.0455 26.4262 31.4675 34.4663 26.9433 30.4710 35.4479

4 33.4235 31.9298 27.2839 32.8714 34.8755 30.4967 31.1575 36.8703

5 30.6925 31.9807 25.3375 33.1414 32.9180 30.2849 29.3719 37.1594

• Modified K-means clustering with HHO
The key advantage of employing the method of the modified K-means is that it selects

all the scenarios by considering every difference in the data set, instead of arbitrarily
choosing a certain group of initial centroids, as is usually done. Modified K-means will
spread the instances of the data set to appropriate clusters with the highest precision. In
contrast to previous K-means, it is not necessary to determine the number of K clusters,
because this is done dynamically in the modified K-means methodology (see Algorithm 1).



Axioms 2022, 11, 15 13 of 30

Algorithm 1. Modified K-Mean clustering.

Step 1: Calculate distance matrix distance di

(
xi, xj

)
,

where i = 0, 1, 2, . . . . . . .N − 1 and j = 0, 1, 2, . . . N − 1.
Step 2: Calculate the threshold value ‘Th’ using (26).
N−1
∑

i=0

∑N−1
j=0

dist(xi ,xj)
N

N
(26)

where ‘D’ (d1, d2 . . . .dn) is the data set.
‘K’ is the cluster. ‘n’ is the number of data points.
‘X’ (X1, X2 . . . .Xn) is an instance of the data point. Th is the threshold. ‘c’ is the cluster center.
Step 3: Find the minimum mean from Xi to Xj using (27).

min

(
N−1
∑

i=0,j=0
dist

(
xi, xj

))
(27)

Step 4: Determine the minimal mean value index Xi.
Choose the data point Xi as the initial centroid.
Step 5: Until the data points change, the group repeat steps 6 and 7.
Otherwise, go to step 8.
Step 6: Determine the distance between each of the K cluster centers cj and each data point xi.
if (Th >= di)
Set nearest cluster with data point xi.
else
K = K + 1;
Step 7: Recalculate the centroid of every cluster.
Step 8: End.
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(a) Input image, (b) preprocessed image, (c) adaptive diffusion filter, (d) segment output after
applying hybrid modified K-means and HHO.
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• Harris Hawks Optimization (HHO)
Mathematically, Harris hawks behaviors are proposing a new metaheuristic stochastic

method, the HHO algorithm. The defining characteristic of Harris hawks’ activity is that
via good coordination, they trace, encircle, and approach the possible prey (rabbits in most
cases) and then attack them. In hunting, skillful escape behavior called “surprise pounce”
is efficiently performed. The HHO method includes exploration and exploitation phases,
similar to other meta-heuristic algorithms.

Harris hawks will be randomly searching for prey during the exploration phase
according to the following equation:

X(t + 1) =
{

Xrand (t)− r1|Xrand (t)− 2r2X(t)|q ≥ 0.5
(Xrabbit (t)− Xm(t))− r3(LB + r4(UB− LB))q < 0.5

}
(28)

In iteration (t + 1), the hawks are located at X(t + 1), the rabbit (victim) is located at
Xrabbit (t), r1 to r4 and q are randomly labelled from 0 to 1, Xrand (t) represents a selected
hawk at a random position, and Xm is the average location of the current hawk population,
as determined by Equation (29):

Xm(t) =
1
N

N

∑
i=1

Xi(t) (29)

where Xi(t) denotes each hawk’s location for iteration t, and N indicates the overall hawk
number. There is a transitional phase before the exploitation stage once the discovery
stage is completed. In this transitional period, the energy of the rabbit should be shaped
according to Equation (30):

E = 2E0

(
1− t

T

)
(30)

where E is the rabbit’s escape energy, E0 is the initial rabbit energy state, and the maximum
number of iterations is T. The E0 value can vary from −1 to 1 dependent on the victim’s
physical fitness. This indicates that the victim loses energy while E0 is heading towards
−1, and vice versa. During these last stages of the processing of the algorithm, the Harris
hawks abruptly approach their prey. Four tactics of attack are available. Here, r is seen
as an escape probability. When E ≥ 0.5 and r ≥ 0.5, Harris’s hawks slowly utilize a soft
besiege technique to surround the prey. The following is the mathematical model:

Xt+1
i = ∆Xt

i − E
∣∣JXprey − Xt

i
∣∣, ∆Xt

i = Xprey − Xt
i (31)

where Xi(t + i) is the distance between the current individual and the prey, and J indicates
the strength of the prey’s jumping during the escape, and it takes a random value in the
range [0, 2]. When E < 0.5, r ≥ 0.5, because of inadequate escape energy, the prey can’t
escape, and the location of the Harris hawks is written as follows:

Xt+1
i = Xprey − E

∣∣∆Xt
i
∣∣ (32)

When the Harris hawks do soft besiege with increasing fast dive tactics to confuse
prey when the prey have sufficient energies to effectively escape, that is E ≥ 0.5, r < 0.5. It
can be represented as follows:

Xt+1
i =

{
Y = Xprey − E

∣∣JXprey − Xt
i

∣∣ , if f (Y) < f
(
Xt

i
)

Z = Y + S× Levy(d), if (Z) < f
(
Xt

i
) }

(33)
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The problem dimension is denoted by d, and S is a 1 × d random vector. The Lévy
Flight function is Lévy, When E < 0.5, r < 0.5, the prey has insufficient escape energy. The
Harris hawks will attack the prey in the following ways:

Xt+1
i =

{
Xprey − E

∣∣JXprey − Xt
m
∣∣, if f (Y) < f

(
Xt

i
)

Z = Y + S× Levy(d), if f (Z) < f
(
Xt

i
) }

(34)

2.4. Feature Extraction and Optimized Feature Selection

During the feature extraction step, the necessary high-quality data or characteristics
of the image are obtained in the form of statistical features, form, color, and texture. The
extraction of functions is a key step to reduce the classifier complexity used to categorize
the characteristics of an image. In addition, the extraction function is efficiently used to
enhance the accuracy of the diagnosis process by selecting major features. This paper
covers two new features, the area of the tumor and the dice coefficient index, which are
retrieved from the segmented image. There are a variety of existing strategies for image
feature extraction; however, in this research, the adaptive swallow swarm optimization
(ASSO) is utilized, and SLA12 (sea lion) is used to improve feature selection, ensuring that
only important features are used by the classifier to categorize tumor type.

In the ASSO algorithm, the number of swallows is regarded to be the test case charac-
teristic. Basically, with a test suite SW = (T 1, . . . . T) and C = (c 1, . . . c m). The operating
procedure of the SSO algorithm is just like PSO, though it has a few more characteristics,
which include the usage of three kinds of particles: (a) aimless particles (oi), (b) explorer
particles (ei), and (c) leader particles (li).

Each one of them has specific duties in the group. The ei particles are accountable for
finding the best optimal hybrid criteria function space. They carry out this searching for an
optimal hybrid criterion based on the impact of different parameters (V. Keerthika):

1. Position of the global leader.
2. Position of the local leader.
3. The best individual experience along the path.
4. The earlier path.

The particles utilize the equations below for carrying out a search for an optimal
hybrid criterion and proceeding with the test suite process:

V HL i+1 = V HL i + α HL rand( )(e best−e i ) + βHL rand()(HL i−e i ) (35)

The feature selection technique chooses the best features from the features available,
reducing the classifier’s complexities. The accuracy, specificity, and sensitivity of the
classifiers will all improve as a result of this improved feature extraction. The formula for
some of the useful aspects in statistics is provided in Table 5.

In this work, Table 6 gives the computational analysis for different feature extraction
methods. Table 7 show the comparison statistics of their performance measure of the
existing feature extraction method with the proposed ASSO and SLA12. From the table, it
is evident that SLA12 exceeds the other optimization approach with the greatest outcomes
in Tables 6–8. Tables 7 and 8 show some of the most prominent aspects of the statistical
analysis of first- and second-order, respectively.
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Table 5. Gives the statistical parameters for calculating feature extraction.

Extracted Features Equation

Mean M =
(

1
m×n

)
∑m=1

x=0 ∑n=1
y=0 f (x, y)

Standard Deviation SD(σ) =

√(
1

m×n

)
∑m=1

x=0 ∑n=1
y=0( f (x, y)−M)2

Entropy E = −∑m=1
x=0 ∑n=1

y=0 f (x, y) log2 f (x, y)

Skewness Sk(X) =
(

1
mn

)
∑ ( f (x,y)−M)3

SD3

Kurtosis Kurt (x) =
(

1
mn

)
∑ ( f (x,y)−M)4

SD4

Contrast Con =
m−1
∑

k=0

n−1
∑

y=0
(x− y)2 f (x + y)

Correlation Corr =
∑m−1

x=0 ∑n−1
y=0 (x,y) f (x,y)−Mx My

σxσy

Coarseness Cness =
1

2m+n

m−1
∑

k=0

n−1
∑

y=0
f (x, y)

Table 6. Computational time analysis for the different feature extraction methods.

Methods SSO ASSO PSO GA GSA FF Prop SLA12

Computation
time (s) 4.5100 3.7760 4.3797 4.4388 9.5249 3.9237 3.8177 2.3456

Table 7. First-order and second-order statistical analysis based on performance measure.

Statistical Analysis Based on Performance Measures for First-Order Statistics

Performance
Measure ASSO SSO GA PSO FF GSA Prop SLA12

Mean 3.2352 2.6444 2.4671 2.4346 1.5187 1.5275 2.3922 2.3462
Median 2.8012 2.2970 2.3976 2.4619 2.4503 1.4906 2.3592 2.3309

Std Deviation 1.6038 0.5980 0.9927 0.9339 0.9186 0.2522 0.9339 2.3307
Best 2.8901 2.6609 3.6169 3.7684 3.7503 1.7663 3.6555 3.6294

Worst 1.0025 1.2110 1.3448 1.1726 1.0072 1.3558 1.0222 1.0238

Statistical Analysis Based on Performance Measures for Second-Order Statistics

Performance
Measure ASSO SSO PSO GA GSA FF Prop SLA12

Entropy 0.9456 3.033 0.4657 2.099 1.122 2.786 0.8765 0.6534
Skewness 0.0055 0.0987 0.0984 0.0105 0.0051 0.0200 0.0789 0.0011
Kurtosis 2.34 × 106 1.34 × 106 1.88 × 106 2.44 × 106 3.34 × 106 1.33 × 105 2.04 × 105 2.74 × 105

Contrast 0.2650 0.6574 0.9845 0.4563 0.7834 0.3452 0.9342 0.3452
Correlation 0.9864 0.9835 0.9823 0.9674 0.8345 0.8345 0.9866 0.9875
Coarseness 8.876 11.897 9.865 10.876 11.9764 12.765 11.998 13.856

Table 8. Comparison of different optimization techniques in feature extraction.

Functions ASSO PSO SSO GA GSA FF Prop SLA12

Avg/Std. Avg/Std. Avg/Std. Avg/Std. Avg/Std. Avg/Std. Avg/Std. Avg/Std.

F1 28.3976/323.729 38.9854/372.9322 −12,389.05/
382.570263

29.3456/
321.821 −6981.15/848.8447 −14,219.09/

472.66037
37.9524

/371.9542
25.23801/
295.86792

F2 47.6299/23.4238 12.3789/42.4231 3.78 × 1015/
1.44 × 1014

46.0247/
24.2408

32.30133/
8.73574

2.66 × 1015/
2.43 × 1014

12.3578/
42.3214

4.12021/
1.90716

F3 5.119 × 105/
3.244 × 105

4.78 × 105/
2.04 × 105

4.32 × 1015/
2.37 × 1015

5.012 × 105/
3.024 × 105

2.85 × 105/
1.81 × 105

5.00 × 1015/
2.94 × 1015

4.89 × 105/
2.02 × 105

6.42 × 1017/
6.31 × 1015

F4 1.9688/2.8532 1.2776/1.9821 0.00285/0.00761 1.9574/2.3541 0.00992/0.01116 0.00496/0.00876 1.2783/1.9821 0.07942/1.99659

F5 1.6734/2.5237 1.2731/1.6231 −1.00040/0.00190 1.9872/2.3457 3.81 × 1011/
3.86 × 1011 0.00067/0.00299 1.2701/1.6248 0.98765/0.10078

F6 2.1748/2.8945 1.3472/1.4837 0.00037/0.00046 2.1348/2.7321 0.00366/0.02005 0.00287/0.00396 1.3472/1.4215 0.98937/0.42215
F7 1.3337/0.9877 1.0367/11.9801 1.00641/0.13622 1.0227/0.9867 1.03113/0.18147 1.02163/0.14584 1.0367/12.318 1.06157/15.13597
F8 0.3199/0.8199 0.9812/1.4783 0.00052/0.00023 0.3156/0.8179 0.00056/0.00024 0.00061/0.00044 0.9043/1.3782 0.28946/0.71108
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2.5. Classification

The classification method is designed to classify all pixels into one of several classes
within digital images. Multi-spectral data are usually utilized to classify, and, in effect, a
numerical foundation for categorization is employed as the spectral pattern in the data for
every pixel. The image grading aims to detect and show the characteristics in the image
about the item which these characteristics represent truly at the ground as a distinctive
grey level (or color). The grading of images refers to image labelling in one of several
established classifications. In this study, the selected feature is supplied to the classifier for
training purposes following optimum function selection. We use CNN classifiers together
with many models, such as ResNet50, VGG16, DenseNet and CNN, in our research with
optimal sea lion optimization [34].

• Convolutional Neural Network (CNN)
The proposed system uses CNN-based artificial segmentation methods to explore

smaller 3 × 3 kernels. The tiny kernels help the architecture become deeper by employing
fewer network weights. To achieve functionality maps, a coevolutionary layer is used to
convert a sign or an image using kernels. The weight of a kernel thereby ties a unit to the
previous layer in a feature map [35,36]. The kernel weights are reversed during the training
phase to enhance particular input features. Convolution layers weigh less than dense FC
layers because kernels are shared across all units with the same features, making CNN
training easier and lowering the chance of overriding. Moreover, because the same kernel
across the whole image is combined, the same feature is identified regardless of the location,
resulting in invariance translation [4]. The neighborhood information, which is a helpful
source of context information, is taken into consideration by employing kernels. The output
of every brain unit is normally non-linear. Table 9 shows the complete CNN network. The
framework on multigrade tumor segmentation and classification using the CNN network
is shown in Figures 5 and 6 gives the diagrammatic representation on cascaded CNN
architecture on brain tumor segmentation.

Table 9. Overall network of CNN.

Column 1 Column 2 Column 3 Column 4 Column 5

Structure Current layer Type Output size Previous layer

Conv_l Conv_l_1 Conv2d H * W * 64 Input

Conv_1_2 Conv2d H’W * 64 Conv_1_1

Conv_2 Conv_2_1 Maxpool+Conv2d (1/2) * (W/2) * 128 Conv_1_2

Conv_2_2 Conv2d (H/2) * (W/2) * 128 Conv_2_1

Conv_3 Conv_3_1 Maxpool+Conv2d (H/4) * (W)4) * 256 Conv_2_2

Conv_3_2 Conv2d (H/4) * (W/4) * 256 Conv_3_1

Conv_3_3 Conv2d (H/4) * (W)4) * 256 Conv_3_2

Conv_4 Conv_4_1 Maxpool+Conv2d (H/8) * (W/8) * 512 Conv_3_3

Conv_4_2 Conv2d (H/8) * (W/8) * 512 Conv_4_1

Conv_4_3 Conv2d (H/8) * (W/8) * 512 Conv_4_2

Conv_5 Conv_5_1 Multi-scale fusion (H/8) * (W/8) * 256 Conv_4_3

Upsmaple1 Upsmaple1 Upsample (H/4) * (W/4) * 256 Conv_5_1

Conv_6 Conv6_1 Multi-scale fusion (H/4) * (W)4) * 128 Upsmaple1

Upsmaple2 Upsmaple2 Upsample (H/2) * (W/2) * 128 Conv_6_1

Conv_7 Conv_7_1 Multi-scale fusion (H/2) * (W/2) * 2 UpsmapleZ

Avgpool Avgpool GlobalAveragePool 2 Conv_7_1

Output Output Pixel-wise product (H/2) * (W/2) * 1 Conv_7_1,Avgpool
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The retrieved characteristics become abstract with increasing depth if we stack numer-
ous coevolutionary levels. The initial layers improve characteristics such as edges grouped
as motifs, components, or objects in the succeeding layers [13,37].

In the context of CNN, the following ideas are essential:

• Initialization: Convergence must be achieved. The initialization of Xavier is used [38].
This maintains activation and gradient-regulated levels, otherwise gradients that are
back-propagated can burst or disappear.

• Activation Function: Non-linear modification of the data is done through activation
functions. Rectifier linear units are defined as follows:

f (x) = max(0, x) (36)

Better outcomes than traditional sigmoid and hyperbolic tangent functions were
discovered to be achieved, and training accelerated. Imposing a constant 0 can nevertheless
interfere with the gradient flow and consequent weight adjustment. These constraints are
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addressed using a version dubbed the leaky rectified linear unit (LReLU); the negative half
of the function has a modest slope. This function is defined as follows:

f (x) = (0, x) + αmin(0, x) (37)

where α is the parameter indicating leakiness. SoftMax is used in the final FC layer.

• Pooling and Regularization: This mixes the feature maps with spatially close-by features.
This arrangement of potentially redundant parts makes the image concise and invari-
ant for slight changes such as minor details. Max-pooling or medium swimming is
more common to link features.

• The overfitting is used to minimize. The levels of FC here utilize Dropout. It eliminates
nodes with probability from the network in every training stage. This drives all FC
layer nodes to learn a better representation of the data, thereby avoiding co-adaptation
of nodes. Every node is used during testing. Dropout may be regarded as an ensemble
of many networks and bags, since a piece of the training data is training each network.

• Data Augmentation: This may be used to develop training sets and eliminate overfitting.
It may be utilized to increase the exercise size and to minimize overfitting. Since the
center voxel is used for the patch class, the increase in data was limited to rotational
operations. Some writers additionally look at translations of images, although this
might lead to a misclass being attributed to the patch for segmentation [39]. We
extended the data set while training by rotating the original patch and producing
new patches. We have used numerous angles of 90 in our proposal to explored other
alternatives.

• Loss Function: During the training, this is the function that will be lowered. The
cross-entropy categorical approach was employed.

H = − ∑
j∈voxels

∑
k∈classes

cj,klog
(

ĉj,k

)
(38)

where the probabilistic predictions (after the SoftMax) are represented by ĉ, while the
target is represented by c.

The architecture and training for our CNN are discussed in the following parts.

• Architecture: In intra-tumoral structures, brain tumors show great diversity, which is a
segmentation challenge. We developed the CNN and optimized the transformation of
intensity normalization for each grade of tumor to reduce such complexity.

The loss function must be reduced to train the CNN, although it is not particularly
linear. Harris hawks is used as an improvement approach that takes steps in line with the
negative gradient toward the local minimum level. In low-curvature locations, though, it
can be lenient. We also use the accelerated momentum from Nesterov to accelerate the
process in these regions. The velocity remained constant, and after each epoch, the learning
rate was reduced linearly. We see an era as a whole pass of the training samples.

• Hybrid CNN With Sea Lion Optimization algorithm
By estimating the likelihood of each image voxel belonging to the target, the tumor or

lesion part is isolated from the background. There are four input parts and convolution
parts in the CNN network. The layer processes the incoming image so that the desired
image patches are produced. The section convolution processes the designed image patches
in which multifaceted filters are operated and feature maps are issued. The completely
linked layer grouping all the maps is also available. A prediction value for classifying each
voxel image is assessed, and a segmentation map is shown. The classification section helps
to give each voxel a probability. The SoftMax function is used to convert maps into category
probabilities in most convolutional neural networks [40]. The model is developed with
Kera’s. Selected 33 × 33 patches of MRI scans were used to grade the center-pixel of the
four-layer sequential model [41]. There are four channels for each input, one of them being
a channel for each image sequence, and the network may learn the relative pixel intensities
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of each class. Here the classification architectures Resnet, VGG, and DenseNet have been
used in this proposed system [42–44].

• VGG
The VGG16 and VGG19 architectures are built on and characterized by the same

models. They have employed 3 × 3 coevolutionary filters layered in greater depth on each
other and reduce the volume by maximum pooling. At last, the SoftMax classification
system, which was built based on their 2014 ImageNet submission and which achieved
first and second places in the localization and classification track, is complete with the three
fully connected (FC) layers, two of 4096 and one of 1000 neurons (the one displays class
scores).

• DenseNet
DenseNet’s dense block consists of convolution and non-linear layers. Some opti-

mizing methods such as drop-out and batch normalization are also applied. In addition,
outputs from the preceding layers are combined, rather than the summation in the compact
block given by DenseNet. Assume that the form of an image (28, 28, 3) in the input is the
RGB color space in three images. First, we spread the image across the first N channels and
get the image (28, 28, N). Every successive overlapping layer generates k features, with
the same height and width. Different optimization strategies are applied in deep neural
networks by modifying parameters like weights and learning rates to decrease loss and
improve precision. The sea lion optimization (SLnO) was used in this section [8].

• ResNet
A bottleneck design is utilized for deeper networks such as ResNet50, ResNet152, and

so on. Input images of any height or width can be taken by the network as numerous
channel widths of 32 and 3. The input size is considered 224 × 224 × 3 for explanatory
purposes. The initial convolution and max-pooling of all ResNet architectures are achieved
using 7 × 7 and 3 × 3 kernel sizes, respectively. Three layers are layered over each residual
function F. The three layers are 1 × 1, 3 × 3, and 1 × 1 convolution. The 1 × 1 convolution
layer reduces and restores dimensions afterward. The 3-to-33×3 layer is left as a minor
input/output bottleneck. The network also contains an average pooling layer and a fully
linked layer of 1000 neurons (ImageNet class output).

• Sea Lion Optimization
Sea lions are clever animals [45]; the key characteristic of sea lions is their quick

reaction to the movement of fish. They also have amazing senses that allow them to detect
fish prey even in the dark depths. Their eyes point to the prey; they can focus swiftly
on the prey. Specifically, they may extensively enlarge their pupils to give their eyes a
clear underwater vision with enough light. However, in a cloudy atmosphere, occasionally
the vision is not clear enough. Therefore, the most important feature of sea lions is their
high-sensitivity whiskers. These whiskers aid them in spotting the location of prey. If
the prey swims, a wake or waves are left behind. Sea lions are able to track fish using
their whiskers. The following are the primary steps in the hunting process of sea lions:
(i) chasing prey using their whiskers, (ii) calling for other subgroup members, (iii) encircling
and trapping the prey, (iv) attacking the prey. The SLnO method assumes that either the
optimum or closest answer is the target prey. This conduct is characterized mathematically
by Equation (39).

Dist =
∣∣∣2B.P(t)− SL(t)

∣∣∣ (39)

Distance and SL(t) are the position vectors between the sea lion and the target lion
P(t). The distance between the target lion is represented by Dist. The present iteration is
known as t, and B as [0, 1] is a random vector that multiplies by 2 to increase the scope for
finding an optimal or almost ideal solution for search agents.

SL(t + 1) = P(t)− Dist.c (40)

where (t + 1) refers to the succeeding iteration, and c has fallen linearly between 2 and
0 throughout all iterations, as the leader of the sea lion must travel around the target
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prey. When a sea lion spots a victim, the rest of the group forms a ring around it and
attacks [29,42]. Equations (41)–(43) are used to represent this behavior:

SPleader =
∣∣(V1

(
1 + V2

)
)/V2

)∣∣ (41)

V1 = sinθ (42)

V2 = sin∅ (43)

where SPleader denotes the sea lion leader’s sound speed, and V1 and V2 denote sound
speed in water and air, respectively.

The sinθ and sin∅ represent the speed of sound reflected in a medium that is same
as of air. The speed of sound refracted into the sea for calling members in underwater is
given as.

SL(t + 1) =
∣∣∣P(t)− SL(t)

∣∣∣.cos(2πm) + P(t) (44)

where SL denotes the distance between the one searching (sea lion) and the best answer
(target prey), | | denotes an actual absolute value, and m denotes a random count between
−1 and 1. Every sea lion goes in a circular path around the prey (bait ball) to begin looking
for food in a bait ball’s periphery. As a result, Cos (2 m) is used mathematically to describe
this occurrence. If c is more than one, the global search agent will run the SLnO algorithm
to find the best global solution. Equations (45) and (46) propose this.

Dist =
∣∣∣2B.SLrnd(t)− SL(t)

∣∣∣ (45)

SL(t + 1) = SLrnd(t)− Dist.c (46)

where SLrnd is a random sea lion taken from the present population. Random solutions are
the first element of the proposed SLnO algorithm. Every search agent moves to a new site
at random or based on the best solution. For both the exploration as well as exploitation
stages, parameter (C) is minimized between 2 and 0 throughout iterations. If the |C| value
is more than one, the search agent is chosen at random. If |C| is less than one, search agents
are likely to be upgrading their sites. Finally, the SLnO algorithm is completed with the
fulfillment of a final requirement (see Algorithm 2).

Table 10 shows the time to calculate different optimization strategies, and Table 10
gives statistical analysis of different optimized procedures with regard to different clas-
sifiers. Table 11 gives the evaluation measures used in the classification frameworks and
Table 13 gives the Performance value of classifiers. From f1–f15 in Table 13, the advan-
tages and shortcomings of the algorithm tested in these benchmarks to acquire a deeper
knowledge and insight can be seen. F1–f15 has multimodal functions.

Table 10. Analysis on computational time for different classifiers.

Methods ANN SVM PNN CNN
Sea Lion Optimization with CNN

ResNet VGG DenseNet

Computational Time (min) 3.458 4.632 4.237 4.112 2.8701 2.2700 2.2345

Figure 7 gives the analytical results for EFA for sea lion, are mainly focused on the
parameters such as LA, LT, OS, OP, EI, and MC, and the observed results are obtained
based on path estimates, Chi-square, DF, P, CMIN/DF, GFI, SRMR, NFI, RFI, IFI, TLI, CFI,
RMSEA, and RMR.
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Algorithm 2. Sea Lion Optimization.

Initialize the population
Choose SLrnd
Output from the segmentation result is taken as input (i)
Apply fitness function to every search agent.
If the search agent does not belong to any S leader
If (i < max iter)
Compute S leader as per the Equation (43)
If (S Pleader < 0.25)
If (H < 1)
Using Equation (41), update the search agent’s position
Else
Randomly choose a search agent Srnd.
Using Equation (46), update the current position of the search agent
End if
Else
Using Equation (45), update the current position of the search agent
End if
Go to first if the condition is met
Else
For each search agent, compute the fitness function.
S should be updated to reflect the optimal solution.
Return S , the best solution
End if
End if
Stop
Best solution (S Pleader) is obtained as the output for training the classifiers.

Table 11. Evaluation measures used in the classification frameworks.

Performance Measure Formulae

Sensitivity TP
TP+FN × 100%

Accuracy TP+TN
TP+FP+FN+TN × 100%

Precision TP
TP+FP × 100%

F-measure 2∗Precision∗Recall
Precision+Recall

Jaccard Index J(P, Q) =
S(P∩Q)
S(P∪Q)

Dice Overlap Index (DOI) D(P, Q) = 2X P∩Q
P+Q

Accuracy TP+TN
TP+FP+FN+TN × 100%

MCC TP×TN−FP×FN√
(TP+FP)(FN+TN)(TN+FP)(TN+FN)Axioms 2021, 10, x FOR PEER REVIEW 24 of 31 
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On multiple MRI images, the suggested technique was checked and simulated in
Python using Kera’s and TensorFlow. For this experiment, the BRATS dataset was em-
ployed. Preprocessing methods are used to eliminate noise and improve image quality in
the sample images (Figure 3). Following this process, the tumor area is segmented from
images and the segmented findings obtained are compared to the tumor area reported and
segmentation limitations in the data set, and are summarized in Table 10.

The performance of existing and proposed techniques is evaluated in this section
based on the segmentation and classification of the tumors in MRI images. Table 11 shows
the suggested technique compared with current approaches in terms of tumor accuracy,
precision, sensitivity, segmentation F measurement, Jaccard index, Dice overlapping index,
accuracy, and MCC (Matthews’ correlation coefficient). The comparison is based on a
set of 50 MRI scans, which are divided into two groups: normal and abnormal. Of these
50 MRIs, 25 random MRIs were selected for use in the training process, with 15 normal
and 10 anomalous images; the remaining 15 MRI images included 9 ordinary ones and
16 anomalous MRIs. In addition, using SLA12 as an optimization technique potentially
boosted the efficiency of every network that we used for analysis. Tables 12 and 13 provide
the resulting performance values.

Finally, a classification procedure is applied to obtain the severity stages and better
accuracy. By analyzing Table 4, the performance measures such as PSNR, MSE, and SSIM
are analyzed for preprocessed brain cancer MRI images, and the values are obtained. As
can be seen from Table 12, the experimental result proves that by using the optimized
technique, the overall accuracy is high. From our experiments on different images, it
is observed that the proposed method works well in both cases when the objects in the
image are indistinct and distinct from the background. Each image MCC is high for CNN
with the HHO model. This denotes that the proposed study has achieved a better result.
Figure 8 gives the experimental output image for the input image for different stages such
as preprocessing, segmentation and for sealion optimization.

Table 12. Performance evaluation of proposed segmentation models.

METRICS K-Means Modified
K-Means HHO CNN with

HHO

Image 1

Dice Coefficient 0.9818 0.9863 0.9658 0.9868

Jaccard
Coefficient 0.9642 0.9729 0.9256 0.9744

MCC 0.9814 0.9859 0.9103 0.9863

Accuracy 0.9991 0.9992 0.9980 0.9995

Sensitivity 0.9456 0.9247 0.8934 0.9127

Specificity 0.9346 0.8923 0.9012 0.9983

Image 2

Dice Coefficient 0.7846 0.9133 0.9254 0.9442

Jaccard
Coefficient 0.6456 0.8405 0.9675 0.8945

MCC 0.7647 0.9163 0.9324 0.9447

Accuracy 0.9989 0.9991 0.8912 0.9995

Sensitivity 0.9823 0.9214 0.9823 0.9847

Specificity 0.9234 0.7865 0.9167 0.9882
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Table 12. Cont.

METRICS K-Means Modified
K-Means HHO CNN with

HHO

Image 3

Dice Coefficient 0.7964 0.8714 0.9217 0.9327

Jaccard
Coefficient 0.6617 0.7721 0.9357 0.8732

MCC 0.8117 0.8775 0.9812 0.9346

Accuracy(%) 0.9957 0.9972 0.9843 0.9973

Sensitivity 0.8967 0.9876 0.9673 0.9657

Specificity 0.8912 0.8679 0.9124 0.9878

Image 4

Dice Coefficient 0.9088 0.9616 0.9452 0.9882

Jaccard
Coefficient 0.8328 0.9260 0.95632 0.9774

MCC 0.9114 0.9617 0.94352 0.9884

accuracy 0.9974 0.9986 0.9214 0.9987

Sensitivity 0.8967 0.9231 0.9563 0.9972

Specificity 0.8999 0.9213 0.8941 0.9657

Image 5

Dice Coefficient 0.9818 0.9863 0.8912 0.9867

Jaccard
Coefficient 0.9642 0.9729 0.9812 0.9745

MCC 0.9814 0.9859 0.9123 0.9862

accuracy 0.9991 0.9992 0.8892 0.9997

Sensitivity 0.9124 0.9823 0.8824 0.9878

Specificity 0.9342 0.9912 0.8723 0.9342

Image 6

Dice Coefficient 0.7846 0.9133 0.9126 0.9443

Jaccard
Coefficient 0.6456 0.8405 0.8909 0.8941

MCC 0.7647 0.9163 0.9012 0.9443

accuracy 0.9989 0.9991 0.9143 0.9995

Sensitivity 0.9112 0.9982 0.8872 0.9126

Specificity 0.8923 0.9365 0.8891 0.9457

Table 13. Performance value of classifiers.

Metrics CNN
Sea Lion Optimization with CNN

ResNet VGG DenseNet

Accuracy 0.9678 0.9651 0.9756 0.9867
Error 0.0445 0.0453 0.0367 0.0289

Sensitivity 0.9667 0.9654 0.9773 0.9830
Specificity 0.9833 0.96535 0.9733 0.9834
Precision 0.9602 0.96026 0.9744 0.97612
F1-Score 0.9698 0.96002 0.9722 0.978
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the segmented output of the image (d) parameter space output after applying the sealion optimization
and figure (e) gives the object space output.

The experimental findings highlight the efficiency of our suggested technique to
address more segmentation challenges by boosting segmentation quality and precision
within a minimum period. Table 13 shows a greater precision, sensitivity, and specificity
of the sea-lion-based CNN classifiers; the error value is less than the suggested classifier.
The results show that the suggested method performs quite well. The implementation
of the proposed tumor detection approach has been shown to enhance the effectiveness
and precision of clinical practice. The time analyses of several deep models are shown in
Table 10. Table 13 represents the overall model analysis with regard to computational time.
The precision of different models is illustrated in Figure 9a,b which exhibits the error of
different models in which DenseNet has less error and more accuracy. Figure 10a illustrates
the sensitivity and specificity of different models, and Figure 10b displays the F1 score
with regard to different models in which DenseNet offers greater performance than the
alternatives with sea lion optimization. Figure 11a shows several models without sea lion,
and Figure 11b shows different models with sea lion, in which this calculation is reduced
on a particular level when optimized.
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2.6. Comparative Analysis with the State-of-the-Art Methods

We compare our findings to those of other researchers, including the existing system
to demonstrate the validity of our method [45–47]. To classify and segment, the CNN
algorithm with deep learning method is employed in our proposed system. Table 14 shows
the comparative study outcome. The Table 14 provides the comparison findings with
the current outcomes of the proposal. The analysis achieves the highest accuracy in our
suggested technique.



Axioms 2022, 11, 15 27 of 30

Table 14. Comparison with state-of-the-art methods for our proposed system.

Methods Accuracy (%) Sensitivity (%) Precision (%) Specificity (%)

Wu et al. (2020)
[42] 96.1 95.4 96.91 96.7

Lodh et al. (2020)
[37] 96.2 96.39 96.391 96.6

Badza et al. (2020)
[46] 95 95.05 94.24 94.2

Veeramuthu et al.
(2015)
[47]

96.5 96 96.78 95

Seetha et al. (2018)
[48] 96.08 97.01 97 96.23

Krishnakumar et al.
(2021)
[49]

85 85.034 85.89 84.3

Jun et al. (2020)
[50] 89.59 90.77 85.97 88.4

Proposed Method

SL+resnet 50 96.5 96.54 96.02 96.54
SL+VGG 97 97.73 96.026 97.33

SL+DenseNet 98 98.30 97.44 98.33

3. Conclusions

For the diagnosis of brain tumors, an accurate diagnosis with no nonconformities is
essential. Any misinterpretation has irreversible consequences. Every year, brain tumor
cases are increasing, and this has also brought about a certain increase in strain on medical
staff in this area. The segmentation of brain tumor images requires a precise and practical
strategy to swiftly resolve growing demand. This document provides optimal models
based on this background to increase segmentation and cluster accuracy and get automatic
identification without operator intervention. It consists of CNN and a serially connected
integrated sea lion optimization technique. In comparison to typical classifiers, this classifi-
cation provides excellent precision. Different architectures and detailed hyper-parameter
tweaking may be designed to further increase the model’s efficiency. In brain tumor pa-
tients, the system presented can play an important predictive role in tumor identification.
Furthermore, in our proposed method, preprocessing is operated on a small region rather
than the entire image, which in turn increases the computational cost and increases the
complexity of the circuit. The complexity in the circuit increases the time consumption, so
further concentration has been given to rectify this drawback. Moreover, in other clinical
fields relating to health imaging, in particular with regards to lung cancer and breast cancer,
whose worldwide mortality is quite high, our presented method can play a beneficial role
in the early diagnosis of high-risk diseases.
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Futuristic Way to Multidisciplinary Research: As this paper mentions the story of brain tumors over
the past decade, this will be potentially very helpful for the healthcare community (neurosurgeons)
and research community for better integration and development of models for even more accurate
results in terms of theoretical and practical aspects.

Bibliometric Inferences: This paper gives much a brief account of various publications put for-
warded by many active researchers. In addition, it provides a brief review of various researchers
who bring great innovations to the diagnosis of brain tumors. Therefore, for this, an essential tool is
required for getting a clear view of this area.

Available Datasets: This paper brings over two different datasets that are available for training
and testing, such as the DL model, and will provide support for the research community for better
integrated models.

Limitations and Future Enhancements: The most advanced technology (i.e., DL) has certain limi-
tation for the healthcare community that need to be addressed and taken care of. The limitations
involve the enormous volume of data that needs to be fed in, the quality of data for better processing,
dealing with natural data, and the perpetuality of the domain, and these can be addressed by using
other features, encrypting every piece of data, ensuring the privacy of the system that is about to
develop, and keeping DL to the right path by incorporating the knowledge of experts. Creating DL
systems that are time sensitive will lead to a better DL model that could effectively support for the
healthcare system.
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