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Abstract: This paper introduces some new concepts of rough approximations via five quantum
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1. Introduction

In 1982, aiming to give a mathematical tool for incomplete information processing,
Pawlak [1] introduced the theory of rough sets. This theory has been widely used in many
fields. The key of rough set is a pair of operators called lower and upper approximation
operators. Many scholars have generalized the notion of rough approximation operators in
different way. One way is to define these operators in different mathematical structures,
such as modal logics [2–4], topological structures [5,6], Boolean algebra [7,8], lattice effect
algebra [9], residuated lattices [10–15], and others [16–18].

Quantum computers were first introduced by Feynman [19,20] and formalized by
Deutsch [21]. Shor [22] gave a polynomial-time quantum algorithm for factoring integers
in 1994 and Grover [23] introduced a quantum algorithm for unstructured searching in
1996. Their works greatly stimulated the research of quantum computation. With the
advent of quantum computation, it is natural to ask the question: how to use the rough
sets method in quantum computation and vice versa. Our method is from a logical point
of view. Since quantum computation is a beautiful combination of quantum theory and
computer science. As early as in 1936, in order to give a logic of quantum mechanics,
Birkhoff and von Neumann [24] introduced quantum logic, whose algebraic model is
an orthomodular lattice. Then, the issue is how to apply quantum logic in the analysis
and design of rough sets. In the recent years, some scholars studied rough sets based on
quantum logic. In 2017, Hassan [25] showed that rough set model with quantum logic
can be used for recognition and classification systems. In our previous work [26,27], we
proposed a rough set model based on quantum logic. We defined rough approximation
operators via join and meet on a complete orthomodular lattice (COL). Some properties
in our previous work are based on the distributivity of meet over join. However, any
orthomodular lattice satisfying distributivity of meet over join reduces to a Boolean algebra.
Moreover, some straightforward equivalences between distributivity and properties are
proved. This means that these properties of rough sets theory hold if, and only if, the
orthomodular lattice is a Boolean algebra. So these properties of rough sets theory hold in
the frame of classical logic and may not hold in the frame of quantum logic. It is necessary to
consider other rough sets model based on quantum logic, making more properties of rough
sets hold in the frame of quantum logic. Quantum implication operators are important in
the study of quantum logic. For example, they can be used to define deduction rules in
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quantum reasoning. This paper, therefore, discusses the quantum rough approximation
operators based on quantum implications.

The paper is organized as follows: Section 2, we recall the concepts of orthomodular
lattices. Since there are five quantum implications satisfying Birkhoff–von Neumann
condition. Section 3, we redefine the rough approximation operators via the multiplication
and Sasaki implication. In Section 4, we introduce the rough approximation operators via
other four quantum implications. The conclusion is given in the final section.

2. Preliminaries
2.1. Quantum Implicator

First, we recall the concept of COL and its implicators [28–34].
A COL L =< L,≤,∧,∨,⊥, 0, 1 > is a complete bounded lattice with a unary operator

⊥ which has the following properties: for all u, v ∈ L

(C1) u⊥ ∨ u = 1, u⊥ ∧ u = 0;
(C2) u⊥⊥ = u;
(C3) u ≤ v⇒ v⊥ ≤ u⊥;
(C4) u ≥ v⇒ u ∧ (u⊥ ∨ v) = v.

where 0 and 1 are the least and greatest elements of L, ≤ is the partial ordering in L, u ∧ v
and u ∨ v stand for the greatest lower bound and the least upper bound of u and v.

Quantum logic is a COL-valued logic and classical logic is treated as a Boolean algebra.
The former is weaker than the latter. For example, the distributivity of meet over join holds
in Boolean algebra, i.e., for all u, v, w ∈ L,

(v ∧ u) ∨ (w ∧ u) = (v ∨ w) ∧ u. (1)

However, it is not valid in a COL.
Implication operators in quantum logic can be defined in terms of ⊥, ∨, and ∧.

They are required to satisfy the Birkhoff–von Neumann condition [24]: for any u, v ∈ L,
u→ v = 1 if, and only if, u ≤ v. There are only five implication operators satisfying this
condition [35,36]:

Sasaki implication:
u→1 v = u⊥ ∨ (u ∧ v) (2)

Dishkant implication:
u→2 v = v ∨ (u⊥ ∧ v⊥) (3)

Kalmbach implication:

u→3 v = (u⊥ ∧ v) ∨ (u ∧ v) ∨ (u⊥ ∧ v⊥) (4)

Non-tollens implication:

u→4 v = (u⊥ ∧ v) ∨ (u ∧ v) ∨ ((u⊥ ∨ v) ∧ v⊥) (5)

Relevance implication:

u→5 v = (u⊥ ∧ v) ∨ (u⊥ ∧ v⊥) ∨ (u ∧ (u⊥ ∨ v)). (6)

Moreover, the multiplication operator is defined as follows: for all u, v ∈ L,

u&v =de f (u ∨ v⊥) ∧ v. (7)

Remark 1. For any u, v ∈ L, u→2 v = v⊥ →1 u⊥, u→4 v = v⊥ →3 u⊥.

Remark 2. If L is a Boolean algebra, u →i v (i = 1, 2, ..., 5) is equivalent to u →0 v = u⊥ ∨ v
which is named “material implication”.
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Remark 3. For any orthomodular lattice, among→i (i = 1, 2, 3, 4, 5), Sasaki implication→1 is
unique one satisfying the following condition [37,38]: there exists binary operation and such that
for any u, v, w ∈ L, u&v ≤ w if, and only if, u ≤ v→1 w.

The following are some properties of the Sasaki implication and the multiplication:

(C5) u&v ≤ w iff u ≤ v→ w;
(C6) 0&u = 0, u&1 = u, 1→ u = u and u→ 1 = 1;
(C7) u ∧ v ≤ u&v;
(C8) u ≤ v if, and only if, u→ v = 1

Let l =< L,≤,∧,∨,⊥, 0, 1 > be a COL, then L is a Boolean algebra, if, and only if, any
one of the following condition holds:

(C9) & is commutative, i.e., u&v = v&u for any u, v ∈ L;
(C10) v ≤ w⇒ u&v ≤ u&w for any u, v, w ∈ L.

2.2. Dual Operator of Quantum Implicator

Based on ⊥, a dual operator ↪→i of quantum implicator→i is defined as follow: for all
u, v ∈ L,

u ↪→i v =
(
u⊥ →i v⊥

)⊥. (8)

Proposition 1. All five operator ϑi (i=1,2,...,5) satisfy the condition: for any u, v ∈ L, v ≤ u if,
and only if, u ↪→i v = 0.

Proof. It can be deduced from the following, for any u, v ∈ L,

v ≤ u⇔ u⊥ ≤ v⊥

⇔ u⊥ →i v⊥ = 1

⇔ (u⊥ →i v⊥)⊥ = 0

⇔ u ↪→i v = 0.

Proposition 2. For any u, v ∈ L, v⊥ ↪→1 u = u&v

Proof. It can be deduced from the following,

v⊥ ↪→1 u = (v→1 u⊥)⊥

= (v⊥ ∨ (v ∧ u⊥))⊥

= v ∧ (v⊥ ∨ u)

= u&v.

The bi-implication operator corresponding to the Sasaki implication is defined as
follows: for any u, v ∈ L,

u↔ v =de f (u→ v) ∧ (v→ u). (9)

Clearly, u = v if, and only if, u↔ v = 1.
Let X be a finite set, L a COL, E a binary relation on X relative to L. Then,
E is serial if for all u ∈ X, ∨v∈XE(u, v) = 1.
E is reflexive if E(u, u) = 1 holds for all u ∈ X.
E is symmetric if E(u, v) = E(v, u) holds for all u, v ∈ X.
E is &−transitive if E(u, w) ≥ ∨v∈XE(v, w)&E(u, v) holds for all u, v, w ∈ X.
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3. Rough Approximations via Sasaki Implication →1 and Multiplication &

In this section, the new rough approximations are defined by using the multiplication
connective & and Sasaki implication→1. For convenience, we use→ in place of→1 in
this section.

Definition 1. Let U be a finite set, L a COL, E a binary relation on U relative to L, and X a
l-valued set in U. A pair of lower and upper rough approximations of X, E&X and E&X, are defined,
respectively, as follows:

(E&X)(x) =
∧

y∈U
(E(x, y)→ X(y)), ∀x ∈ U (10)

and
(E&X)(x) =

∨
y∈U

(X(y)&E(x, y)), ∀x ∈ U. (11)

In our previous work [26], rough approximations are defined based on ∧ and ∨, i.e.,

(E∧X)(x) =
∧

y∈U
(E(x, y)⊥ ∨ X(y)), ∀x ∈ U (12)

(E∧X)(x) =
∨

y∈U
(X(y) ∧ E(x, y)), ∀x ∈ U. (13)

Clearly, we have (E∧X)(x) ≤ (E&X)(x) because u ∧ v ≤ u&v, ∀u, v ∈ L.

Remark 4. In [26,27], we gave some results of (E∧X) and (E∧X) rely on the distributivity of
meet over join. For example, E&(X ∪ Y) ≡ (E&X ∪ E&Y) is equivalent to (v&u) ∨ (w&u) =
(v ∨ w)&u, ∀u, v, w ∈ L. This is indeed a negative result since any orthomodular lattice satisfying
distributivity of meet over join reduces to a Boolean algebra.

Remark 5. A complete orthomodular lattice L is a Boolean algebra if, and only if, & is commutative,
so X(y)&E(x, y) and E(x, y)&X(y) are different.

Example 1. Consider the smallest orthomodular lattice which is not a Boolean algebra, called
MO2 [39], as given in Figure 1. Let the universe U = {x, y}. Define a L-valued set

X =
u
x
+

v
y

(14)

and a L-valued relation R on MO2 in Table 1. Then, by the work in [26], we have

Table 1. The L-valued relation E in Example 1.

R x y

x 1 0
y 0 u
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(E∧X)(x) =
(
E(x, x)⊥ ∨ X(x)

)∧ (
E(x, y)⊥ ∨ X(y)

)
=
(
1⊥ ∨ u

)∧ (
0⊥ ∨ v)

= u
∧

1 = u

(E∧X)(y) =
(
E(y, x)⊥ ∨ X(x)

)∧ (
E(y, y)⊥ ∨ X(y)

)
=
(
0⊥ ∨ u

)∧ (
u⊥ ∨ v)

= 1
∧

1 = 1

(E∧X)(x) =
(
E(x, x) ∧ E(x)

)∨ (
E(x, y) ∧ E(y)

)
=
(
1∧ u

)∨ (
0∧ v

)
= u

∨
0 = u

(E∧X)(y) =
(
E(y, x) ∧ E(x)

)∨ (
E(y, y) ∧ E(y)

)
=
(
0∧ u

)∨ (
u ∧ v

)
= 0

∨
0 = 0

Thus, we obtain

E∧X =
u
x
+

1
y

(15)

E∧X =
u
x
+

0
y

(16)

By Equations (5) and (6), we have

(E&X)(x) =
(
E(x, x)→ X(x)

)∧ (
E(x, y)→ X(y)

)
=
(
1→ u

)∧ (
0→ v)

= u
∧

1 = u

(E&X)(y) =
(
E(y, x)→ X(x)

)∧ (
E(y, y)→ X(y)

)
=
(
0→ u

)∧ (
u→ v)

= 1
∧

u⊥ = u⊥

(E&X)(x) =
(
X(x)&E(x, x)

)∨ (
X(y)&E(x, y)

)
=
(
u&1

)∨ (
v&0

)
= u

∨
0 = u

(E&X)(y) =
(
X(x)&E(y, x)

)∨ (
X(y)&E(y, y)

)
=
(
u&0

)∨ (
v&u

)
= 0

∨
u = u

Thus, we obtain

E&X =
u
x
+

u⊥

y
(17)

E&X =
u
x
+

u
y

(18)

Clearly, E∧X 6= E&X and E∧X 6= E&X.
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1

u v⊥

0

u⊥v

Figure 1. Orthomodular lattice MO2 [39].

Proposition 3. Let U be a finite set, L a COL, E a binary relation on U relative to L, and X a
l-valued set in U. Then,

(1) E&∅ ≡ ∅, E&U ≡ U;
(2) E&X⊥ ≡ (E&X)⊥ and E&X⊥ ≡ (E&X)⊥;
(3) X ⊆ E&X, if, and only if, E&X ⊆ X, if, and only if, E is reflexive;
(4) E∧X ⊆ E&X and EX& ⊆ E∧X;
(5) If X ⊆ Y, then E&X ⊆ E&Y and E&X ⊆ E&Y;
(6) (E&X ∪ E&Y) ⊆ E&(X ∪Y), (E&(X ∩Y) ⊆ (E&X ∩ E&Y);
(7)

⋃
i∈J E&Xi ⊆ E&(

⋃
i∈J Xi) and E&(

⋂
i∈J Xi) ⊆

⋂
i∈J E&Xi for any Xi ∈ LU , i ∈ J.

Proof. (1) and (3) From (C6), i.e., 0&u = 0, u&1 = u, 1→ u = u, and u→ 1 = 1;
(2) From (u→ v)⊥ = (u⊥ ∨ (u ∧ v))⊥ = u ∧ (v⊥ ∨ u⊥) = v⊥&u for any u, v ∈ L;
(4) From (C7), i.e., u ∧ v ≤ u&v;
(5–7) For any u, v, w ∈ L v ≤ w⇒ v&u ≤ w&u for any u, v, w ∈ L.

Proposition 4. For any binary relation E and l-valued set X on U,

E&X = (E&X⊥)⊥, (19)

E&X = (E&X⊥)⊥. (20)

Proof. Since for any u, v ∈ L, we have (v → u⊥)⊥ = (v⊥ ∨ (v ∧ u⊥))⊥ = v ∧ (v⊥ ∨ u) =
u&v.

Example 2. See Example 1, we have

(E&X⊥)⊥(x) =
((

E(x, x)→ X⊥(x)
)∧ (

E(x, y)→ X⊥(y)
))

=
((

1→ u⊥
)∧ (

0→ v⊥)
)⊥

=
(

u⊥
∧

1
)⊥

= u
∨

0 = u

(E&X⊥)⊥(y) =
((

E(y, x)→ X⊥(x)
)∧ (

E(y, y)→ X⊥(y)
))⊥

=
((

0→ u⊥
)∧ (

u→ v⊥
))⊥

=
(

1
∧

u⊥
)⊥

= 0
∨

u = u
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(E&X⊥)⊥(x) =
((

X⊥(x)&E(x, x)
)∨ (

X⊥(y)&E(x, y)
))⊥

=
((

u⊥&1
)∨ (

v⊥&0
))⊥

=
(

u⊥
∨

0
)⊥

= u
∧

1 = u

(E&X⊥)⊥(y) =
((

X⊥(x)&E(y, x)
)∨ (

X⊥(y)&E(y, y)
))⊥

=
((

u⊥&0
)∨ (

v⊥&u
))⊥

=
(
0
∨

u
)⊥

= 1
∧

u⊥ = u⊥

It is easy to verify that (E&X⊥)⊥ = E&X and (E&X⊥)⊥ = E&X.

Proposition 5. The following three statements are equivalent:
(1) For any u, v, w ∈ L, (v&u) ∨ (w&u) = (v ∨ w)&u;
(2) E&(X ∪Y) ≡ (E&X ∪ E&Y);
(3) E&(X ∩Y) ≡ (E&X ∩ E&Y).

Proof. (1)⇒ (2): By using the distributive law of & over ∨, U is a finite set. We have

E&(X ∨Y)(x) =
∨

y∈U
((X ∨Y)(y)&E(x, y))

=
∨

y∈U
((X(y) ∨Y(y))&E(x, y))

=
∨

y∈U
((X(y)&E(x, y)) ∨ (Y(y)&E(x, y)))

= (E&X ∨ E&Y)(x).

(2)⇒ (1): Given u, v, w ∈ L, then the purpose is to show (v&u)∨ (w&u) = (v∨w)&u
for any u, v, w ∈ L. Let E(x, y1) = u, and E(x, y) = 0 for other y ∈ U; X(y1) = v, Y(y1) = w,
and X(y) = Y(y) = 0 for other y ∈ U. Then, we have

E&(X ∨Y)(x) =
∨

y∈U
((X ∨Y)(y)&e(x, y))

= (X ∨Y)(y1)&E(x, y1)

= (v ∨ w)&u.

and

(E&X ∨ E&Y)(x) = E&X(x) ∨ E&Y(x)

= (
∨

y∈U
(X(y)&E(x, y))) ∨ (

∨
y∈U

(Y(y)&E(x, y)))

= (X(y1)&E(x, y1)) ∨ (Y(y1)&E(x, y1))

= (v&u) ∨ (w&u)

Therefore, (v ∨ w)&u = (v&u) ∨ (w&u).
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(2)⇒ (3), from Proposition 4 and (2),

E&(X ∩Y) = (E&(X⊥ ∪Y⊥))⊥

= (E&X⊥ ∪ E&Y⊥)⊥

= (E&X ∩ E&Y).

(3)⇒ (2), from Proposition 4 and (3),

E&(X ∪Y) = (E&(X⊥ ∩Y⊥))⊥

= (E&X⊥ ∩ E&Y⊥)⊥

= (E&X ∪ E&Y).

Proposition 6. If L satisfies the distributivity of & over ∨. Then, the following three statements
are equivalent.

(1) E is serial;
(2) E& â ≡ â, for any a ∈ L;
(3) E& â ≡ â, for any a ∈ L.

where â(u) = a, for any u ∈ U.

Proof. (1)⇒ (2): By using the distributive law of & over ∨, we have

E& â(u) =
∨

v∈U
(â(v)&E(u, v))

=
∨

v∈U
(a&E(u, v))

= a&
∨

v∈U
E(u, v)

= a&1

= a.

(2)⇒ (1): Take a = 1; then it follows from the proof of necessity and E&1̂(u)↔ 1(u)
for every u ∈ X that

∨
v∈U E(u, v) = 1 holds for every u ∈ X. Hence E is serial.

Similarly, we can prove (1)⇔ (3).

Example 3. Consider the following L-valued relation E on MO2, as given in Table 2. Define a
L-valued set the universe U = {x, y}

X =
u
x
+

u
y

. (21)

Table 2. The L-valued relation E in Example 2.

R x y

x u v
y v u
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By Equations (5) and (6), we have

(E&X)(x) =
(
E(x, x)→ X(x)

)∧ (
E(x, y)→ X(y)

)
=
(
u→ u

)∧ (
v→ u)

= 1
∧

v⊥ = v⊥

(E&X)(y) =
(
E(y, x)→ X(x)

)∧ (
E(y, y)→ X(y)

)
=
(
v→ u

)∧ (
u→ u)

= v⊥
∧

1 = v⊥

(E&X)(x) =
(
E(x)&E(x, x)

)∨ (
E(y)&E(x, y)

)
=
(
u&u

)∨ (
u&v

)
= u

∨
v = 1

(E&X)(y) =
(
E(x)&E(y, x)

)∨ (
E(y)&E(y, y)

)
=
(
u&v

)∨ (
u&u

)
= v

∨
u = 1

Thus, we obtain

E&X =
v⊥

x
+

v⊥

y
(22)

E&X =
1
x
+

1
y

. (23)

E is serial, but L does not satisfy the distributivity of & over ∨, so E& â 6= â and E& â 6= â.

Proposition 7. If two of the following statements are hold, then the third statement holds:
(1) For any u, v, w ∈ L, (v&u) ∨ (w&u) = (v ∨ w)&u;
(2) E is &−transitive;
(3) E&(E&X) ⊆ E&X.

Proof. (1) + (2)⇒ (3),

E&(E&X)(x) =
∨

y∈U
(E&X(y)&E(x, y))

=
∨

y∈U
((
∨

z∈U
(X(z)&E(y, z))&E(x, y)))

=
∨

z∈U
(X(z)&

∨
y∈U

(E(y, z)&E(x, y)))

≤
∨

z∈U
(X(z)&E(x, z))

= E&X(x).

(1) + (3) ⇒ (2): Assume that E is not &−transitive. It follows than that for some
u0, w0 ∈ U, ∨

v∈U
(E(v, w0)&E(u0, v)) ≤ E(u0, w0)

does not hold.
Let X(w0) = 1 and X(v) = 0 for other v ∈ U. Then, we have

E&(E&X)(u0) =
∨

v∈U
(E(v, w0)&E(u0, v))
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and
E&X(u0) = E(u0, w0).

Therefore, it follows from (3) that∨
v∈U

(E(v, w0)&E(u0, v)) ≤ E(u0, w0).

(2) + (3) ⇒ (1): Given u, v, w ∈ L, let U = x, y, z, E ∈ LU×U which E(x, y) =
E(x, z) = u, E(y, z) = E(z, z) = v, E(z, y) = E(y, y) = w and others are 0, and X ∈ LU

which X(y) = w, X(z) = v, X(x) = 0. It easy to check that E is transitive. Then,
E&X(x) = (X(y)&E(x, y)) ∨ (X(z)&E(x, z)) = (w&u) ∨ (v&u)
E&X(y) = (X(y)&E(y, y)) ∨ (X(z)&E(y, z)) = w ∨ v
E&X(z) = (X(z)&E(z, z)) ∨ (X(y)&E(z, y)) = w ∨ v

and

E&(E&X)(x) = (E&X(y)&E(x, y)) ∨ (E&X(z)&E(x, z))

= ((v ∨ w)&u) ∨ ((v ∨ w)&u)

= (v ∨ w)&u.

So by E&(E&X)(x) ≤ E&X(x) we obtain (v ∨ w)&u ≤
(
(v&u) ∨ (w&u)

)
.

Since
(
(v ∨ w)&u

)
≥
(
(v&u) ∨ (w&u)

)
always holds. Thus, we have

(
(v ∨ w)&u

)
=(

(v&u) ∨ (w&u)
)
.

Proposition 8. If two of the following statements are hold, then the third statement holds:
(1) For any u, v, w ∈ L, (v&u) ∨ (w&u) = (v ∨ w)&u;
(2) E is &−transitive;
(3) E&X ⊆ E&(E&X).

Proof. Similar to that of Proposition 7.

Remark 6. For the proof of Propositions 7 and 8, in this paper, we use the concept that E is
&−transitive if E(u, w) ≥ ∨v∈UE(v, w)&E(u, v) holds for all u, v, w ∈ U, not E(u, w) ≥
∨v∈UE(u, v)&E(v, w) holds for all u, v, w ∈ U.

Definition 2 ([34]). Let U be a non-empty set and L a COL, a function int: LU → LU is an
l−valued interior operator if for all G, H ∈ LU it satisfies:

(1) int(â) = â;
(2) int(G) ⊆ G;
(3) int(G ∩ H) = int(G) ∩ int(H);
(4) int(int(G)) = int(G).

Definition 3 ([34]). Let U be a non-empty set and L a COL, a function cl: LU → LU is an
l−valued closure operator if for all G, H ∈ LU it satisfies:

(1) cl(â) = â;
(2) G ⊆ cl(G);
(3) cl(G ∪ H) = cl(G) ∪ cl(H);
(4) cl(cl(G)) = cl(G).

Proposition 9. If two of the following statements are hold, then the third statement holds:
(1) For any u, v, w ∈ L, (v&u) ∨ (w&u) = (v ∨ w)&u;
(2) E is serial, reflexive and &−transitive;
(3) E& is an l−valued interior operator.

Proof. Immediate from Propositions 3, 5, 6, and 8.
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Proposition 10. If two of the following statements are hold, then the third statement holds:
(1) For any u, v, w ∈ L, (v&u) ∨ (w&u) = (v ∨ w)&u;
(2) E is serial, reflexive and &−transitive;
(3) E& is an l−valued closure operator.

Proof. Immediate from Propositions 3, 5, 6, and 7.

4. Rough Approximations via Implicator →i and Its Dual Operator ↪→i

For other quantum implication→i (i = 2, ..., 5), we use its dual operator ↪→i to define
the upper rough approximation.

Definition 4. Let U be a finite set, L a COL, E a binary relation on U relative to L, and X a
l-valued set in U. A pair of lower and upper rough approximations of X, EiX and EiX, are defined,
respectively, as follows:

(EiX)(x) =
∧

y∈U
(E(x, y)→i X(y)), ∀x ∈ U (24)

and
(EiX)(x) =

∨
y∈U

(E(x, y)⊥ ↪→i X(y)), ∀x ∈ U. (25)

Example 4. Consider the orthomodular lattice MO2 [39], as given in Figure 1. Let the universe
U = {x, y}. Define a L-valued set

X =
u
x
+

v
y

and a L-valued relation R on MO2 in Table 1. Then, by Equations (24) and (25), we have

(E2X)(x) =
(
E(x, x)→2 X(x)

)∧ (
E(x, y)→2 X(y)

)
=
(
1→2 u

)∧ (
0→2 v)

= u
∧

1 = u

(E2X)(y) =
(
E(y, x)→2 X(x)

)∧ (
E(y, y)→2 X(y)

)
=
(
0→2 u

)∧ (
u→2 v)

= 1
∧

v = v

(E2X)(x) =
(
E(x, x)⊥ ↪→2 E(x)

)∨ (
E(x, y)⊥ ↪→2 E(y)

)
=
(
1⊥ ↪→2 u

)∨ (
0⊥ ↪→2 v

)
= u

∨
0 = u

(E2X)(y) =
(
E(y, x)⊥ ↪→2 E(x)

)∨ (
E(y, y)⊥ ↪→2 E(y)

)
=
(
0⊥ ↪→2 u

)∨ (
u⊥ ↪→2 v

)
= 0

∨
v = v

Thus, we obtain

E2X =
u
x
+

v
y

(26)

E2X =
1
x
+

1
y

(27)

Clearly, see Example 1, E2X 6= E∧X, E2X 6= E∧X, E2X 6= E&X and E2X 6= E&X.

From above example, we know that different quantum implications will lead to
different rough approximations.
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Proposition 11. For any binary relation E, l-valued set X on U and i = 2, 3, 4, 5,

EiX = (EiX
⊥)⊥, (28)

EiX = (EiX⊥)⊥. (29)

Proof. It can be obtained from the definition of the dual operator, i.e., Equation (8) u ↪→i

v =
(
u⊥ →i v⊥

)⊥.

Example 5. See Example 4, we have

(E2X⊥)⊥(x) =
((

E(x, x)→2 X⊥(x)
)∧ (

E(x, y)→2 X⊥(y)
))⊥

=
((

1→2 u⊥
)∧ (

0→2 v⊥
))⊥

= (u⊥ ∧ 1)⊥ = u ∨ 0 = u

(E2X⊥)⊥(y) =
((

E(y, x)→2 X⊥(x)
)∧ (

E(y, y)→2 X⊥(y)
))⊥

=
((

0→2 u⊥
)∧ (

u→2 v⊥
))⊥

= (1∧ v⊥)⊥ = 0∨ v = v

(E2X⊥)⊥(x) =
((

E(x, x)⊥ ↪→2 E⊥(x)
)∨ (

E(x, y)⊥ ↪→2 E⊥(y)
))⊥

=
((

1⊥ ↪→2 u⊥
)∨ (

0⊥ ↪→2 v⊥
))⊥

= (u⊥ ∨ 0)⊥ = u ∧ 1 = u

(E2X⊥)⊥(y) =
((

E(y, x)⊥ ↪→2 E⊥(x)
)∨ (

E(y, y)⊥ ↪→2 E⊥(y)
))⊥

=
((

0⊥ ↪→2 u⊥
)∨ (

u⊥ ↪→2 v⊥
))⊥

= (0∨ v⊥)⊥ = 1∧ v = v

It is easy to verify that E2X = (E2X⊥)⊥ and E2X = (E2X⊥)⊥.

Proposition 12. There is orthomodular lattice L, such that (v&u) ∨ (w&u) = (v ∨ w)&u holds
for any u, v, w ∈ L, and Ei(X ∩ Y) 6= (EiX ∩ E&Y) and Ei(X ∪ Y) 6= (EiX ∪ E&Y) for some
l-valued relation E and l-valued sets X and Y.

Proof. Consider the orthomodular lattice MO2 in Figure 1. Clearly, (v&u) ∨ (w&u) =
(v ∨ w)&u hold in MO2 for any u, v, w ∈ MO2. Let E(x, y1) = u, and E(x, y) = 0 for other
y ∈ U; X(y1) = v, Y(y1) = u⊥, and X(y) = Y(y) = 0 for other y ∈ U. Then, we have

E2(X ∧Y)(x) =
∨

y∈U
(E(x, y)→2 (X ∧Y)(y))

= E(x, y)→2 (X ∧Y)(y)

= u→2 (v ∧ u⊥)

= u→2 0

= u⊥.
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and

(E2X ∧ E2Y)(x) = E2X(x) ∧ E2Y(x)

= (
∨

y∈U
(E(x, y)→2 X(y))) ∧ (

∨
y∈U

(E(x, y)→2 Y(y)))

= (E(x, y1)→2 X(y1)) ∧ (E(x, y1)→2 Y(y1))

= (u→2 v) ∧ (u→2 u⊥)

= v ∧ u⊥

= 0.
Moreover, we have

E3(X ∧Y)(x) = u→3 0 = u⊥,

E4(X ∧Y)(x) = u→4 0 = u⊥,

E5(X ∧Y)(x) = u→5 0 = u⊥.

and

(E3X ∧ E3Y)(x) = (u→3 v) ∧ (u→3 u⊥) = 0∧ u⊥ = 0,

(E4X ∧ E4Y)(x) = (u→4 v) ∧ (u→4 u⊥) = v⊥ ∧ u⊥ = 0,

(E5X ∧ E5Y)(x) = (u→5 v) ∧ (u→5 u⊥) = u ∧ u⊥ = 0.

Therefore, Ei(X ∩ Y) 6= (EiX ∩ EiY), i = 2, 3, 4, 5. Then, we can obtain Ei(X ∪ Y) 6=
(EiX ∪ EiY), i = 2, 3, 4, 5 from Proposition 11.

From above result, the distributive law of ∨ over & in→i(i = 2, ..., 5) based rough
approximations does not play the same part as in→1 based rough approximations.

5. Conclusions

In this paper, we redefined COL-valued rough approximations based on quantum im-
plication. First, COL-valued rough approximations are defined by using the multiplication
(&) and Sasaki implication→1 instead of meet ∧ and join ∨, respectively. This leads to new
results that only rely on the distributive law of ∨ over &, which is strictly weaker than the
distributive law of ∨ over ∧. This is very important for COL-valued rough approximations
since similar results in our previous work [26,27] rely on the distributive law of ∨ over ∧.
So the new quantum rough model needs weaker condition, and is applicable to a bigger
extension. We further establish rough approximations via other four quantum implication,
which are different from rough approximations via Sasaki implication. Some properties of
rough approximations via these four quantum implications do not rely on the distributive
law of ∨ over &.

Obviously, underlying rules play an important part in the concept of rough approx-
imations. Some fundamental properties of rough approximations can not hold without
some underlying rules of logics. By setting the equivalence between underlying rules
of logics and properties of rough approximations, rough models with different ranges
can be established. Obviously, the results presented in this paper only considered the
distributivity. As future work, we can consider the equivalence between properties of
rough approximations and other underlying rules, such as modularity and compatibility in
a COL and cancellation law in an effect algebra, which is an algebraic model of unsharp
quantum logic [39]. Naturally, a more detailed discussion of other algebraic models and
other quantum logics, such as quasi-MV algebras [40,41], quantum MV algebras [42] and
quantum computational logics [43], will be both necessary and interesting.

The purpose of this paper and author’s previous works [26,27] is to establish a theory
of rough sets based on quantum logic. However, as mentioned in [44], quantum logic
seems to have no obvious links to quantum computation. The issue how to combine rough
set method with quantum computation should be further investigated.
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