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Abstract: Brain tumors are most common in children and the elderly. It is a serious form of cancer
caused by uncontrollable brain cell growth inside the skull. Tumor cells are notoriously difficult to
classify due to their heterogeneity. Convolutional neural networks (CNNs) are the most widely used
machine learning algorithm for visual learning and brain tumor recognition. This study proposed a
CNN-based dense EfficientNet using min-max normalization to classify 3260 T1-weighted contrast-
enhanced brain magnetic resonance images into four categories (glioma, meningioma, pituitary, and
no tumor). The developed network is a variant of EfficientNet with dense and drop-out layers added.
Similarly, the authors combined data augmentation with min-max normalization to increase the
contrast of tumor cells. The benefit of the dense CNN model is that it can accurately categorize
a limited database of pictures. As a result, the proposed approach provides exceptional overall
performance. The experimental results indicate that the proposed model was 99.97% accurate during
training and 98.78% accurate during testing. With high accuracy and a favorable F1 score, the newly
designed EfficientNet CNN architecture can be a useful decision-making tool in the study of brain
tumor diagnostic tests.

Keywords: brain tumor; confusion matrix; EfficientNet; CNN; MRI; fuzzy logic

1. Introduction

The brain has billions of active cells, making analysis very difficult. Today, one of
the leading causes of childhood and adult death is brain tumors. Primary brain tumors
affect about 250,000 individuals worldwide each year and account for less than 2% of all
malignancies. In total, 150 different kinds of brain tumors may be seen in humans. Among
them are: (i) benign tumors; and (ii) malignant tumors. Benign tumors spread within the
brain. Typically, malignant tumors are referred to as brain cancer since they may spread
outside of the brain [1]. Early diagnosis and true grading of brain tumors are vital to save
the life of human beings. The manual technique is very difficult because of the significant
density of brain tumors. Thus, an automated computer-based method is very beneficial
for tumor detection [2]. Today, things are very different. Using machine learning and deep
learning to improve brain tumor detection algorithms [3] enables radiologists to quickly
locate tumors without requiring surgical intervention. Recent advances in deep neural
network modeling have resulted in the emergence of a novel technology for the study,
segmentation, and classification of brain tumors [4,5].

Brain tumor classification is possible with the help of the fully automated CNN model
to make fast and accurate decisions by researchers. However, achieving high accuracy
is still an endless challenge in brain image classification due to vagueness. The objective
of this paper is to designate fully automatic CNN models with min-max normalization
for multi-classification of the brain tumors using publicly available datasets. We have
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proposed a dense EfficientNet network for three-class brain tumor classification to obtain
better accuracy. It is focused on data augmentation with min-max normalization combined
with dense EfficientNet to enhance the quicker training accuracy with higher depth of the
network. It contains separable convolution layers in-depth to reduce to a smaller extent the
parameters and computation. However, to segment brain tumors, the EfficientNet model
must be further expanded via the use of dense chain blocks. Thus, dense EfficientNet
can also achieve excellent classification accuracy. It obtains deep image information and
reconstructs dense segmentation masks for brain tumor classification of three tumor kinds.
It was evaluated on T1-weighted contrast-enhanced magnetic resonance imaging. The
performance of the network was tested using pre-processing, augmentation, and classifi-
cation. A novel dense depth classifier is presented based on a deep convolutional neural
network. The suggested approach has higher classification accuracy compared to existing
deep learning methods. The suggested approach provides excellent performance with a
smaller number of training samples as is demonstrated in the confusion matrix. The issue
of overfitting is minimized with reduced classification error owing to dropout layers.

This paper is split into several sections: the next part deals with the various related
work about tumor segmentation; suggested methodology is described in Section 3; addi-
tionally, Section 4 emphasizes the findings using confusion matrix analysis; and finally,
Section 5 provides the conclusion derived from the study output and the scope of the
potential development.

2. Related Work

Medical image segmentation for detection and classification of brain tumor from the
magnetic resonance (MR) images is a very important process for deciding the right therapy
at the right time. Many techniques have been proposed for classification of brain tumors in
MRI. Shelhamer et al. [6] proposed a dual path CNN skipping architecture that combines
deep, coarse layer with fine layer to find accurate and detailed segmentation of brain
cancer. Brain tumor cells have soaring baleful fluid which has very high vigor and is vague.
Therefore, min-max normalization is a better pre-processing tool to classify tumors into
different grades [7]. Today, there are several image processing methodologies used for
classifying MR images [8,9]. Karunakaran created a technique for detecting meningioma
brain tumors utilizing fuzzy-logic-based enhancement and a co-active adaptive neuro-fuzzy
inference system, as well as U-Net convolutional neural network classification algorithms.
The suggested method for detecting meningioma tumors includes the following stages:
enhancement, feature extraction, and classification. Fuzzy logic is used to improve the
original brain picture, and then a dual tree-complex wavelet transform is performed on
the augmented image at various scale levels. The deconstructed sub-band pictures are
used to calculate the features, which are then categorized using the CAN FIS classification
technique to distinguish meningioma brain images from non-meningioma brain images.
The projected meningioma brain’s performance sensitivity, specificity, segmentation accu-
racy, and dice coefficient index with detection rate are all evaluated for the tumor detection
and segmentation system [10]. Recent advances in deep learning ideas have increased the
accuracy of computer-aided brain tumor analysis on tumors with significant fluctuation in
form, size, and intensity. Cheng et al. [11] used T1-MRI data to investigate the three-class
brain tumor classification issue. This method employs image dilation to enlarge the tumor
area, which is then divided into progressively fine ring-form sub-regions. Badza and
Barjaktarovic [12] presented a novel CNN architecture based on the modification of an
existing pre-trained network for the categorization of brain tumors using T1-weighted
contrast-enhanced magnetic resonance images. The model’s performance is 96.56 percent,
and it is composed of two 10-fold cross-validation techniques using augmented pictures.
Mzough et al. [13] used a pre-processing method based on intensity normalization and
adaptive contrast enhancement to propose a completely automated 3D CNN model for
glioma brain tumor categorization into low-grade and high-grade glioma. They obtained
validation accuracy of 96.49 percent overall when utilizing the Brats-2018 dataset. A hybrid
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technique: Hashemzehi et al. [14] evaluated the detection of brain cancers from MRI images
using a hybrid model CNN and NADE. They used 3064 T1-weighted contrast-enhanced
images. They evaluated in order to identify three distinct kinds of brain cancers with a
96 percent accuracy rate. Diaz-Pernas et al. [15] presented a completely automated brain tu-
mor segmentation and classification algorithm based on MRI scans of meningioma, glioma,
and pituitary tumors. They utilized CNN to implement the idea of a multi-scale approach
inherent in human functioning. They achieved 97 percent accuracy on a 3064-slice imaging
collection from 233 patients. Sultan et al. [16] utilized a CNN structure comprising 16
convolution layers, pooling and normalizing, and a dropout layer before the fully linked
layer. They discovered a 96 percent accuracy rate when 68 percent of the pictures were used
for training and the remaining images were used for validation and testing. Abd et al. [17]
conducted their experiment on 25,000 brain magnetic resonance imaging (MRI) pictures
using a differential deep-CNN to identify various kinds of brain tumor. They achieved
outstanding total performance with an accuracy of 99.25 percent in training. Sajja et al. [18]
conducted their research on Brat’s dataset which includes 577 T1-weighted brain tumors for
classifying malignant and benign tumors using the VGG16 network. They performed their
performance with 96.70 inaccuracy. Das et al. [19] identified various kinds of brain cancers,
such as glioma tumor, meningioma tumor, and pituitary tumor using a convolutional
neural network which includes 3064 T1-weighted contrast-enhanced MRI pictures. The
CNN model was trained to utilize several convolutional and pooling procedures. They
obtained 94 percent accuracy by resizing the convolutional network based on convolutional
filters/kernels of variable size.

3. Proposed Methodology

In this paper, the authors have applied min-max normalization and data augmentation
techniques on a large dataset of 3260 different types of brain MRI images [20]. The image
database includes 3064 T1-weighted contrast-enhanced MRI images collected from Kaggle.
com. These are mainly three kinds of brain tumors: one is meningioma which contains
708 pictures; the second is glioma which contains 1426 pictures; and lastly there is pituitary
tumor which contains 930 pictures. All pictures were collected from 233 patients in three
planes: sagittal (1025 photos), axial (994 photos), and coronal (1045 photos). The authors
divided the dataset into three distinct parts for training, validation, and testing. The
suggested model is composed of different stages which are illustrated in Figure 1.
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3.1. Image Pre-Processing

The brain tumor images have low quality due to noises and low illumination. The
proposed method converts the low pixel value images to brighter ones using data nor-
malization and using the min-max normalization function method followed by Gaussian
and Laplacian filter. Initially, the authors added Gaussian blur to the original images and
then subtracted the blurred image by adding a weighted portion of the mask to obtain the
de-blurred image. Then they used a Laplacian filter with kernel size 3 × 3 for smoothing
the images which are shown in Figure 2.
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The MRI image as obtained from the patient’s database is unclear. These images also
contain a certain amount of uncertainty. Therefore, brain images need to be normalized
before further processing. Usually, MRI images look like grey scale images. Hence, the
images are easily normalized to improve the image quality and reduce miscalculation.
Nayak et al. [21] applied L membership function with the morphology concept to detect
brain tumors. The membership function used in the study is as follows:

r =
d − mn

mx − mn
(1)

where d = double (image), mn = min (min (image)), mx = max (max (image)), and r =
normalized image.

This membership function is mainly used to normalize the image for enhancement
with the range 0 to 1. Thus, it is also called the max-min normalization method.

The resultant image after applying the normalization is shown in Figure 3.
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3.2. Data Division and Augmentation

The deep neural network needs large datasets for better results but our dataset is
limited. Our dataset contains 3260 brain images, further divided into 80% for training,
which remains for testing and validation purposes. So, data augmentation is needed to
change in the minor. The authors have applied rotation, width-shift, height-shift, and
the zoom—range for the data requirement. They augmented the original data 21 times
for better training. This will enhance the amount of training data, allowing the model
to learn more effectively. This may assist in increasing the quantity of relevant data. It
contributes to the reduction of overfitting and enhances generalization. Data augmentation
(DA) is the process of creating additional samples to supplement an existing dataset
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via transformation. Dropout through augmentation, practical solutions such as dropout
regularization, and batch normalization are performed on the original dataset. By data
warping or oversampling, this augmentation exaggerated the size of the training dataset.

3.3. Dense EfficientNet CNN Model

A novel dense CNN model is presented in this article, which is a mix of pre-trained
EfficientNetB0 with dense layers. EfficientB0 has 230 layers and 7 MBConv blocks [22,23]. It
features a thick block structure consisting of four tightly linked layers with a development
rate of 4. Each layer in this structure uses the output feature maps of the preceding levels
as the input feature maps. The dense block concept is composed of convolution layers of
the same size as the input feature maps in EfficientNet. Dense block takes advantage of
the preceding convolution layers’ output feature maps to generate more feature maps with
fewer convolution kernels. This CNN model retrieved 150 × 150 enhanced MRI image
data. The dense EfficientNet network has an alternate dense and drop-out layer. A dense
layer is the basic layer which feeds all outputs from the previous layer to all its neurons,
each neuron providing one output to the next layer. The drop-out layer is used to reduce
the capacity or thin the network during training and avoids the overfitting. We begin by
adding a pooling layer, followed by four dense layers and three drop-out layers to ensure
the model runs smoothly. The numbers of neurons in the dense units are 720, 360, 360,
and 180, respectively. The drop-out values are 0.25, 0.25, and 0.5, respectively. Finally, the
authors have used a dense layer composed of four fully connected neurons in conjunction
with a Softmax output layer to compute and classify the probability score for each class.
Figure 4 illustrates the structure of the proposed EfficientNet in detail.
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4. Results and Discussion

Numerous experimental assessments have been conducted to determine the suggested
dense CNN model’s validity. All the experimental evaluations have been conducted using
a Python programming environment with GPU support. First, pre-processing is performed
to enhance the contrast in MRI images using max-min normalization and then the images
are augmented for training. The proposed dense-CNN model activated the augmented
tumors for better accuracy. The proposed model showed 99.97% accuracy on training data
and 98.78% accuracy on the testing dataset which is plotted in Figure 5.
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The experiment has been performed in 20 epochs. A batch size of 32, image size 150,
and verbose 1 have been considered for the experiment. In the accuracy model, initial
validation accuracy is below 0.75 but after one epoch the validation accuracy suddenly
increases to nearly 0.88. In the same manner, the initial validation loss is above 0.8 but
after one epoch the loss decreases below 0.4. As shown in Figure 5, there is a positive trend
toward improving accuracy and reducing loss. At first, validation accuracy is low, but it
progressively improves to almost 97.5 percent. The succeeding part of the measure was
accomplished on the ResNet50 model, MobileNet, and the MobileNetV2 model, which are
shown in Figure 6, Figure 7, and Figure 8, respectively.
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From the above model accuracy and model loss graphs, the authors concluded that in
the case of the mobile net case, the graph is disordered, and the difference between loss and
accuracy is very high. So, the accuracy value of MobileNetV2 is lower than the others. The
accuracy and loss graphs of dense EfficientNet, ResNet, and MobileNet are almost nearly
equal. The testing accuracy and testing loss of dense EfficientNet is 98.78% and 0.0645,
respectively, whereas the accuracy and loss in the case of MobileNetV2 is 96.94% and 0.2452,
respectively. The testing accuracy acquired using the MobileNet model is 96.94% and the
test loss is 0.1339 whereas the accuracy and loss value of ResNet is just less than MobileNet.
The detailed comparison of test accuracy, as well as loss of different models, is shown in
Table 1, and performance analysis is shown in Figure 9.
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Table 1. Comparison of accuracy and loss among different pre-trained deep-learning-based tech-
niques.

Model Dataset Testing Loss Testing Accuracy

Proposed dense EfficientNet T1 contrast brain tumors 0.0645 98.78%

ResNet50 T1 contrast brain tumors 0.1337 96.33%

MobileNet T1 contrast brain tumors 0.1339 96.94%

MobileNetV2 T1 contrast brain tumors 0.2452 94.80%
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Figure 9. Comparison of accuracy and loss among different pre-trained deep-learning-based tech-
niques.

Different performance measures, such as accuracy, precision, recall, and F1-score, were
utilized to compare the suggested model’s performance. These parameters are evaluated us-
ing the confusion matrix. The details were also examined using the confusion matrix which
is shown in Figure 10. The confusion matrix presents misclassifications as a consequence
of overfitting using 10% of testing data obtained from the original dataset of 3260. From
the matrix it is observed that the misclassified tumors in the proposed dense EfficientNet
model have 04, the ResNet50 model has 12, MobileNet has 10, and MobileNetV2 has 15
out of 326 testing images/ Due to lesser amounts of misclassified data, the accuracy of the
proposed model is higher than the others. The confidence level of the pituitary in the case
of MobileNetV2 is the worst in comparison to other tumors. All CNN models perform the
classification of meningioma tumor very well. The majority of the misclassified samples
belong to the “glioma” class which cannot learn as effectively as the other three.

For comparison of different techniques, three important measures have been consid-
ered: precision, recall, and F1-score. All the assessment metrics for all the CNN models
were evaluated from Table 2 and are displayed in Figure 11. All these measures are based
on the following parameters:

True positive (TP) = classified as +ve and sample belongs to the tumor;
True negative (TN) = classified as −ve and sample belongs to healthy;
False positive (FP) = classified as +ve and sample belongs to healthy;
False negative (FN) = classified as −ve and sample belongs to a tumor.
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Figure 10. Confusion matrix of: (a) proposed dense EfficientNet model; (b) ResNet50 model; (c) Mo-
bileNet model; (d) MobileNetV2 model.

Table 2. Class-specific evaluation of brain tumors using different CNN.

Types of
CNN Dense EfficientNet ResNet50 MobileNet MobileNetV2

Different
types of
tumors

Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

No tumor 1 0.98 0.99 1 0.98 0.99 0.98 0.98 0.98 0.93 0.96 0.95

Pituitary
tumor 0.99 1 1 0.97 1 0.99 0.97 1 0.99 1 0.9 0.95

Meningioma 0.96 1 0.98 0.91 0.98 0.94 0.95 0.95 0.95 0.93 0.99 0.96

Glioma
tumor 1 0.97 0.98 0.99 0.9 0.94 0.98 0.94 0.96 0.92 0.95 0.94
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These parameters are calculated from the confusion matrix, which is shown in Figure 10.
Hence, the different measures can be defined as follows:

Accuracy =
(TP + TN)

(TP + FP + TN + FN)
(2)

Sensitivity =
TP

(TP + FN)
(3)

Speci f icity =
TN

(TN + FP)
(4)

Precision =
TP

(TP + FP)
(5)

F1 Score =
2 ∗ (Recall) ∗ (Precision)

(Recall + Precision)
(6)

where Recall is the same as Sensitivity as shown in Equation (2).
It is observed from Table 2 and the analysis graph in Figure 11 that dense EfficientNet

has the highest precision, recall, and F1-score when compared to the other three models.
The pituitary tumor has the best performance in all measurements when compared to
other types of tumors. All the values of precision, recall, and F1-score of pituitary tumors
are quite good. The overall results of dense EfficientNet are excellent. For comparison
purposes, the authors have also considered the recent performance of modified CNN
structure by the different researchers, which is shown in Table 3 analysis and is displayed in
Figure 12. The accuracy, precision, and F1-score of the proposed method are 98.78%, 98.75%,
and 98.75%, respectively, which is better than other comparison methods. As shown in
Table 3, the proposed deep learning segmentation algorithm outperforms state-of-the-art
techniques. Based on Table 3, the authors conclude that dense EfficientNet outperforms
other techniques because deep-learning-based approaches are more efficient and capable
of handling large amounts of data for classification.
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Table 3. Comparison of performance among different deep-learning-based techniques.

Authors Year Dataset Model Accuracy Precision F1-Score

Badza et al. [12] 2020 T1 contrast
brain tumors CNN 96.56% 94.81% 94.94%

Mizoguchi et al. [13] 2020 Brats-2018 3D CNN 96.49% - -

Hashemzehi et al. [14] 2020 T1 contrast
brain tumors CNN and NAND 96.00% 94.49% 94.56%

Díaz-Pernas et al. [15] 2021 T1 contrast
brain tumors Multi-scale CNN 97.00% 95.80% 96.07%

Sajja et al. [18] 2021 T1 contrast
brain tumors Deep-CNN 96.70% 97.05% 97.05%

Proposed method Present T1 contrast
brain tumors Dense EfficientNet 98.78% 98.75% 98.75%

1 
 

 

Figure 12. Comparison of performance among different deep-learning-based techniques. Data
from [12–15,18].

Figure 12 illustrates that all mentioned authors used contrast brain tumors for their
experiments. The proposed dense EfficientNet method has higher accuracy, at nearly 99%,
than the others do.

5. Conclusions

In this paper, the authors have used dense EfficientNet with min-max normalization
that is suitable to classify the different types of brain tumors with 98.78% accuracy, which
is better than other related work using the same dataset. The suggested technique out-
performs existing deep learning methods in terms of accuracy, precision, and F1-score.
This proposed idea can play a prognostic role in detecting tumors in the brain. It has been
observed that glioma has the lowest detection rate with an F1-score of 98% and pituitary
has the highest rate with an F1-score of 100%. Among deep learning methods, dense CNN
has performed more rapidly, with higher classification accuracy. This method is suitable to
locate and detect tumors easily.

Further, a better pre-processing technique can be applied with fuzzy thresholding
concept or nature-based algorithms for early diagnosis of dangerous medical imaging
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disease by adapting more layers to segment the different medical image segmentation. Our
future research will concentrate on minimizing the number of parameters and computing
time required to run the suggested model without sacrificing performance.
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