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Abstract: As one of the most important water conservancy projects, reservoirs use water resources to
achieve essential functions, such as irrigation, flood control, and power generation, by intercepting
rivers. As climate extremes and global warming increase, the world’s water reserves are being tested,
and reservoir operators are being challenged. This paper investigates the optimal allocation of shared
resources for hydropower to achieve rational decisions for reservoir operations. Firstly, a power
resource model is constructed based on the real hydroelectric generator theory. Furthermore, based
on the established power resource model combined with the influence of weather type and multi-
region heterogeneous demand, this paper constructs a multi-objective hydropower shared resource
allocation optimization model, with the lowest hydropower resource supply cost and the shortest
time hydropower resource supply time as the optimization objectives. Secondly, for the problem that
the traditional population intelligence algorithm easily falls into the local optimum when solving
complex problems, the improvement of the MOPSO algorithm is completed by introducing the Levy
flight strategy and differential evolution. Finally, simulation experiments were carried out, and
cutting-edge algorithms, such as the GA algorithm and WOA algorithm, were selected for simulation
comparison to verify the effectiveness of the constructed model and algorithm. The simulation
results show that the research in this paper can contribute to effective decision-making for reservoir
operators and promote intelligent reservoir operation.

Keywords: resource decision optimization; hydropower plant operation; multi-objective optimization;
MOPSO algorithm

MSC: 90-XX

1. Introduction

In recent years, the international pressure of supply and demand of coal, oil, and natu-
ral gas has increased and prices have continued to rise, and many countries in Europe and
the United States and many countries such as China, India, and Brazil have experienced en-
ergy and power shortages of varying degrees [1], while hydropower generation, as a clean
energy source, has an important position in solving the problem of power energy short-
age [2]. Reservoir hydropower management is the application of reservoir capacity to meet
the water needs of cities, while relying on water levels to generate electricity in a planned
manner, according to the tasks undertaken by the reservoir and the prescribed scheduling
principles, while ensuring the safety of the dam. The optimization model of reservoir
management is a constrained nonlinear programming problem, and numerous solution
methods have been explored at home and abroad, including traditional algorithms, such
as linear programming, nonlinear programming [3], stepwise optimization algorithms [4],
dynamic programming [5], and their improvement algorithms, as well as intelligent evo-
lutionary algorithms, such as genetic algorithms [6], particle swarm algorithms [7], and
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ant colony algorithms [8]. With the rapid development of population intelligence, all the
above problems have been solved; Dehghani, M et al. completed the prediction of reservoir
power generation based on the gray wolf algorithm combined with an adaptive neural
network [9]; Hu, H et al. solved the problem of multi-stage scheduling of hydropower by
decomposing the quantum behavior of the particle swarm optimization algorithm [10]. The
Particle Swarm Optimization algorithm is known for its easy implementation [11-15] and
the improved LDMOPSO algorithm has superior performance, which makes it stand out
among intelligent algorithms. In the field of reservoir, water level modeling, articles [16,17]
introduce a water level modeling method for sustainable reservoirs and the water level in
the TGR region; the effects of hydropower turbines on reservoir benefits are discussed lin-
early and nonlinearly in articles [18,19], respectively; articles [20,21] discuss the modeling
of water supply and demand and cleverly apply intelligent technological products. This
paper proposes an improved chaotic evolutionary multi-objective particle swarm algorithm,
combined with reservoir decision optimization, to achieve multi-objective planning with
the lowest reservoir management cost and the highest social benefit and compares the
proposed algorithm with the frontier algorithm, and the results show that the algorithm
has faster convergence and higher optimization-seeking accuracy. It can provide technical
support for giving full play to the comprehensive benefits of reservoirs and improving the
intelligent management capability of hydropower plants.

2. Materials and Methods
2.1. Background

The water supply from dams and reservoirs is decreasing in many regions due to
extreme weather conditions, and water levels in many lakes around the world are at historic
lows due to water shortages. Extreme heat and drought conditions are putting significant
pressure on natural resource management, and it is now urgent to address the issue of
hydropower resource management promptly.

2.2. Overview of Hydropower Management Strategies for Reservoir Systems

The reservoir system that contains hydroelectric turbines undertakes two main system
functions; on the one hand, the hydroelectric turbines rely on water level generation to
provide the share of hydroelectric power generation in the power supply demand, and
on the other hand, to meet the water demand of the cities. Based on satisfying the above
two demands, minimizing the management cost of the reservoir system, and maximizing
the benefits of the reservoir system, this paper firstly establishes a water level replenishment
model of the reservoir system based on the dynamic changes in the water level of the
reservoir system, and then this paper establishes a multi-objective optimization model in
terms of the maintenance, and benefits of the reservoir management system, firstly based
on the established water level replenishment model of the reservoir system. Based on the
water level replenishment model of the reservoir system, the reservoir system management
model with the objective function of minimizing the management cost is established by
considering the maintenance cost of water resources, the equipment cost of electricity
generation, and the maintenance cost of electricity storage; furthermore, based on the
queuing theory model and the proposed social satisfaction index, the annual net income of
the reservoir system, the annual income of hydroelectric power generation of the reservoir
system, the annual income of water resources of the reservoir system, the annual freight
of water resources of the reservoir system, the annual freight of imported external water
resources, and the annual freight of water resources of the reservoir system are considered.
The annual freight of water resources, the annual cost of introducing the consumption of
external water resources and the aspect of management cost are also considered, and a
reservoir system efficiency model with maximized comprehensive benefits as the objective
function was established.
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2.3. Model Assumptions

1.

The surface area of the reservoir is smooth and equal to the bottom area of the reservoir,
the projection of the water surface on the bottom of the reservoir coincides exactly
with the bottom, and the side walls of the reservoir are smooth surfaces that are
perpendicular to the bottom of the reservoir.

The actual daily water level of the reservoir is taken as the height of the water level
after the change from the previous day, and the influence of the water level on the rele-
vant variables due to the process of daily change is ignored in the model establishment.
The natural loss of water storage in the reservoir is only evaporation loss, ignoring
the loss of water storage caused by other factors and the effect of temperature change
on the coefficient of the Antony equation.

The installation location of the reservoir’s power generation water turbines is located
below the permitted water level height, each reservoir utilizes the same energy con-
version capacity of the water turbines and the same height from the bottom of the
reservoir, the water turbines can store the excess energy, and the number of water
turbines in each reservoir is the same, ignoring the loss of power supply.

The initial water level height of the day is used as the calculated value of each
parameter index, ignoring the dynamic change in water level during the day on water
level management and hydroelectric power generation.

The transportation cost of water resources diverted by the reservoir system to the
same waterworks each time is independent of the amount diverted, ignoring the
losses in the process of transporting water resources from the reservoir system to the
water company.

2.4. Symbol Description

Table 1 shows the description of the main mathematical symbols.

Table 1. Description of the main mathematical symbols.

Set Cardinality Symbol Description
res Set the cardinality of the number of reservoirs
ci Set cardinality of the number of cities requiring water supply
day Set cardinality of the number of days in the year
num Set cardinality of the total number of water turbines
Parameter Symbol Description
i The i-th reservoir (0 < i < res)
j Day j of the year
S; The water surface area of the i-th reservoir
Rins Height of the water turbine from the bottom of the lake
Vij The volume of day j of the ith reservoir
hij The available water level height on day j of the ith reservoir
Th;; The actual water level on day j of the ith reservoir
lh Minimum allowable water level height
Vo, The initial volume of the i-th reservoir
AV The amount of water level change on day j of the ith reservoir
Sujj External water supply on day j of the i-th reservoir
Pry; Precipitation replenishment on day j of the i-th reservoir
Ev;; Evaporation loss on day j of the i-th reservoir
E;j Hydroelectric power generation on day j of the i-th reservoir
Em; Electrical energy storage on day j of the i-th reservoir
Eg; Total demand for electricity generated by hydroelectricity in each city on day j
Qa; The amount of water released on day j of the i-th reservoir
hst Maximum permissible water level height
Decision variable Symbol Description
Rins Installation height of hydropower turbine from the bottom of the reservoir

U Average daily number of external water diversions from a single reservoir
PQ Water replenishment consumption of water plants




Axioms 2022, 11, 493

40f12

2.5. Water Level Replenishment Model for Reservoir Systems

Based on the daily variation in the dam water level and Table 1, the water level re-
plenishment model for hydropower dams was established by considering precipitation
replenishment, water evaporation, and external water demand for reservoir water con-
sumption as follows: Equation (1) represents the calculation of the volume of the jth day
of the ith reservoir; Equation (2) is the calculation of the available water level height of
the reservoir, where the minimum allowable water level height / hi,]- denotes the minimum
height allowed for the reservoir water level; Equation (3) is the change in the actual water
level height of the reservoir; Equation (4) represents the calculation of the change in water
level of the jth day of the ith reservoir; Equation (5) represents the equation for calculating
the evaporation loss of the reservoir, where pm; ; denotes the daily average saturated vapor
pressure of water in the reservoir on day j of reservoir i, p; ; denotes the actual daily average
hydraulic pressure of water on the surface of the reservoir on day j of reservoir i, vm; ;
denotes the daily average wind speed on day j of reservoir i; Equation (6) is the Antoni
equation for calculating the daily average saturated vapor pressure of water in the reservoir
on day j of reservoir i, T ; is the temperature on day j of reservoir i; Equation (7) is the
external constraint of water supply, when the available water level height of the reservoir
is greater than or equal to 0, with no outside water supply; when the available water level
height of the reservoir is lower than 0, that is, the actual water level height of the reservoir
is lower than the minimum allowable water level height, there is a need to use the outside
water supply, and the added water supply should restore the water level to the minimum
allowable water level height; Equation (8) represents the actual water level height of the
reservoir limit, that is, the actual water level of the reservoir height should be maintained
below the maximum allowable water level height.

Vij = Sihi; (1)
hyj = Thi; — Ih @)
j
Vo, + Y AVi,n
Ty = —— ot o
1
AVij = Sujj+Prjj — Ev;; — Qa; 4)
Ev;j = 5-2(Pmi,j — Pi,j) (1+ 0-13507711‘,]')51‘ (5)
1657.46
1 i+ =1007 — ———
gpmi = 1007 = 4 a7 02 ©)
0 if h,-,]- >0
S.t'g Su1,] = { Sz|h1,]| Zf hi/]’ <0 (7)
o Thi,]' Thi,]' < hst
Thl’] o { hst Thl"]' > hst ®)

2.6. Reservoir System Management Model

Based on the previously mentioned working assumptions about the hydroelectric
turbine and the developed complementary model of the reservoir, a height planning model
for the installation of the hydroelectric turbines that minimizes the maintenance costs was
developed. Equation (9) is the hydroelectric turbine energy conversion model, where Pe; ;
denotes the output power of a single hydroelectric turbine at day j of the ith reservoir, Pe; j 1
denotes the output power of a single hydroelectric turbine at day (j + 1) of the ith reservoir,
t denotes the daily working time of the hydroelectric turbine,  denotes the electrical energy
conversion efficiency of the hydroelectric turbine; Equation (10) denotes the electrical
energy storage of hydroelectric power; Equation (11) denotes the relationship between the
output power of hydropower turbine and the height drop of water level, « is the relationship
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coefficient; Equation (12) is the calculation of the total demand of electric energy generated
by hydropower in each city, where Et, ; denotes the total demand of electric energy in
each city, ¢ is the proportion of hydropower generation to the total demand of electric
energy; Equation (13) is the objective function of minimizing the management cost, where
cp is the daily maintenance cost of maintaining the unit volume of water resources, c; is
the maintenance cost of the equipment required to generate a unit of electric energy from
hydroelectric power, and ¢’y is the daily storage management cost required to store and
manage a unit of electric energy; Equation (14) is the constraint of electric energy storage,
i.e., the daily storage of electric energy should be greater than 10% of the daily demand for
hydroelectric power; in this model, k;,; is the decision variable.

num (Pejj+ Pejjq
E; ;= : -
i = P res < 2 ! ©)
j
Emij =) (Ein — Eqn) (10)
n=1
num
Pei,]- = DCK(T’/II'J — hins) (11)
ci
qu = Z Etn/]'(l) (12)
n=1
day res day res day res
minZ; =co) Y SiThij+c1) Y Eij+ci) Y Emj; (13)
j=1i=1 j=1i=1 j=1i=1
res
st.g ) Eij—Eqj > 0.1Eg; (14)
i=1

2.7. Water Demand Service Model Based on Queuing Theory

In the actual working situation of water supply, the water resources of reservoirs are
supplied to the tap water plants in each city through pipeline transportation. Assuming
that the reservoir system will set a supplementary consumption PQ for each tap water
plant, that is, after each consumption of PQ water resources by the tap water plant, the
reservoir will draw out PQ water resources to the tap water plant to replenish the demand
of the tap water plant, and the tap water introduction demand satisfies Poisson distribution,
based on the M/M/S model of queuing theory, the following formula can be obtained.

300
;1 Qam,n
A= 300ciPQ (15)
A
Ly = Ly +resp (17)
res -1
L, = el mz_ll()‘> L1 1 <)‘> (18)
T rest(1—p)? | 2 K \p) rest1—p\p
-1
(resp)?o ["S=11 /A 1 1 [A\™
Lt:ﬁ Z F — +@i — +7’€Sp (19)
res!(1—p)” | k=0 H P\H
1
Ws = m (20)

S.t.2 Umin <1 < Umax (21)
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PQmin S PQ S PQmax (22)

In Equations (15)-(20), A is the average daily number of introduced demands at the
waterworks, u is the average daily number of external water diversions from a single
reservoir, p is the service intensity of the reservoir system, Lq, Lt, and W; are the total
number of demands to be introduced at the waterworks, the total number of demands
being introduced and to be introduced at the waterworks, and the waiting time in the
demand queue for the average daily introduced demands at one waterworks, respec-
tively; Equations (21) and (22) are the constraints of the queueing theory model, where
Equation (21) is the limit of the average daily number of external water drawdowns from a
single reservoir, and Equation (22) is the limit of the supplementary consumption that the
waterworks will set.

Based on the queuing theory model established, it is known that the smaller the service
intensity p of the reservoir system, the shorter the average daily introduction demand of one
tap water plant waiting time W; in the demand queue, and the larger the supplementary
consumption PQ, the higher the planning efficiency of the reservoir system, and the higher
the corresponding social satisfaction, so the social satisfaction index is proposed as follows:

Y
=

5 (23)

2.8. Model for Maximizing the Benefits of Reservoir Systems

In the actual working environment, the costs consumed by the reservoir system are
the delivery cost of water resources, the subscription cost of external water supply, the
maintenance cost of the reservoir system, and the benefits are the income from the supplied
hydropower resources and the income from water resources. Combined with the social
satisfaction indicators proposed in the previous section, a model for maximizing the benefits
of reservoir water resources is established as follows:

Zi=Ze+Ze—Zg—Zs (24)
day
Ze = CZZ Eg; (25)
i=1
300 ci
Ze=c3) ) Liw;Qa (26)
n=1i=1
ci res
L X dug
q=m=ln=1 (27)
cires
Zy = cydayLd (28)
res 300
Sut = Z Z Sul’,]‘ (29)
i=1j=1
Zs = C5Sth (30)
7y = 87, (31)

Equation (24) is the calculation of the annual net income of the reservoir system, where
Zt, Ze, Z¢, L4, Zs are the annual net income of the reservoir system, the annual income
of hydroelectric power generation of the reservoir system, the annual income of water
resources of the reservoir system, the annual freight of water resources of the reservoir
system, and the annual cost of introducing the consumption of external water resources,
respectively; Equation (25) is the calculation of the annual income of hydroelectric power
generation of the reservoir system, where c; is the selling price per unit of electricity of
hydroelectric power generation; Equation (26) is the annual revenue of water resources
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of the reservoir system, where c3 and w; are the unit price of water resources and the loss
rate, respectively; Equation (27) is the average distance of water resources drawn from
the reservoir to the water company each time; Equation (28) is the annual freight of water
resources of the reservoir system, where c; is the cost of transporting water resources per
unit distance; Equation (29) is the calculation of the supply of external water resources,
where Su; is the annual supply of external water resources; Equation (30) is the calculation
of the annual cost of introducing the consumption of external water resources, where cs5
is the unit selling price of external water resources; Equation (31) is the calculation of the
benefit considering social satisfaction, where Zj is the benefit of the reservoir system; in the
model, 4 and PQ are the decision variables.

Equation (32) is the total formulation of the comprehensive social and economic
benefits of the reservoir obtained by substituting each variable according to Equation (24).

ci res
ci 300 ci 300 mzl nzl dm n res 300
maxZy = ZZ Ws CZZ Eqi+c3 ) Y, Qappn — cadayL e sy ) Sujj (32)

= m=1n=1 i=1j=1

2.9. Standard MOPSO Algorithm

In the particle swarm algorithm, each particle is an alternative solution and changes
its position in the d-dimensional solution space, according to the global optimum and
individual optimum values to continuously approach the optimal solution. The velocity
and position updating strategies are shown in Equations (33) and (34).

vi(k +1) = wo;(k) + c171 (X ppest (k) — xi(k)) + cara(xgpest (k) — xi(k)) (33)

xilk+1) = x:(K) + o,k + 1) (34)

where i is the particle number; k is the current iteration number; prgsti(k) is the best
position of particle i up to the kth generation; x g5 (k) is the best position of all particles up
to the kth generation, and our individual and global learning factors, which are generally
between 0 and 2; r; and r; are the random constants in [0, 1]; w is the inertia weight, which,
in order to regulate the exploration and mining ability of the algorithm, often uses a linearly
decreasing value w according to the number of iterations k. The formula is as follows:

Wmax — Wi
w(k) = Wmax — — T (35)
kmax
where Wmax and wpin are the upper and lower limits of inertia weights; kmax is the
maximum number of iterations.

2.10. Improved MOPSO Algorithm Based on Levy Flight Strategy and Differential Evolution

The Levy flight strategy is a kind of random wandering that favors a larger search
step, and its basic characteristic is the combination of a short-distance flight and random
long-distance flight, and its “heavy-tailed” distribution normal distribution structure can
build a stable optimization system. The “heavy-tailed” distributed normal distribution
structure is able to stabilize the optimization system, and its pose method is as follows:
| Xiiter Hrand; X flijrer X (M iter — Xijiter), rand; > AP jrer
Xiiter . . (36)
X;iiter X (1 + levy(A)), otherwise

where levy(A) denotes a flight movement that obeys the Levy distribution and which
satisfies the following equations:

u

levy(A) ~ 0.01 * o[ P

(37)
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u~ N(0,02),0 ~ N(0,02) (38)
1
T(1+B)sin(Zf) |7
UM = ( + ﬁ) SIH(BEI) /UU = 1 (39)
r(gf)p«2=

The differential evolution strategy is introduced to enhance the global search capability
by crossover, variation, and selection operations in the differential evolution (DE) algorithm
to improve its convergence speed and search accuracy.

(1) Variation

Two search agents in the population are randomly selected to carry out the transfer of
information between search agents, as shown by the following equation:

Ojiter+1 = Xrl,iter +Fx (er,iter - xr3,iter) (40)

where v; j1or11 is the mutated population, F € [0,2] is the mutation operator; x, jt., and
X3 iter are randomly selected search agents that differ from each other.

(2) Crossover

The partial replacement of the two parent structures based on the crossover probability
is performed by the following equation.

Vijiter, rand < CR
Uji i = ’ 41
ij iter+1 { Xij iter,rand > CR (41)
where CR € [0, 1] is the crossover operator, rand is the random number generated between
[0,1], and u;j 1 is the new population generated by the crossover.

(3) Select

The search agent needs to be judged by the fitness function value after the mutation
and crossover operations to carry out the retention of the original population or the new
population generated by the crossover. The selection equation is as follows:

X — Ui iter+1s fitness(ui,iter+l) < fitness(xrl,iter+1) (42)
iter+1 Xy1,iter+1, Otherwise

The specific steps of the hybrid differential particle swarm algorithm (LDMOPSO)
based on the Levy flight strategy are as follows:

(1) Initialize the particle swarm populations X; jter, Ui iter+1, Wijiter+1, Miiter, S€t the initial
parameters, and define the decision variables.

(2) Randomly select a particle individually and calculate the initial fitness function value.

(3) Ifrand > AP, s, then execute Equation (34); if rand < AP, j;,,, then execute Equation (36).

(4) Calculate and record the new position fitness value and update the particle’s new
memory position #; jter41.

(5) Perform variation, crossover, and selection operations on the current search agent
according to Equations (40)-(42), and record the target fitness function value fitness.

(6) Record the total reservoir benefit I according to Equation (32).

(7)  Output the optimal solution if the maximum number of iterations is reached, and con-
tinue to execute steps 2~6 if it is not reached, until the iteration reaches the maximum.

In summary, the flow chart of the improved LDMOPSO algorithm is shown in Figure 1.
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Figure 1. Implementation of the LDMOPSO algorithm.

3. Results

In this paper, the algorithm programming tool is MATLAB R2021a, the operating
system is Windows 10, the computer memory is 16G, and the CPU is Intel i5-1135G7.

3.1. Parameter Selection and Adaptation Convergence

The algorithm performance is highest when N = 50, AP = 0.1, and fI = 2 are taken.
Therefore, the parameters of the LDMOPSO algorithm are as follows: the maximum number
of iterations is itermax = 100, the population size is N = 50, the perceptual probability is
AP = 0.1, the flight distance is fI = 2, the initial variation operator is Fy = 0.4, and the
crossover operator is CR = 0.1. A total of 50 simulation experiments were conducted and
the improved algorithms were compared with the more popular algorithms in a side-by-
side manner. The average objective function curves of each of the four algorithms over
50 runs are shown in Figure 2.

3.2. Water Level Model Simulation

Based on different combinations of water level M of reservoir A and water level P of
reservoir B, which can meet the demand for electricity and water in each state, we use the
water level height of 50 m as a measurement scale to calculate the results and obtain the
results of water withdrawal from the two reservoirs, as shown in the Figure 3.
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Figure 2. The average objective function convergence curves of each of the 4 algorithms over 50 runs.
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Figure 3. Water level change curves of two reservoirs.

3.3. Optimization Results and Comparison

The iterative optimization of the objective function is shown in Figure 4 and the
running time and optimization results of the four algorithms derived from the data in

Table 2 are shown in Table 3.

Iteration 100 , Number of non-dominated solutions in the archives = 74

Number of feasible solutions=100

0.48 T
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0478 % +  Non-dominated solutions in the archives
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0.468 -
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Objective function 2: Social benefits

0.462 - .

He

0.46 . . . . .
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Obijective function 1: Economic Costs

Figure 4. Iterative optimization of objective functions.
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Table 2. Comparison of water level combination data when meeting water and electricity demand.

Reservoir A Reservoir B C (City)
M P
Pumping Capacity = Time* Date*  Day* Pumping Capacity Time* Date* Day* Obtain Water Volume
200 53.1446 30 15 43 37.2515 24 22 1.1 47.1594
150 250 45.6665 24 23 0.4 43.0118 22 15 2.9 45.4416
300 31.1520 26 22 15 50.6133 18 16 0.7 38.5286
200 12.3629 18 14 2.4 36.0509 25 19 22 5.1771
200 250 13.1961 18 13 1.1 43.0118 22 14 34 12.9712
300 11.9846 18 15 0.7 52.4506 18 14 25 21.1984
200 16.7230 25 18 14 36.3123 25 21 19 9.7986
250 250 16.5363 18 14 17 43.3025 22 17 1.4 16.6021
300 17.1903 22 17 2.3 51.4292 18 16 0.9 28.3828
200 21.9575 17 13 14 36.5512 25 23 0.3 15.2720
300 250 21.8460 21 21 0 43.5932 22 22 0 22.3025
300 21.6229 18 21 0 52.5714 18 18 0 31.1376

* Data from the Internet.

Table 3. Comparison of the operation process of the four algorithms.

Optimal Solution Optimization Final Value (USD) Running Time (s)
LDMOPSO 2434.58 17.92
GA 2330.62 23.63
WOA 2403.66 19.45
AG 2380.74 22.14

4. Discussion

By comparing with the other three algorithms, the LDMOPSO algorithm has a strong
advantage in search capability and running time, especially since the worst solution in
50 runs is significantly higher than the other algorithms, and it is not easy to fall into the
local optimal solution. Based on a real environment of a reservoir for water level model
simulation, the optimization of social benefits by the LDMOPSO algorithm compared with
the other five algorithms resulted in an average increase in reservoir benefits by 2434.58.
Therefore, the LDMOPSO algorithm can find a better strategy for solving the hydropower
pipe resource optimization problem, which greatly reduces resource consumption and
improves the comprehensive benefits.

5. Conclusions

This paper develops a multi-objective mathematical model with the minimum re-
source management cost and the highest social benefit. Based on the multi-objective
particle swarm algorithm (MOPSO), the Levy flight strategy and differential evolution
strategy are introduced to improve the global search capability of the particle swarm
algorithm to solve this model. Through simulation experiments, the established model
and algorithm are compared with the GA algorithm, WOA algorithm, and AG algorithm
after 50 calculations, respectively, and the analysis of experimental results shows that the
established algorithm has a faster convergence speed compared with other algorithms,
and has stronger global search ability, which does not easily fall into the local optimum,
and can effectively improve the efficiency of the reservoir system. It provides a reference
for the decision optimization of the reservoir system for hydropower management, but
there are still problems of high computational complexity and low generality, and future
research should focus on considering the decision optimization under a variety of complex
situations to improve the generality of the algorithm.
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