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Abstract: In this paper we investigate a forced perturbed non-instantaneous impulsive model. Firstly,
we prove the existence and uniqueness of an almost periodic solution for the model considered by
the Banach contraction principle. Secondly, we prove that all solutions converge exponentially to the
almost periodic solution. In other words, the solution of the model considered is exponentially stable.
Finally, we provide some simulations to show the effectiveness of the theoretical results.
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1. Introduction

Differential equations have been used to simulate many phenomena in the fields
of life sciences, biology, physics and engineering sciences, such as population dynamics,
epidemiology, pharmacokinetics and geophysical fluid flows [1–4].

However, these systems are often seriously disturbed by short-term fluctuations in the
environment. To obtain a more accurate description of such systems, we need to consider
impulsive differential equations. In recent years, impulsive differential equations have
been intensively investigated [5–7]. The investigation of these problems has important
guiding significance for the exploitation and control of biological resources.

To describe some biological systems that are subjected to forced perturbation, Stamova
and Stamov [8] proposed a forced perturbed model with impulsive effects at fixed moments
as follows: {

w′(ι) = A(ι)w(ι) + g(ι) + µW(ι, w(ι), µ), ι 6= ιi,
∆w(ιi) = Biw(ιi) + gi + µWi(w(ιi), µ), i ∈ N+,

(1)

where ι ≥ 0, ιi (0 ≤ ι1 < ι2 < · · · ) denotes the time, which comprises impulses; w′ denotes
the first differential of the dependent variable; w ∈ PC([0, ∞;Rn

+); A ∈ C([0, ∞),Rn×n);
∆w(ιi) = w(ι+i ) − w(ι−i ); w(ι+i ) denotes the right limits of w(ιi) and w(ι−i ) denotes the
left limits of w(ιi); PC([0, ∞)Rn) := {w : [0, ∞) → Rn : w ∈ C((mi, mi+1],Rn); w(m−i )
and w(m+

i ) exist; w(m−i ) = w(mi); i ∈ N+}, g ∈ C([0, ∞)Rn), C([0, ∞],Rn) represents
the space that is made up of all continuous functions from [0, ∞] to Rn; µ ∈ M ⊂ R;
W : [0, ∞) × Rn

+ ×M → Rn; Bi ∈ Rn×n; gi ∈ Rn; Wi : Rn
+ ×M → Rn, i ∈ N+;

x = (x1, x2, · · · , xn)>, N := {0, 1, 2, 3, · · · } and N+ := N/{0}.
Then, Stamova and Stamov demonstrated the existence and uniqueness of an almost

periodic solution (AP) of model (1) and the exponential stability of the solution.
However, most systems do not return to normal immediately after the impulses and

stay active for a limited period of time. Therefore, Hernández et al. [9] firstly introduced
the theory of non-instantaneous impulses and established the existence of solutions for
a class of impulsive differential equations. After that, Wang et al. [10–12] generalized
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the non-instantaneous impulsive model and carried out more in-depth research on non-
instantaneous impulsive differential equations. In general, there are no impulses that occur
instantaneously, that is to say, they are non-instantaneous, even if the event occurs over a
short period of time. Therefore, it is essential to consider a class of differential equations
with non-instantaneous impulses.

According to the actual condition, we consider the following model (2), which is
model (1) including non-instantaneous impulses:

w′(ι) = A(ι)w(ι) + g(ι) + µW(ι, w, µ), ι ∈ (li, mi+1], i ∈ N,
w(m+

i ) = Biw(m−i ) + gi + µWi(w(m−i ), µ), i ∈ N+,
w(ι) = Biw(m−i ) + gi + µWi(w(m−i ), µ), ι ∈ (mi, li], i ∈ N+,
w(l+i ) = w(l−i ), i ∈ N+,

(2)

where 0 = l0 < m1 < l1 < m2 < l2 < · · · < mi < li < mi+1 < · · · .
Let w(ι, µ) = w(ι; ι0, w0, µ) be the solution of model (2) with the initial condition

w(ι+0 , µ) = w0, w0 ∈ Rn
+, µ ∈M.

Periodic phenomena are widespread natural phenomena [13], but most of the changes
are not integer time periods. Therefore, we should consider parameters that are AP in
the natural environment. Many scholars have demonstrated that it is more realistic to
adopt an AP hypothesis in the process of AP study, when taking into account the impact of
environmental factors, and this has certain ergodicity [14–18]. Therefore, a series of studies
on AP solutions of model (2) are carried out in this paper.

The rest of this paper is arranged as follows. In Section 2, we provide some of the
necessary preliminaries. In Section 3, we prove the existence and uniqueness of the AP solu-
tion to model (2). In Section 4, we investigate that the solution of model (2) is exponentially
stable. In Section 5, some simulations are given to support our theoretical results.

2. Preliminaries

For the sequences {mi} and {li}, i ∈ N+, assume lim
i→+∞

mi = +∞, lim
i→+∞

li = +∞ and

li−1 < mi < li < mi+1, let ‖j‖ =
(

n
∑

i=1
j2i

) 1
2

for j = (j1, j2, · · · , jn)>. Let λmax(·) be the largest

eigenvalue of (·) and ‖X‖ =
√

λmax(X>X) for the matrix X. The space PC([0, ∞),Rn)
equipped with the norm ‖w‖PC = sup

ι∈[0,∞)

‖w(ι)‖. It is obvious that (PC([0, ∞),Rn), ‖ · ‖PC)

is a Banach space.
Set

Bh(a) = {x ∈ Rn, ‖x− a‖ < h}, h > 0, a ∈ Rn.

Definition 1 (see [19]). For the sequences {Mi}i∈N+ , Mi∈Rn , if for any i ∈ N+ there exists ε > 0
and integer p such that the following inequality holds

‖Mi+p −Mi‖ < ε, (3)

then p is called the ε-AP of the {Mi}i∈N+ , Mi∈Rn .

Definition 2 (see [20]). {Mi}i∈N+ , Mi∈Rn are called AP sequences if for any ε > 0 there exists a
relatively dense set of its ε-AP.

Definition 3 (see [19]). The w ∈ PC([0, ∞),Rn) is called an AP function if all of the conditions
are met as follows

(i) {mj
i}, i, j ∈ N+ are uniform AP sequences, where mj

i = mi+j −mi.
(ii) For any ε > 0, there exists a number δ = δ(ε), which is positive such that if ι1 and ι2 are

the points in the same continuous interval and |ι1 − ι2| < δ, then ‖w(ι1)− w(ι2)‖ < ε.
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(iii) For any ε > 0, there exists a relatively dense set Γ of ε-AP such that if ϑ ∈ Γ, then
‖w(ι + ϑ)− w(ι)‖ < ε for all ι ∈ [0, ∞) satisfying the condition |ι−mi| > ε, i ∈ N+.

In order to study the AP property of model (2), we propose some assumptions
as follows.
(H1) The sequences {l j

i}, l j
i = li+j − li and {mj

i}, mj
i = mi+j −mi, i, j ∈ N+ are uniformly

AP and 0 < li −mi ≤ θ < +∞, 0 < ς ≤ mi+1 − li ≤ θ̄ < +∞, i ∈ N+.
(H2) The matrix function A ∈ C([0, ∞),Rn×n) is AP in the sense of Bohr.
(H3) The sequence {Bi}, i ∈ N+ is an AP sequence.
(H4) The function g ∈ C([0, ∞),Rn) is AP.
(H5) {gi}, i ∈ N+ is an AP sequence.
(H6) The function W ∈ C([0, ∞) × Rn

+ ×M,Rn) is AP in ι uniformly with respect to
(w, µ) ∈ Rn

+ ×M and Lipschitz continuous with respect to w ∈ Bh with a Lipschitz con-
stant L1 > 0 such that

‖W(ι, w, µ)−W(ι, w̃, µ)‖ ≤ L1‖w− w̃‖, w, w̃ ∈ Bh,

for any ι ∈ [0, ∞) and µ ∈M.
(H7) The sequence of functions {Wi(w, µ)}, i ∈ N+, Wi ∈ C(Rn

+ ×M,Rn) is AP uniform
with respect to (w, µ) ∈ Rn

+×M and the functions Wi are Lipschitz-continuous with respect
to w ∈ Bh with a Lipschitz constant L2 > 0 such that

‖Wi(w, µ)−Wi(w̃, µ)‖ ≤ L2‖w− w̃‖, w, w̃ ∈ Bh,

for i ∈ N+, µ ∈M.

Lemma 1 (see [19]). Let conditions (H1)–(H5) hold. Then, for each ε > 0, there exists ε1,
0 < ε1 < ε, a relatively dense set Γ of real numbers and a set Q of integers such that the following
relations are fulfilled.
(a) ‖A(ι + ϑ)− A(ι)‖ < ε, ι ∈ [0, ∞), ϑ ∈ Γ;
(b) ‖g(ι + ϑ)− g(ι)‖ < ε, ι ∈ [0, ∞), |ι−mi| > ε, |ι− li| > ε, i ∈ N+;
(c) ‖Bi+q − Bi‖ < ε, ‖gi+q − gi‖ < ε, q ∈ Q, i ∈ N+;
(d) |lq

i − ϑ| < ε1, |mq
i − ϑ| < ε1, q ∈ Q, ϑ ∈ Γ, i ∈ N+.

Lemma 2 (see [8]). Assume that conditions (H1), (H4) and (H5) hold, then there exists a positive
constant C such that

max

(
sup

ι∈[0,∞)

‖g(ι)‖, sup
i∈N+

‖gi‖
)
≤ C.

Denote the number of impulse points mi in the interval (s, ι) as k(ι, s).

Lemma 3 (see [19]). If the sequences {mj
i}, i, j ∈ N are uniformly AP, then we can obtain

(i) There exists a constant ρ > 0 such that sup
t→+∞

k(ι+t,ι)
t = ρ, which is uniform with respect

to ι > 0.
(ii) For any p > 0, there exists N, which is a positive integer such that the number of elements

in the sequence {mi} on each interval of length p does not exceed N. We can choose N ≥ ρ.

Definition 4. The model
w′(ι) = A(ι)w(ι) + g(ι), ι ∈ (li, mi+1], i ∈ N,
w(m+

i ) = Biw(m−i ) + gi, i ∈ N+,
w(ι) = Biw(m−i ) + gi, ι ∈ (mi, li], i ∈ N+,
w(l+i ) = w(l−i ), i ∈ N+,

(4)
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is said to be a generating model of model (2).

Consider 
w′(ι) = A(ι)w(ι), ι ∈ (li, mi+1], i ∈ N,
w(m+

i ) = Biw(m−i ), i ∈ N+,
w(ι) = Biw(m−i ), ι ∈ (mi, li], i ∈ N+,
w(l+i ) = w(l−i ), i ∈ N+.

(5)

Let w(ι) =W(ι, ι0)wι0 , 0 ≤ ι0 ≤ ι represent the solution of model (5) with w(ι0) = wι0 ,
whereW(ι, ι0) is the Cauchy matrix of model (5), which can be looked up in [21].

Lemma 4 (see [21]). Assume that (H1)–(H3) hold, the Cauchy matrixW(ι, ι0) of model (5) is
exponentially stable and ‖W(ι, ι0)‖ ≤ Ξe−Υ(ι−ι0), Ξ ≥ 1, Υ > 0.

Lemma 5 (see [21]). For any ε > 0, 0 ≤ ι0 < ι, |ι− mi| > ε, |ι− li| > ε, |ι0 − mi| > ε and
|ι0 − li| > ε, i ∈ N+, there exists a constant K > 0 and a relatively dense set of Γ of ε-AP such that

‖W(ι + ϑ, ι0 + ϑ)−W(ι, ι0)‖ ≤ εKe−
1
2 Υ(ι−ι0), ϑ ∈ Γ.

3. Existence and Uniqueness of Almost Periodic Solution

In this section, we study the existence and uniqueness of a positive AP solution for
model (2).

We propose the condition as follows.
(H8) There exists a positive constant L such that

max

 sup
ι∈[0,∞)

(w,µ)∈Rn
+×M

‖W(ι, w, µ)‖, sup
i∈N+

(w,µ)∈Rn
+×M

‖Wi(w, µ)‖

 ≤ L.

Theorem 1. Assume that (H1)–(H8) hold, model (2) has a unique positive AP solution if

|µ|Ξ
(

L1

Υ
+ N1L2

)
< 1, (6)

where Ξ and Υ are given in Lemma 4.

Proof. Let N1 = sup
ι∈[0,∞)

k(ι,0)
∑

i=1
e−Υ(ι−m+

i ) < +∞, N2 = sup
ι∈[0,∞)

k(ι,0)
∑

i=1
e−

Υ
2 (ι−m+

i ) < +∞ and

Ω := {w : w ∈ PC([0, ∞), Rn
+), w is AP (‖w(·+ ϑ)−w(·)‖PC < ε, ϑ ∈ Γ) and ‖w‖PC ≤ C},

where Γ is mentioned in Lemma 1, C = Ξ(C+ |µ|L)
(

1
Υ + N1

)
.

For li < ι < mi+1, i ∈ N, we define the operator T,

(Tw)(ι) =
k(ι,0)−1

∑
i=0

∫ mi+1

li
W(ι, τ)(g(τ) + µW(τ, w(τ, µ), µ))dτ

+
∫ ι

lk(ι,0)
W(ι, τ)(g(τ) + µW(τ, w(τ, µ), µ))dτ

+
k(ι,0)

∑
i=1
W(ι, m+

i )(gi + µWi(w(m+
i , µ), µ)). (7)
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From Lemmas 2 and 4, for any w ∈ Ω it follows that

‖(Tw)(ι)‖ ≤
k(ι,0)−1

∑
i=0

∫ mi+1

li
‖W(ι, τ)‖(‖g(τ)‖+ |µ|‖W(τ, w(τ, µ), µ)‖)dτ

+
∫ ι

lk(ι,0)
‖W(ι, τ)‖(‖g(τ)‖+ |µ|‖W(τ, w(τ, µ), µ)‖)dτ

+
k(ι,0)

∑
i=0
‖W(ι, m+

i )‖(‖gi‖+ |µ|‖Wi(w(m+
i , µ), µ)‖)

≤
∫ ι

0
Ξe−Υ(ι−τ)(C+ |µ|L)dτ

+Ξ
k(ι,0)

∑
i=1

e−Υ(ι−m+
i )(C+ |µ|L)

≤ Ξ(C+ |µ|L)
(

1
Υ
+ N1

)
.

Consequently, we obtain T(Ω) ⊆ Ω.
Next, let ϑ ∈ Γ, q ∈ Q, |ι−mi| > ε, |ι− li| > ε, we have

‖Tw(ι + ϑ, µ)− Tw(ι, µ)‖ ≤ Λ1 + Λ2 + Λ3,

where

Λ1 =
k(ι,0)−1

∑
i=0

∫ mi+1

li
‖W(ι + ϑ, τ + ϑ)−W(ι, τ)‖

(‖g(τ + ϑ)‖+ |µ|‖W(τ + ϑ, w(τ + ϑ, µ), µ)‖)dτ

+
∫ ι

lk(ι,0)
‖W(ι + ϑ, τ + ϑ)−W(ι, τ)‖

(‖g(τ + ϑ)‖+ |µ|‖W(τ + ϑ, w(τ + ϑ, µ), µ)‖)dτ

≤
∫ ι

0
εKe−

1
2 Υ(ι−τ)(C+ |µ|L)dτ

≤ 2εK
Υ

(C+ |µ|L),

Λ2 =
k(ι,0)−1

∑
i=0

∫ mi+1

li
‖W(ι, τ)‖(‖g(τ + ϑ)− g(τ)‖

+|µ|‖W(τ + ϑ, w(τ + ϑ, µ), µ)−W(τ, w(τ, µ), µ)‖)dτ

+
∫ ι

lk(ι,0)
‖W(ι, τ)‖(‖g(τ + ϑ)− g(τ)‖

+|µ|‖W(τ + ϑ, w(τ + ϑ, µ), µ)−W(τ, w(τ, µ), µ)‖)dτ

≤
∫ ι

0
Ξe−Υ(ι−τ)(ε + |µ|ε)dτ

≤ Ξ
Υ
(ε + |µ|ε),



Axioms 2022, 11, 496 6 of 13

Λ3 ≤
k(ι,0)

∑
i=0
‖W(ι + ϑ, m+

i+q)−W(ι, m+
i )‖

(‖gi+q‖+ |µ|‖Wi+q(w(m+
i+q, µ), µ))‖)

+
k(ι,0)

∑
i=0
‖W(ι, m+

i )‖(‖gi+q − gi‖

+|µ|‖Wi+q(w(m+
i+q, µ), µ)−Wi(w(m+

i , µ), µ)‖)
≤ εKN2(C+ |µ|L) + ΞN1(ε + |µ|ε).

Finally, for any w1, w2, we have

‖(Tw1)(ι)− (Tw2)(ι)‖

≤
k(ι,0)−1

∑
i=0

|µ|
∫ mi+1

li
‖W(ι, τ)‖‖W(τ, w1(τ, µ), µ))−W(τ, w2(τ, µ), µ))‖dτ

+ |µ|
∫ ι

lk(ι,0)
‖W(ι, τ)‖‖W(τ, w1(τ, µ), µ))−W(τ, w2(τ, µ), µ))‖dτ

+ |µ|
k(ι,0)

∑
i=1
‖W(ι, m+

i )‖‖Wi(w1(m+
i , µ), µ)−Wi(w2(m+

i , µ), µ)‖

≤ |µ|
∫ ι

0
Ξe−Υ(ι−τ)L1‖w1 − w2‖PCdτ

+ |µ|
k(ι,0)

∑
i=1

Ξe−Υ(ι−m+
i )L2‖w1 − w2‖PC

≤ |µ|ΞL1
1
Υ
‖w1 − w2‖PC + |µ|ΞN1L2‖w1 − w2‖PC

≤ |µ|Ξ( L1

Υ
+ N1L2)‖w1 − w2‖PC,

which implies that

‖Tw1 − Tw2‖PC ≤ |µ|Ξ(
L1

Υ
+ N1L2)‖w1 − w2‖PC.

We can obtain that there exists a unique positive AP solution of model (2) when
Equation (6) holds by the Banach contraction principle.

4. Exponential Stability

Theorem 2. Assume that in the generating model (4) there exists a unique AP solution. For
|µ| → 0, w(ι, µ) converges to the unique AP solution of model (4).
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Proof. Let us denote by w(ι) the AP solution of model (4). From Equation (7) and
Definition 4, it follows that

‖w(ι, µ)− w(ι)‖ ≤ |µ|
( ∫ ι

0
‖W(ι, τ)‖‖W(τ, w(τ, µ), µ)‖dτ

+
k(ι,0)

∑
i=1
‖W(ι, m+

i )‖‖Wi(w(m+
i , µ), µ)‖

)
≤ |µ|

(∫ ι

0
Ξe−Υ(ι−τ)Ldτ + ΞN1L

)
≤ |µ|

(
ΞL
Υ

+ ΞN1L
)

.

Then, w(ι, µ)→ w(ι) for |µ| → 0.

Theorem 3. Assume that all conditions in Theorem 1 and N ln(1 + |µ|ΞL2) + |µ|ΞL1 < Υ hold.
The solution w(ι, µ) is exponentially stable.

Proof. Let w(ι) be an arbitrary solution of model (4). Then, using Equation (7), we obtain

w(ι)− w(ι, µ) = W(ι, ι0)(w(ι0)− w(ι0, µ))

+µ

( k(ι,ι0)−1

∑
i=k(ι0,0)

∫ mi+1

li
W(ι, τ)(W(τ, w(τ))−W(τ, w(τ, µ), µ))dτ

+
∫ ι

lk(ι,ι0)
W(ι, τ)(W(τ, w(τ))−W(τ, w(τ, µ), µ))dτ

+
k(ι,ι0)

∑
i=k(ι0,0)+1

W(ι, m+
i )(Wi(w(m+

i ))−Wi(w(m+
i , µ), µ))

)
.

Now, we obtain

‖w(ι)− w(ι, µ)‖ ≤ Ξe−Υ(ι−ι0)‖w(ι0)− w(ι0, µ)‖

+|µ|
( ∫ ι

ι0
Ξe−Υ(ι−τ)L1‖w(τ)− w(τ, µ)‖dτ

+
k(ι,ι0)

∑
i=k(ι0,0)+1

Ξe−Υ(ι−m+
i )L2‖w(m+

i )− w(m+
i , µ)‖

)
.

Set v(ι) = ‖w(ι)− w(ι, µ)‖eΥι, then by means of Gronwall–Bellman’s inequality [22],
it follows that

‖w(ι)− w(ι, µ)‖ ≤ Ξ‖w(ι0)− w(ι0, µ)‖e−Υ(ι−ι0)

k(ι,ι0)

∏
i=k(ι0,0)+1

(
1 + |µ|ΞL2e−Υ(ι−m+

i )
)

e
∫ ι

ι0
|µ|ΞL1e−Υ(ι−τ)dτ

≤ Ξ‖w(ι0)− w(ι0, µ)‖e−Υ(ι−ι0)(1 + |µ|ΞL2)
k(ι,ι0)e|µ|ΞL1(ι−ι0)

≤ Ξ‖w(ι0)− w(ι0, µ)‖(1 + |µ|ΞL2)
k(ι,ι0)e(−Υ+|µ|ΞL1)(ι−ι0)

≤ Ξ‖w(ι0)− w(ι0, µ)‖eln(1+|µ|ΞL2)
k(ι,ι0) e(−Υ+|µ|ΞL1)(ι−ι0)

≤ Ξ‖w(ι0)− w(ι0, µ)‖e(N ln(1+|µ|ΞL2)−Υ+|µ|ΞL1)(ι−ι0).

Obviously, if there exists N ln(1+ |µ|ΞL2)+ |µ|ΞL1 < Υ, then the solution of model (2)
is exponentially stable.
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5. Numerical Simulations

We present two Examples and some corresponding numerical simulations in this
Section. We first give the figures of solution and exponentially stable Example 1, which
correspond to model (5). Then, on the basis of Example 1, we show the figures of solution
and exponentially stable Example 2, which correspond to model (2).

Example 1. Consider

w′1(ι) = (−7 + sin 2ι)w1(ι) +
e−ι

100 w2(ι), ι ∈ (li, mi+1], i ∈ N,
w′2(ι) =

e−ι

100 w1(ι) + (−7 + sin 2ι)w2(ι), ι ∈ (li, mi+1], i ∈ N,
w1(m+

i ) = | cos i|w1(m−i ) + | sin i|w2(m−i ), i ∈ N+,
w2(m+

i ) = | sin i|w1(m−i ) + | cos i|w2(m−i ), i ∈ N+,
w1(ι) = | cos i|w1(m−i ) + | sin i|w2(m−i ), ι ∈ (mi, li], i ∈ N+,
w2(ι) = | sin i|w1(m−i ) + | cos i|w2(m−i ), ι ∈ (mi, li], i ∈ N+,
w1(l+i ) = w1(l−i ), i ∈ N+,
w2(l+i ) = w2(l−i ), i ∈ N+.

(8)

Assume that w(ι) is the solution of model (8) satisfying the initial conditions as follows{
w1(ι

+
0 ) = 1.5, ι0 = 0,

w2(ι
+
0 ) = 2, ι0 = 0.

(9)

Set l0 = 0, {mi} and {li}, i ∈ N as

mi = i +
1
8
| cos i− cos(

√
2i)|,

li = i +
1
4
| cos i− cos(

√
2i)|.

By elementary calculation, we have

0 < li −mi <
1
4

, i ∈ N+,

1
2

< mi+1 − li <
3
2

, i ∈ N,

ι − lk(ι,0) ∈
(

0,
3
2

]
.

It is obvious that mi, i ∈ N+ and li, i ∈ N are uniformly AP. Hence, model (8) satisfies
conditions (H1)–(H5).

Next, according to Lemma 3, we obtain ∑
k(ι,0)−1
i=0 (mi+1 − li) > 1

2 k(ι, 0). Thus,

lim sup
ι→+∞

k(ι, 0)
ι
≤ lim sup

ι→+∞

k(ι, 0)
k(ι,0)−1

∑
i=0

(mi+1 − li)

< lim sup
ι→+∞

k(ι, 0)
1
2 k(ι, 0)

< 2 = N.

We know that model (8) with the initial condition (9) has a unique AP solution. We use
Figure 1 to represent this AP solution.
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Figure 1. The positive almost periodic solution of model (8).

According to Lemma 4, we can conclude that model (8) is exponentially stable and has
‖w(ι)‖ ≤ 5e−ι when Ξ = 2, Υ = 1. Then, we can represent this result in Figure 2.

Figure 2. The exponentially stable solution of model (8).

Example 2.

w′1(ι) = (−7 + sin 2ι)w1(ι) +
e−ι

100 w2(ι) + e−ι

+ 1
200 (sin ιw1(ι) + e−ιw2(ι)), ι ∈ (li, mi+1], i ∈ N,

w′2(ι) =
e−ι

100 w1(ι) + (−7 + sin 2ι)w2(ι) + e−ι

+ 1
200 (e

−ιw1(ι) + sin ιw2(ι)), ι ∈ (li, mi+1], i ∈ N,
w1(m+

i ) = | cos i|w1(m−i ) + | sin i|w2(m−i ) + e−i

+ 1
200 (− sin iw1(m−i ) +

1
2 e−iw2(m−i )), i ∈ N+,

w2(m+
i ) = | sin i|w1(m−i ) + | cos i|w2(m−i ) + e−i

+ 1
200 (

1
2 e−iw1(m−i )− sin iw2(m−i )), i ∈ N+,

w1(ι) = | cos i|w1(m−i ) + | sin i|w2(m−i ) + e−i

+ 1
200 (− sin iw1(m−i ) +

1
2 e−iw2(m−i )), ι ∈ (mi, li], i ∈ N+,

w2(ι) = | sin i|w1(m−i ) + | cos i|w2(m−i ) + e−i

+ 1
200 (

1
2 e−iw1(m−i )− sin iw2(m−i )), ι ∈ (mi, li], i ∈ N+,

w1(l+i ) = w1(l−i ), i ∈ N+,
w2(l+i ) = w2(l−i ), i ∈ N+.

(10)
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Assume that w(ι, µ) is a solution of model (10) satisfying the initial conditions as follows{
w1(ι

+
0 , µ) = 1.5, ι0 = 0,

w2(ι
+
0 , µ) = 2, ι0 = 0.

(11)

Set l0 = 0, {mi} and {li}, i ∈ N as

mi = i +
1
8
| cos i− cos(

√
2i)|,

li = i +
1
4
| cos i− cos(

√
2i)|.

By calculation, we acquire L1 = 4 and L2 = 2.25 and

N1 = sup
ι∈[0,∞)

k(ι,0)

∑
i=1

e−Υ(ι−m+
i )

≤ sup
ι∈[0,∞)

k(ι,0)

∑
i=1

e−Υ(ι−li)

≤ sup
ι∈[0,∞)

k(ι,0)

∑
i=1

e−4(ι−i− 1
2 )

≤ e2 sup
ι∈[0,∞)

k(ι,0)

∑
i=1

e−4(ι−i)

≤ e2
∫ ι

1
e−4(ι−τ)dτ

≤ e2

4
.

Then, |µ|Ξ( L1
Υ + N1L2) < 0.08156344056 < 1. According to Theorem 1, we know that

model (10) with initial condition (11) has a unique AP solution. We use Figure 3 to represent this
AP solution.

Figure 3. The positive almost periodic solution of model (10).
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According to Definition 4, the generalized model (10) is presented as follows

w′1(ι) = (−7 + sin 2ι)w1(ι) +
e−ι

100 w2(ι) + e−ι, i ∈ N,
w′2(ι) =

e−ι

100 w1(ι) + (−7 + sin 2ι)w2(ι) + e−ι, i ∈ N,
w1(m+

i ) = | cos i|w1(m−i ) + | sin i|w2(m−i ) + e−i, i ∈ N+,
w2(m+

i ) = | sin i|w1(m−i ) + | cos i|w2(m−i ) + e−i, i ∈ N+,
w1(ι) = | cos i|w1(m−i ) + | sin i|w2(m−i ) + e−i, ι ∈ (mi, li], i ∈ N+,
w2(ι) = | sin i|w1(m−i ) + | cos i|w2(m−i ) + e−i, ι ∈ (mi, li], i ∈ N+,
w1(l+i ) = w1(l−i ), i ∈ N+,
w2(l+i ) = w2(l−i ), i ∈ N+,

(12)

assume that w(ι) is the solution of model (12) satisfying the initial conditions as follows{
w1(ι

+
0 ) = 1, ι0 = 0,

w2(ι
+
0 ) = 1.5, ι0 = 0.

There exists 0.0845012179 = N ln(1 + |µ|ΞL2) + |µ|ΞL1 < Υ = 1. Then, we can obtain

‖w(ι)− w(ι, µ)‖ ≤ Ξ‖w(ι0)− w(ι0, µ)‖e(Nln(1+|µ|ΞL2)−Υ+|µ|ΞL1)(ι−ι0)

≤ 1.414213562e−0.9154987821ι (13)

by Theorem 3. Then, we represent (13) in Figure 4.

Figure 4. The exponentially stable solution of model (10).

6. Conclusions

Differential equation models with impulses are usually established to study many
phenomena in life [23–26]. We note that Stamova and Stamov [8] proposed a forced
perturbed biological model with impulsive effects at fixed moments, which can be applied
to blood models, drug models, and even predator–prey models. They gave the conditions
for the existence of a unique AP solution and the exponential stability of the solution for
this model. We are very interested in this work.

After careful reading, we introduced the non-instantaneous impulse factor into this
model and proposed a forced perturbed non-instantaneous impulsive model. Then, we
also provided conditions for the existence of a unique AP solution and the exponential
stability of the solution for this model. As far as we know, this work is a generalization of
previous works and has not been done before.
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There are many limitations to our work. It is known to us that the time delays are
inevitable [27]. Therefore, we will gradually consider the dynamic behavior of models
with fixed delay, variable delay, single delay and multiple delay in future work. Beyond
that, there are some problems that we will consider in the future. For example, are these
results applicable to fractional-order differential equations models like [28]? Can we
extend our model to the case with randomness like [29]? What will happen if periodic
distributions/generalized functions are used?

In addition, we are concerned about the investigations of [30–32] and will study in
our future work how to solve the differential problem they mentioned.
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