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Abstract: This paper is concerned with the radius of robust global error bounds for an uncertain
piecewise linear inequality system where the uncertain data are assumed to be in polytope uncertain
sets. We first present a dual characterization for robust global error bounds of this uncertain piecewise
linear inequality system. Then, we establish upper and lower bounds for the radius of robust global
error bounds of the system of uncertain piecewise linear inequalities in terms of the Minkowski
function generalized by the polytope uncertain sets. Moreover, we also investigate robust global
error bounds for this uncertain piecewise linear inequality system when the uncertain polytope sets
are symmetric sets.

Keywords: uncertain inequality systems; error bound; polytope uncertain set

1. Introduction

Let f j : Rn → R, j ∈ J := {1, . . . , p}, be convex functions. Let S be the solution set of
the following convex inequality system:

Find x ∈ Rn such that f j(x) ≤ 0, j ∈ J. (1)

This modeling of systems as (1) is said to have a global error bound iff there exists a real
number τ > 0 such that

d(x, S) ≤ τ[ f (x)]+, for all x ∈ Rn,

where f (x) := max{ f j(x) : j ∈ J}, [ f (x)]+ := max{ f (x), 0}, and d(x, S) is the distance
function of a point x ∈ Rn to the solution set S.

As we know, the investigation of error bounds for convex inequality systems is a
very interesting research area in mathematical programming such as sensitivity analysis,
convergence analysis, and asymptotic analysis. Global error bound for convex inequality
systems was first investigated in [1]. Subsequently, many researchers have been attracted
to investigate error bounds for convex inequality systems from different points of view.
For example, by using a Slater condition and an asymptotic qualification condition, error
bound results for a differentiable convex inequality system are obtained in [2]. An extension
of Hoffman’s error bound for polynomial inequalities/equalities systems is obtained in [3].
Hoffman’s error bound for a convex inequality system in a reflexive Banach space is
considered in [4] under a Slater constraint qualification. Hoffman’s error bounds for convex
quadratic/affine inequality systems in Banach spaces are given in [5] in terms of an Abadie
qualification condition. Various types of error bounds for unconstrained and polyhedral-
constrained convex polynomials are established in [6]. Error bound moduli for a locally
Lipschitz and regular function is studied in [7] by virtue of outer limiting subdifferential
sets. Using the Clarke generalized Jacobian, a global error bound for nonmonotone Ky
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Fan inequalities is obtained in [8]. For more details on error bounds, please see the survey
paper [9].

However, many inequality systems are inevitably contaminated by prediction errors
or a lack of information. Due to these situations, many researchers have focused on the
investigation of inequality systems under uncertain data. This system (1) with uncertain
data can be captured by the following uncertain convex inequality system:

(SU) Find x ∈ Rn such that f j(x, uj) ≤ 0, j ∈ J,

where Uj ⊂ Rm, j ∈ J, are uncertain convex compact sets, uj ∈ Uj, j ∈ J, are uncertain
parameters, and f j : Uj ×Rn → R, j ∈ J, are convex functions.

Following robust optimization [10–15], the robust counterpart of (SU) is formulated
as follows

(SR) Find x ∈ Rn such that f j(x, uj) ≤ 0, ∀uj ∈ Uj, j ∈ J.

The uncertain inequality system (SU) is said to admit a robust error bound iff the robust
counterpart (SR) has an error bound, i.e., there exists a real number τ > 0 such that

d(x, SR) ≤ τ[ fR(x)]+ for all x ∈ Rn,

where SR := {x ∈ Rn : f j(x, uj) ≤ 0, ∀uj ∈ Uj, j ∈ J}, fUj(x) := max{ f j(x, uj) : uj ∈ Uj},
fR(x) := max{ fUj(x) : j ∈ J} and [ fR(x)]+ := max{ fR(x), 0}.

Recently, following robust optimization methodology, some characterizations of robust
error bounds have been presented for uncertain inequality system (SU) and its generaliza-
tions. In [16], necessary and sufficient dual conditions for the existence of robust global
error bounds are first given for an uncertain linear inequality system with interval uncertain
sets. Then, by using project operators and dual conditions, an exact formula for computing
the radius of robust global error bounds for this uncertain linear inequality system is also
obtained. In [17], some complete characterizations of the existence of robust local error
bounds are given for an uncertain linear inequality system. Robust Farkas-Minkowski
constraint qualification conditions for an uncertain inequality system is considered in [18]
based on the existence of robust global error bounds. By employing Minkowski func-
tions, an exact formula for computing the radius of robust global error bound is obtained
in [19] for a piecewise linear inequality system with polytope uncertain sets. By using
right derivatives and projection operators, some sufficient and necessary conditions for
the existence of robust global error bounds of an uncertain convex inequality system are
obtained in [20]. In [21], by using the Ekeland variational principle, a robust error bound
for an uncertain convex inequality system with compact uncertain sets is presented. As an
application, the authors also obtained robust error bounds for an uncertain polynomial
inequality system.

We observe that there exist only two papers devoted to the study of the radius of
robust error bounds for uncertain linear inequality systems; see [16,19]. One of the most
important reasons is that the necessary dual condition for the existence of robust error
bounds for uncertain linear inequality systems in [16,19] is not available for the case of
nonlinear inequality systems. It is worth noting that such dual conditions play an important
role in the study of the radius of robust error bounds of an uncertain inequality system.
Therefore, in this paper, we consider an uncertain piecewise linear inequality system with
general polytope uncertain sets. In this case, we can show that necessary and sufficient
dual conditions for the existence of robust global error bounds are satisfied. More precisely,
we first give necessary and sufficient dual conditions of the existence of robust global
error bounds for this uncertain piecewise linear inequality system. Then, we introduce
the concept of the radius of robust global error bounds. By virtue of the dual conditions
and the so-called hypographical set of the nominal system, we give an upper bound and
a lower bound for radius of the robust global error bound of this uncertain piecewise
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linear inequality system. Moreover, we give a numerical example to illustrate the obtained
results. As a special case, we also given some results on robust global error bounds for this
uncertain piecewise linear inequality system with uncertain symmetric polytope sets.

This paper is organized as follows. Section 2 describes some basic notions and prelimi-
nary results for uncertain piecewise linear inequality systems. Section 3 presents upper
and lower bounds for radius of robust global error bound of an uncertain piecewise linear
inequality system with general polytope uncertain sets. Section 4 provides the conclusions.

2. Preliminaries

In this section, we give some basic notations and preliminary results that will be used
in the sequel. Unless otherwise specified, let Rn be the n-dimensional Euclidean space
equipped with the usual Euclidean norm ‖ · ‖. The origin of Rn is denoted by 0n. The inner
product in Rn is denoted by 〈x, y〉 := x>y for any x, y ∈ Rn. The so-called simplex in Rn is
denoted by

∆n :=

{
λ := (λ1, . . . , λn) ∈ Rn : λj ≥ 0,

n

∑
j=1

λj = 1

}
.

For a set Θ ⊆ Rn, the interior, the closure, the convex hull and the conical hull of Θ are
denoted by intΘ, clΘ, convΘ and coneΘ, respectively. The distance function d(·, Θ) of
Θ ⊆ Rn is defined by

d(x, Θ) := inf{‖x− y‖ : y ∈ Θ}, ∀x ∈ Rn.

We shall adopt the convention that d(x, Θ) := +∞ when Θ = ∅.
Let Λ be a nonempty and convex subset of Rn with 0n ∈ intΛ. The function

φΛ(x) := inf{t > 0 : x ∈ tΛ}, x ∈ Rn, (2)

is called Minkowski function of Λ.
The following properties of the Minkowski function φΛ are obtained in [22].

Lemma 1. Let Λ be a convex subset of Rn with 0n ∈ intΛ. Then, the following properties hold:

(i) φΛ is sublinear and continuous;
(ii) {x ∈ Rn : φΛ(x) ≤ 1} = clΛ;
(iii) If Λ is bounded and symmetric (i.e., x ∈ Λ⇒ −x ∈ Λ), then φΛ := ‖ · ‖Λ is a norm on Rn

generated by Λ.

In what follows, let Zj ⊂ Rn+1, j ∈ J, be polytope uncertain sets with 0n+1 ∈ intZj.

Let (āj, b̄j) ∈ Rn ×R and α̃j ∈ R+. For any αj ∈ R+, j ∈ J, the uncertain sets U
α̃j ,αj
j , j ∈ J,

are defined as follows:

U
α̃j ,αj
j := (āj, b̄j) + (αj + α̃j)Zj, j ∈ J. (3)

Motivated by [16,19], in this paper, we consider the following piecewise linear inequality
system under polytope uncertain sets

(SUα̃j ,αj
) Find x ∈ Rn such that gj(x) + a>j x− bj ≤ 0, j ∈ J,

where gj : Rn → R, j ∈ J, are given functions and (aj, bj) ∈ U
α̃j ,αj
j are uncertain parameters.

In what follows, unless otherwise specified, we assume that gj, j ∈ J, are piecewise linear
functions defined by

gj(x) := max
x∈Rn

{
ck>

j x− dk
j : k ∈ I

}
, (4)

where
(

ck
j , dk

j

)
∈ Rn ×R, k ∈ I := {1, . . . , l}, j ∈ J.
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To deal with (SUα̃j ,αj
), it is usually associated with the so-called robust counterpart

(SRα̃j ,αj
) Find x ∈ Rn such that gj(x) + a>j x− bj ≤ 0, ∀(aj, bj) ∈ U

α̃j ,αj
j , j ∈ J.

In what follows, we always assume that the system (SUα̃j ,αj
) admits a robust global error

bound at α̃j = 0, that is the nominal system

(SR0,αj
) Find x ∈ Rn such that gj(x) + a>j x− bj ≤ 0, ∀(aj, bj) ∈ U

0,αj
j , j ∈ J,

admits a global error bound. Here, U
0,αj
j = (āj, b̄j) + αjZj, for all j ∈ J.

Now, we give the following result, which can be regarded as a dual characterization
of the existence of the robust global error bound of (SUα̃j ,αj

).

Proposition 1. The system (SUα̃j ,αj
) has a robust global error bound if and only if

(0n,−1) /∈ cone

 ⋃
k∈I, i∈M, j∈J

(
ck

j + a
i,α̃j ,αj
j , dk

j + b
i,α̃j ,αj
j

). (5)

Here, M := {1, . . . , m},
(

a
i,α̃j ,αj
j , b

i,α̃j ,αj
j

)
∈ Rn ×R, i ∈ M, j ∈ J, are the extreme points of the

polytope uncertain set U
α̃j ,αj
j , i.e.,

U
α̃j ,αj
j = conv

{(
a

1,α̃j ,αj
j , b

1,α̃j ,αj
j

)
, . . . ,

(
a

m,α̃j ,αj
j , b

m,α̃j ,αj
j

)}
, j ∈ J.

Proof. The proof is similar to the one given in Theorem 3.7 of [17], and so, it is omitted.

Following [16], we introduce the following concept of radius of robust global error
bound for the system (SUα̃j ,αj

). It is worth noting that this concept is motivated by the
concepts of radius of robust feasibility for uncertain optimization problems; see [23–28] for
more details.

Definition 1. The radius of robust global error bound for (SUα̃j ,αj
) is defined as

ρ := sup inf
j∈J

{
αj : (SRα̃j ,αj

) admits a global error bound
}

. (6)

Remark 1. Obviously, if α̃j = 0, j ∈ J, the radius of robust global error bound ρ of (SUα̃j ,αj
) gives

a numerical value for the largest polytope uncertain set U
α̃j ,αj
j under which (SUα̃j ,αj

) has a robust
global error bound.

3. Characterizations of Radius of Robust Global Error Bound

This section is devoted to the investigation of radius of robust global error bound for
(SUα̃j ,αj

) based on the Minkowski functions. Note that we need the so-called hypographical
set [29,30] of the nominal system (SR0,αj

), which is define by

H(S) := conv

 ⋃
k∈I, j∈J

(−ck
j − āj,−dk

j − b̄j)

+R+(0n,−1). (7)
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Theorem 1. The radius ρ of robust global error bound of (SUα̃j ,αj
) satisfies

inf
(u,v)∈H(S)

inf
j∈J

φZj(u, v)−min
j∈J
{α̃j} ≤ ρ ≤ inf

(u,v)∈H(S)
sup
j∈J

φZj(u, v)−min
j∈J
{α̃j}.

Proof. We first show that

ρ ≤ inf
(u,v)∈H(S)

sup
j∈J

φZj(u, v)−min
j∈J
{α̃j}. (8)

Suppose that there exist αj ≥ 0, j ∈ J, such that (SUα̃j ,αj
) admits a robust global error bound.

By Proposition 1, it follows that

(0n,−1) /∈ cone

 ⋃
k∈I, i∈M, j∈J

(
ck

j + a
i,α̃j ,αj
j , dk

j + b
i,α̃j ,αj
j

), (9)

where
(

a
i,α̃j ,αj
j , b

i,α̃j ,αj
j

)
∈ Rn ×R, i ∈ M, j ∈ J, are the extreme points of U

α̃j ,αj
j . Obviously,

(9) is equivalent to

(0n,−1) /∈ cone


⋃

(aj ,bj)∈U
α̃j ,αj
j , k∈I, j∈J

(
ck

j + aj, dk
j + bj

).

Then, it follows from U
α̃j ,αj
j = (āj, b̄j) + (αj + α̃j)Zj that

(0n,−1) /∈ cone

 ⋃
k∈I, j∈J

(
ck

j + āj, dk
j + b̄j

)
+ (αj + α̃j)Zj

. (10)

Now, take any (u, v) ∈ H(S). By (7), there exist λk
j ≥ 0, k ∈ I, j ∈ J, with ∑

k∈I
∑
j∈J

λk
j = 1,

and µ ≥ 0, such that

(u, v) = ∑
k∈I

∑
j∈J

λk
j

(
−ck

j − āj,−dk
j − b̄j

)
+ µ(0n,−1). (11)

Let ε > 0. It is clear from (11) that

(0n, 1) = ∑
k∈I

∑
j∈J

λk
j

µ + ε

((
−ck

j − āj,−dk
j − b̄j

)
− (u, v− ε)

)
. (12)

By the definition of φZj , we have

(u, v− ε) ∈ φZj(u, v− ε)Zj.

Thus, we deduce from (12) that

(0n,−1) ∈ cone

 ⋃
k∈I, j∈J

(
ck

j + āj, dk
j + b̄j

)
+ φZj(u, v− ε)Zj

.

This, together with (10), gives

inf
j∈J

{
αj + α̃j

}
≤ sup

j∈J
φZj(u, v− ε). (13)
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Note that
inf
j∈J
{αj}+ inf

j∈J
{α̃j} ≤ inf

j∈J
{αj + α̃j}.

Then, it follows from (13) that

inf
j∈J

{
αj
}
≤ sup

j∈J
φZj(u, v− ε)−min

j∈J

{
α̃j
}

.

Taking infimum over all (u, v) ∈ H(S), we obtain

sup inf
j∈J

{
αj
}
≤ inf

(u,v)∈H(S)
sup
j∈J

φZj(u, v− ε)−min
j∈J

{
α̃j
}

. (14)

Now, by the definition of the radius ρ, Lemma 1(i) and letting ε→ 0 in (14), it follows that

sup inf
j∈J

{
αj
}
≤ inf

(u,v)∈H(S)
sup
j∈J

φZj(u, v)−min
j∈J

{
α̃j
}

.

This means that (8) holds.
Now, we claim that

ρ ≥ inf
(u,v)∈H(S)

inf
j∈J

φZj(u, v)−min
j∈J

{
α̃j
}

. (15)

Let ε > 0 and ᾱj := ρ + ε. By using the similar method of the inequality (19) of Theorem 3.1
in [19], we have

inf
(u,v)∈H(S)

inf
j∈J

φZj(u, v) ≤ ᾱj + α̃j = ρ + ε + α̃j. (16)

Taking ε→ 0 in (16), we have

inf
(u,v)∈H(S)

inf
j∈J

φZj(u, v)−min
j∈J

{
α̃j
}
≤ ρ.

Thus, (15) holds and the proof is complete.

Now, we give a numerical example that illustrates how we employ Theorem 1 to
calculate upper and lower bounds of the radius of robust global error bound for (SUα̃j ,αj

)

under Zj, j ∈ J, are simple non-symmetric polytopic uncertain sets.

Example 1. For (SUα̃j ,αj
). Let n := 1 and p = l := 2. Let (ā1, b̄1) := (1, 0), (ā2, b̄2) =: (0, 1) ∈

R2, and α̃1 = α̃2 := 0 ∈ R. Let the polytope uncertain sets Z1 ⊆ R2 and Z2 ⊆ R2 be defined,
respectively, by

Z1 =
{
(z1, z2) ∈ R2 : | z1 + 1 |≤ 2, z1 + z2 ≤ 3, z2 ≥ −1, z1 + z2 ≥ −2

}
and

Z2 =
{
(z1, z2) ∈ R2 : | z1 |≤ 8, | z2 + 2 |≤ 5, | z1 + z2 |≤ 6

}
.

Clearly, for any α1 = α2 := α ∈ R+,

Uα̃1,α1
1 = (1, 0) + αZ1, and Uα̃2,α2

2 = (0, 1) + αZ2.

Moreover, let (c1
1, d1

1) = (c1
2, d1

2) := (1, 0) and (c2
1, d2

1) = (c2
2, d2

2) := (0, 2). Clearly, g1(x) =
g2(x) = max{x,−2}. Then, (SUα̃j ,αj

) becomes

Find x ∈ Rn such that max{x,−2}+ a>j x− bj ≤ 0, j = 1, 2,
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where (aj, bj) ∈ U
α̃j ,αj
j , j = 1, 2. Moreover, we have

H(S) = conv
{(
−ck

j − āj,−dk
j − b̄j

)
: k = 1, 2, j = 1, 2

}
+R+(0,−1)

= conv{(−2, 0), (−1,−2), (−1,−1), (0,−3)}+R+(0,−1).

On the other hand, for any (u, v) ∈ R2, it is easy to show that

(u, v) ∈ tZ1 ⇔


t ≥ −1

3
u, t ≥ u,

t ≥ −v,

t ≥ −1
2

u− 1
2

v, t ≥ 1
3

u +
1
3

v.

Then, for each (u, v) ∈ R2,

φZ1(u, v) = inf{t > 0 : (u, v) ∈ tZ1}

= inf
{

t > 0 : t ≥ max
{
−1

3
u, u, − v, − 1

2
u− 1

2
v,

1
3

u +
1
3

v
}}

= max
{
−1

3
u, u, − v, − 1

2
u− 1

2
v,

1
3

u +
1
3

v
}

.

Thus, for any (u, v) ∈ H(S),

φZ1(u, v) =

−
1
2

u− 1
2

v, if u + v ≤ −2, − 2 ≤ u ≤ v, u, v ≤ 0,

−v, if 2u + v ≤ −3, u ≥ v, u ≥ −2, u, v ≤ 0.

Similarly, for any (u, v) ∈ R2, it is easy to show that

(u, v) ∈ tZ2 ⇔


t ≥ −1

8
u, t ≥ 1

8
u,

t ≥ −1
3

v, t ≥ 1
7

v,

t ≥ −1
6

u− 1
6

v, t ≥ 1
6

u +
1
6

v.

Therefore, for each (u, v) ∈ R2,

φZ2(u, v) = inf{t > 0 : (u, v) ∈ tZ2}

= inf
{

t > 0 : t ≥ max
{
−1

8
u,

1
8

u, − 1
3

v,
1
7

v, − 1
6

u− 1
6

v,
1
6

u +
1
6

v
}}

= max
{
−1

8
u,

1
8

u, − 1
3

v,
1
7

v, − 1
6

u− 1
6

v,
1
6

u +
1
6

v
}

.

Thus, for any (u, v) ∈ H(S),

φZ2(u, v) =


−1

6
u− 1

6
v, if u + v ≤ −2, − 2 ≤ u ≤ v, u, v ≤ 0,

−1
3

v, if 2u + v ≤ −3, u ≥ v, u ≥ −2, u, v ≤ 0.
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Obviously,

inf
(u,v)∈H(S)

sup
j∈J

φZj(u, v) = inf
(u,v)∈H(S)

sup
{

φZ1(u, v), φZ2(u, v)
}

= inf
(u,v)∈H(S)

φZ1(u, v) = 1,

and

inf
(u,v)∈H(S)

inf
j∈J

φZj(u, v) = inf
(u,v)∈H(S)

inf
{

φZ1(u, v), φZ2(u, v)
}

= inf
(u,v)∈H(S)

φZ2(u, v) =
1
3

.

Consequently, we have
1
3
≤ ρ ≤ 1.

Thus, Theorem 1 is applicable.

In the special case when the functions g1 = · · · = gp := 0, we can easily obtain the
following result, which is a new result on robust error bound not yet being considered in
the recent literature.

Corollary 1. For the system (SUα̃j ,αj
), assume that the functions g1 = · · · = gp := 0. Then,

the radius ρ of robust global error bound of (SUα̃j ,αj
) satisfies

inf
(u,v)∈Ĥ(S)

inf
j∈J

φZj(u, v)−min
j∈J
{α̃j} ≤ ρ ≤ inf

(u,v)∈Ĥ(S)
sup
j∈J

φZj(u, v)−min
j∈J
{α̃j},

where

Ĥ(S) := conv

⋃
j∈J

(−āj,−b̄j)

+R+(0n,−1).

Remark 2. Corollary 1 encompasses Theorem 4.2 of [16], where the uncertain sets are interval
uncertain sets.

In the special case when Z1 = · · · = Zp := Z is a convex and compact subset of Rn+1

with 0n+1 ∈ intZ, and α̃1 = · · · = α̃p := 0 ∈ R. Then, for any α1 = · · · = αp := α ∈ R+,

the uncertain set U
α̃j ,αj
j reduces to

Uα
j := (āj, b̄j) + αZ, j ∈ J. (17)

Thus, (SUα̃j ,αj
) becomes

Find x ∈ Rn such that gj(x) + a>j x− bj ≤ 0, j ∈ J, (SUα)

where gj : Rn → R, j ∈ J, are defined as (4) and (aj, bj) ∈ Uα
j are uncertain parameters.

Theorem 2. Theorem 3.1 of [19]. Assume that (SUα) has a robust global error bound at α = 0.
Then, the radius ρ̂ of robust global error bound of (SUα) is given by

ρ̂ = inf
(u,v)∈H(S)

φZ(u, v).
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Remark 3. Note that Example 1 can also used to illustrate how we employ Theorem 2 to calculate
the radius ρ̂ of robust global error bound for (SUα). For example, let

Z =
{
(z1, z2) ∈ R2 : | z1 + 1 |≤ 2, z1 + z2 ≤ 3, z2 ≥ −1, z1 + z2 ≥ −2

}
.

By Example 1, we have ρ̂ = 1. Similarly, if

Z =
{
(z1, z2) ∈ R2 : | z1 |≤ 8, | z2 + 2 |≤ 5, | z1 + z2 |≤ 6

}
,

then, from Example 1, we have ρ̂ = 1
3 .

At the end of this section, we consider the system (SUα̃j ,αj
) when the polytope Zj

is symmetric. In this case, the bounds for the radius of robust global error bound of
(SUα̃j ,αj

) can be checked by solving a specified norm of a convex optimization problem.

Here, the so-called simplex in Rpl is denoted by

∆l
p :=

{
λ :=

(
λ1

1, . . . , λl
1, . . . , λ1

p, . . . , λl
p

)
∈ Rpl : λk

j ≥ 0, ∑
k∈I

∑
j∈J

λk
j = 1

}
.

Using a similar argument as that given for the proof of Corollary 3.1 of [19], we can
deduce the following result.

Theorem 3. Suppose that the polytope Zj are convex, compact and symmetric subsets with 0n+1 ∈
intZj, j ∈ J. Then, the radius ρ of robust global error bound of (SUα̃j ,αj

) satisfies

inf
(λ,µ)∈∆l

p×R+

inf
j∈J

∥∥∥∥∥
(

∑
k∈I

∑
j∈J

λk
j (c

k
j + āj), µ + ∑

k∈I
∑
j∈J

λk
j (d

k
j + b̄j)

)∥∥∥∥∥
Zj

−min
j∈J
{α̃j}≤ρ≤

inf
(λ,µ)∈∆l

p×R+

sup
j∈J

∥∥∥∥∥
(

∑
k∈I

∑
j∈J

λk
j (c

k
j + āj), µ + ∑

k∈I
∑
j∈J

λk
j (d

k
j + b̄j)

)∥∥∥∥∥
Zj

−min
j∈J
{α̃j},

where ‖ · ‖Zj is a norm on Rn+1 generated by Zj, i.e., for any (uj, vj) := (u1
j , . . . , un

j , vj) ∈ Rn+1,

‖(uj, vj)‖Zj = inf{tj > 0 : (uj, vj) ∈ tjZj}.

In the special case when Zj are convex, compact and symmetric subsets with 0n+1 ∈
intZj, j ∈ J, we can easily obtain the following result for (SUα̃j ,αj

) with g1 = · · · = gp := 0.

Corollary 2. Suppose that the polytope Zj are convex, compact, and symmetric subsets with
0n+1 ∈ intZj, j ∈ J. For the system (SUα̃j ,αj

), assume that the functions g1 = · · · = gp := 0.
Then, the radius ρ of robust global error bound of (SUα̃j ,αj

) satisfies

inf
(λ,µ)∈∆p×R+

inf
j∈J

∥∥∥∥∥
(

∑
j∈J

λj āj, µ + ∑
j∈J

λj b̄j

)∥∥∥∥∥
Zj

−min
j∈J
{α̃j} ≤ρ

≤ inf
(λ,µ)∈∆p×R+

sup
j∈J

∥∥∥∥∥
(

∑
j∈J

λj āj, µ + ∑
j∈J

λj b̄j

)∥∥∥∥∥
Zj

−min
j∈J
{α̃j},

where ‖ · ‖Zj is a norm on Rn+1 generated by Zj, i.e., for any (uj, vj) := (u1
j , . . . , un

j , vj) ∈ Rn+1,

‖(uj, vj)‖Zj = inf{tj > 0 : (uj, vj) ∈ tjZj}.
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Similarly, it is easy to show that the following result for (SUα) holds.

Corollary 3. Corollary 3.1 of [19]. Let α ∈ R and let polytope Z be a convex, compact, and
symmetric subset of Rn+1 with 0n+1 ∈ intZ. Assume that (SUα) has a robust global error bound
at α = 0. Then, the radius ρ̂ of robust global error bound of (SUα) is given by

ρ̂ = min
(λ,µ)∈∆l

p×R+

∥∥∥∥∥
(

∑
k∈I

∑
j∈J

λk
j (c

k
j + āj), µ + ∑

k∈I
∑
j∈J

λk
j (d

k
j + b̄j)

)∥∥∥∥∥
Z

,

where ‖ · ‖Z is a norm on Rn+1 generated by Z, i.e., for any (u, v) := (u1, . . . , un, v) ∈ Rn+1,

‖(u, v)‖Z = inf{t > 0 : (u, v) ∈ tZ}.

4. Conclusions

In this paper, following the framework of robust optimization, we consider the radius
of robust global error bound of a class of uncertain piecewise linear systems with general
polytope uncertain sets. By using the Minkowski function, an upper bound and a lower
bound for radius of the robust global error bound of (SUα̃j ,αj

) are established. We also give
upper and lower bounds of radius of the robust global error bound for (SUα̃j ,αj

) when the
uncertain polytope sets are symmetric sets. The results obtained in this paper improve and
extend the corresponding results obtained in [16,19].

Although some interesting results of the robust global error bounds have been given
for (SUα̃j ,αj

), in this paper, there are also some questions to be considered in the future,
for example, using similar methods to [16,17,20,21], whether we can present some results of
robust global error bounds for (SUα̃j ,αj

) when the uncertain sets are general convex and com-
pact sets. On the other hand, it is of great interest to extend our approach to investigate two-
stage adjustable optimization problems [31], such as inventory-production management
problems with demand uncertainty and lot-sizing problems with demand uncertainty.
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