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Abstract: This paper is concerned with numerical solutions to Volterra integro-differential equations
with weakly singular kernels. Making use of the transformed fractional Jacobi polynomials, we
develop a class of piecewise fractional Galerkin methods for solving this kind of Volterra equation.
Then, we study the existence, uniqueness and convergence properties of Galerkin solutions by
exploiting the decaying rate of the coefficients of the transformed fractional Jacobi series. Finally,
numerical experiments are carried out to illustrate the performance of the piecewise Galerkin solution.
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1. Introduction

In recent years, considerable interest in the field of numerical solutions to Volterra
integro-differential equations (VIDEs) with singular kernels has been stimulated by their
wide application [1] and close relation to fractional differential equations. Consider the
following VIDE with a weakly singular kernel:

y′(t) = p(t)y(t) + q(t) +
∫ t

0
(t− s)µK(t, s)y(s)ds, t ∈ [0, T], (1)

where y(0) = y0 denotes the initial value, p(t) and q(t) are continuous on [0, T], K(t, s) is
continuous in the domain D := {(t, s) : 0 ≤ s ≤ t ≤ T} and µ ∈ (−1, 0). Without loss of
generality, we assume T = 1. According to [2] (Theorem 7.1.1), the VIDE in Equation (1)
possesses a unique solution y(t) ∈ C([0, 1]). Aside from that, the regularity of the derivative
of y(t) is given by

|y′′(t)| ≤ Btµ, t ∈ (0, 1],

which implies the second derivative of y(t) is unbounded at t = 0. In the remaining parts,
we denote various constants to be B for simplicity. The singularity of y′′(t) presents diffi-
culties in the construction of high-order numerical methods. In fact, standard algorithms
with uniform grids usually result in a low convergence rate O(hµ+1), with h denoting the
stepsize ([2], Theorem 7.2.3).

To address this thorny difficulty, graded meshes are employed by several authors.
In [3], Brunner, Pedas and Vainikko transformed the original VIDE (Equation (1)) into
the second type of Volterra integral equation by employing integration and Dirichlet’s
formula. By applying collocation methods to the transformed Volterra integral equations
at the graded meshes, efficient numerical solutions to the weakly singular problem were
constructed in Equation (1). Furthermore, a comprehensive theory of the optimal conver-

gence estimates was established. Let [0, 1] be partitioned by grid points tj =

(
j

N

)r
with

r >
m

1 + µ
, where m denotes the number of collocation points in each subinterval. Then,
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the convergence order of the collocation solution to the VIDE in Equation (1) could attain
O(hm). Similarly, by utilizing geometrically graded meshes, Brunner and Schötzau ana-
lyzed the discontinuous Galerkin method for the VIDE in Equation (1) in [4]. By imposing
particular bounds for p(t) and the initial data, the Galerkin approximation guaranteed an
exponential convergence. Parabolic Volterra integro-differential equations with weakly
singular kernels were considered in [5], where error estimates with respect to all parameters
were developed. By using non-uniformly refined time steps, Mustapha devised supercon-
vergent discontinuous Galerkin approximations in [6]. Moreover, continuous Galerkin
methods were discussed by Yi and Guo in [7], where algebraic convergence rates were
achieved with quasi-uniform meshes. Its extension to Volterra delay-integro-differential
equations was considered in [8]. Based on the reducible quadrature developed from the
boundary value technique for solving the differential equation, the block boundary value
method was investigated in [9].

Although numerical algorithms at graded meshes are able to increase the convergence
rate, clustering of the collocation points near t = 0 makes themselves suffer round-off errors
if the graded parameter r is large. An applicable alternative approach is to employ fractional
polynomials or variable transformation, which has gained more and more attention in last
several years. In [10], Diogo et al. studied the method of smoothing the solutions of VIDEs
with weakly singular kernels. The solutions were regularized by the transformation such
that ϕ(t) = td, and piecewise collocation methods with a graded mesh were employed. Let
r be the graded parameter. Then, the magnitude of the transformed collocation error eN
enjoyed the following estimates (see [10], Theorem 4.2):

• If d(1 + µ) < m < 1 + d(1 + µ), and r ≥ 1, then

eN = O(N−m), N → ∞.

• If m = 1 + d(1 + µ), then

eN =

{
O(N−m(1 + log N)), r = 1,
O(N−m), r > 1.

• If m > 1 + d(1 + µ), then

eN =


O(N−r(1+d(1+µ))), 1 ≤ r < m/(1 + d(1 + µ)),
O(N−m(1 + log N)), r = m/(1 + d(1 + µ)),
O(N−m), r > m/(1 + d(1 + µ)).

A similar technique was extended to the numerical solution of the weakly singular
Volterra integral equations in two dimensions (see [11]). It can be seen from the above
theoretical results that the regularized algorithm results in pretty fast convergence rates,
even in the case where the weak singularity is not known. With the help of fractional Jacobi
polynomials, a class of fractional spectral Galerkin methods for VIDEs was discussed by
Hou and Xu in [12]. Under restrictions on the coefficient of y(t) and the kernel function
K(t, s), the existence and uniqueness of the Galerkin solution and corresponding error
estimates were established. The fractional polynomial also plays an important role in
solving other weakly singular problems. In [13], Cai and Chen proposed a class of spectral
collocation methods with the help of fractional Lagrange interpolation. Aside from that,
they considered the conditioning number of the discretized linear system and gave the error
estimates with respect to special Chebyshev-type weight functions. Its further extension to
nonlinear problems was studied in [14]. By utilizing the zeros of fractional Jacobi polynomi-
als, Hou, et al. discussed the fractional spectral method in [15], where detailed convergence
properties with regard to the L∞- and weighted L2-norms were proposed. Through trans-
forming the initial value problem into the boundary value problem with approximated
end values, the authors developed a kind of fractional collocation boundary value method
for solving the second type of Volterra integral equations with weakly singular kernels
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in [16]. Fractional Jacobi polynomials also found application in the calculation of highly
oscillatory integrals. In [17], a special kind of Petrov–Galerkin method for solving Levin’s
equation was discussed, which led to an efficient sparse fractional Jacobi–Galerkin–Levin
quadrature rule. The third kind of Volterra integral equation was studied with the help
of fractional interpolation in [18], where numerical studies indicated that the fractional
collocation method provided more accurate approximations than the graded mesh did.

This paper is devoted to studying the piecewise fractional Galerkin approximation
to the solutions of VIDEs (Equation (1)). The remaining parts of this paper are organized
as follows. In Section 2, we give the description of piecewise fractional Galerkin methods
(PFG). Then, the solvability and convergence property of PFG are discussed in Section 3.
Numerical experiments are conducted in Section 4 to illustrate the performance of PFG. In
the final section, we conclude with some remarks.

2. Formulation of PFG

In this section we will introduce transformed fractional Jacobi polynomials and con-
struct PFG for a VIDE (Equation (1)).

By letting ωα,β(x) = (1− x)α(1 + x)β denote the weight function, we obtain Jacobi
polynomials {Pα,β

n (x)}∞
n=0, which are orthogonal with respect to the weight function ωα,β(x)

on the interval [−1, 1]; that is, we have∫ 1

−1
ωα,β(x)Pα,β

j (x)Pα,β
k (x)dx = γ

α,β
j δj,k, (2)

where (see [19], p. 73)

δj,k =

{
1, j = k,
0, j 6= k,

γ
α,β
j =

2α+β+1Γ(j + β + 1)Γ(j + α + 1)
(2j + α + β + 1)Γ(j + 1)Γ(j + α + β + 1)

.

To handle weakly singular problems, it is convenient to resort to a class of high-order
Jacobi approximations by extending the definition of Müntz–Legendre polynomials ([20,21])
(i.e., the transformed fractional Jacobi polynomials):

Definition 1. The transformed fractional Jacobi polynomial of a degree n over the interval [a, b]
with a ≥ 0 is defined as

Pλ,α,β
n,a,b (x) := Pα,β

n

(
2

x1/λ − a1/λ

b1/λ − a1/λ
− 1

)
, ∀x ∈ [a, b], (3)

where λ ∈ [1, ∞) denotes the regularization parameter and α, β > −1. In the case of λ = 1,
P1,α,β

n,a,b (x) reduces to the classical transformed Jacobi polynomial.

Noting that

∫ b

a
λ−1(b1/λ − x1/λ)α(x1/λ − a1/λ)βx1/λ−1Pλ,α,β

j,a,b (x)Pλ,α,β
k,a,b (x)dx

=
∫ b1/λ

a1/λ
(b1/λ − t)α(t− a1/λ)βPλ,α,β

j,a,b (tλ)Pλ,α,β
k,a,b (tλ)dt

=

(
b1/λ − a1/λ

2

)1+α+β ∫ 1

−1
(1− s)α(1 + s)βPα,β

j (s)Pα,β
k (s)ds,

where variable transformations

x = tλ and t =
b1/λ − a1/λ

2
s +

a1/λ + b1/λ

2
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are employed, we arrive at the following lemma with the help of Equation (2):

Lemma 1. The fractional Jacobi polynomials {Pλ,α,β
n,a,b (x)}∞

n=0 are orthogonal with respect to the

weight function ω
λ,α,β
a,b (x) = λ−1(b1/λ − x1/λ)α(x1/λ − a1/λ)βx1/λ−1 over the interval [a, b],

where a ≥ 0.

Let Xh := {t0, · · · , tN : 0 = t0 < t1 < · · · < tN = 1} be a uniform grid with nodes
tn = nh, where n = 0, 1, · · · , N and h = 1/N. By employing the graded parameter λ,
we can divide the interval [0, 1] into N subintervals; that is, [tλ

0 , tλ
1 ], · · · , [tλ

N−1, tλ
N ], where

tλ
n =

( n
N

)λ
. Furthermore, we define the piecewise fractional projection operator Pλ,m,N

with respect to the grid {tλ
0 , tλ

1 , · · · , tλ
N} as

(Pλ,m,N f )(t) = (Pm,λ
tλ
n ,tλ

n+1
f )(t), ∀t ∈ (tλ

n , tλ
n+1],

where Pm,λ
a,b denotes the projection operator, satisfying

< f , ψ
λ,α,β
k,a,b >

λ,α,β
a,b =< Pm,λ

a,b f , ψ
λ,α,β
k,a,b >

λ,α,β
a,b , k = 0, 1, · · · , m,

over the interval (a, b] and where Pm,λ
a,b f ≡ 0 on [0, 1] \ (a, b]. Here, the test function ψ

λ,α,β
k,a,b (t)

is defined by

ψ
λ,α,β
k,a,b (t) =

{
Pλ,α,β

k,a,b (t), t ∈ (a, b],
0, others,

In addition, the inner product < ·, · >λ,α,β
a,b is defined by

< f , g >
λ,α,β
a,b =

∫ b

a
λ−1(b1/λ − t1/λ)α(t1/λ − a1/λ)βt1/λ−1 f (t)g(t)dt.

By employing the transformation (see [22])

y(t) = y0 + ŷ(t)e
∫ t

0 p(s)ds,

Then, we have

ŷ′(t) = q̂(t) +
∫ t

0
K̂(t, s)ŷ(s)ds (4)

with

ŷ(0) =0, K̂(t, s) = (t− s)µK(t, s)e−
∫ t

s p(τ)dτ ,

q̂(t) =
(

y0 p(t) + q(t) + y0 +
∫ t

0
(t− s)µK(t, s)ds

)
e−
∫ t

0 p(s)ds.

Integration of both sides of Equation (4) results in∫ t

0
y′(s)ds =

∫ t

0
q̂(s)ds +

∫ t

0

∫ s

0
K̂(s, v)y(v)dvds.

With the help of Dirichlet’s formula∫ t

0

∫ s

0
Φ(s, v)dvds =

∫ t

0

∫ t

v
Φ(s, v)dvds, 0 ≤ v ≤ s ≤ t,
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Then, we obtain

ŷ(t) =
∫ t

0
q̂(s)ds +

∫ t

0

(∫ t

s
K̂(v, s)dv

)
ŷ(s)ds

=q̃(t) + (K̃ŷ)(t), (5)

or

y(t) = q̃(t) + (K̃y)(t), (6)

for simplicity, where

q̃(t) :=
∫ t

0
q(s)ds and (K̃y)(t) :=

∫ t

0
K̃(t, s)y(s)ds =

∫ t

0

(∫ t

s
K̂(v, s)dv

)
y(s)ds.

Recalling the operator Pλ,m,N , we obtain the piecewise fractional Galerkin solution
yN(t) with

Pλ,m,NyN = Pλ,m,N q̃ + Pλ,m,NK̃yN , (7)

or equivalently

< yN , ψ
λ,α,β
k,tλ

n ,tλ
n+1

>
λ,α,β
tλ
n ,tλ

n+1
=< q̃, ψ

λ,α,β
k,tλ

n ,tλ
n+1

>
λ,α,β
tλ
n ,tλ

n+1
+ < K̃yN , ψ

λ,α,β
k,tλ

n ,tλ
n+1

>
λ,α,β
tλ
n ,tλ

n+1
. (8)

In fact, we can represent the approximate solution yN(t) as

yN(t) =
N−1

∑
n=0

m

∑
j=0

cn
j φ

α,β,λ
j,n (t), t ∈ (0, 1], (9)

with the local basis function

φ
α,β,λ
j,n (t) =

Pλ,α,β
j,tλ

n ,tλ
n+1

(t), t ∈ (tλ
n , tλ

n+1],

0, others.

We define the notation

ϕn,λ(x) =
(

tn +
tn+1 − tn

2
(1 + x)

)λ

.

By employing variable transformations

t = sλ and s = tn +
tn+1 − tn

2
(1 + x),
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Then, we can compute

< yN , ψ
λ,α,β
k,tλ

n ,tλ
n+1

>
λ,α,β
tλ
n ,tλ

n+1

=
∫ tλ

n+1

tλ
n

λ−1t1/λ−1
(

tn+1 − t1/λ
)α(

t1/λ − tn

)β
yN(t)Pλ,α,β

k,tλ
n ,tλ

n+1
(t)dt

=
∫ tλ

n+1

tλ
n

λ−1t1/λ−1
(

tn+1 − t1/λ
)α(

t1/λ − tn

)β
Pλ,α,β

k,tλ
n ,tλ

n+1
(t)

m

∑
j=0

cn
j Pλ,α,β

j,tλ
n ,tλ

n+1
(t)dt

=
∫ tn+1

tn
(tn+1 − s)α(s− tn)

βλ−1s1−λPλ,α,β
k,tλ

n ,tλ
n+1

(sλ)
m

∑
j=0

cn
j Pλ,α,β

j,tλ
n ,tλ

n+1
(sλ)λsλ−1ds

=
h1+α+β

2

∫ 1

−1
(1− x)α(x + 1)βPα,β

k (x)
m

∑
j=0

cn
j Pα,β

j (x)dx,

< q̃, ψ
λ,α,β
k,tλ

n ,tλ
n+1

>
λ,α,β
tλ
n ,tλ

n+1

=
∫ tλ

n+1

tλ
n

λ−1t1/λ−1
(

tn+1 − t1/λ
)α(

t1/λ − tn

)β
Pλ,α,β

k,tλ
n ,tλ

n+1
(t)q̃(t)dt

=
∫ tn+1

tn
(tn+1 − s)α(s− tn)

βλ−1s1−λPλ,α,β
k,tλ

n ,tλ
n+1

(sλ)q̃(sλ)λsλ−1ds

=
h1+α+β

2

∫ 1

−1
(1− x)α(x + 1)βPα,β

k (x)q̃(ϕn,λ(x))dx,

and

< K̃yN , ψ
λ,α,β
k,tλ

n ,tλ
n+1

>
λ,α,β
tλ
n ,tλ

n+1

=
∫ tλ

n+1

tλ
n

λ−1t1/λ−1
(

tn+1 − t1/λ
)α(

t1/λ − tn

)β
Pλ,α,β

k,tλ
n ,tλ

n+1
(t)
∫ t

0
K̃(t, v)yN(v)dvdt

=
∫ tλ

n+1

tλ
n

λ−1t1/λ−1
(

tn+1 − t1/λ
)α(

t1/λ − tn

)β
Pλ,α,β

k,tλ
n ,tλ

n+1
(t)
∫ t

tλ
n

K̃(t, v)yN(v)dvdt

+
∫ tλ

n+1

tλ
n

λ−1t1/λ−1
(

tn+1 − t1/λ
)α(

t1/λ − tn

)β
Pλ,α,β

k,tλ
n ,tλ

n+1
(t)

n−1

∑
l=0

∫ tλ
l+1

tλ
l

K̃(t, v)yN(v)dvdt

=
∫ tn+1

tn
(tn+1 − s)α(s− tn)

βPλ,α,β
k,tλ

n ,tλ
n+1

(sλ)
∫ sλ

tλ
n

K̃(sλ, v)yN(v)dvds

+
∫ tn+1

tn
(tn+1 − s)α(s− tn)

βPλ,α,β
k,tλ

n ,tλ
n+1

(sλ)
n−1

∑
l=0

∫ tλ
l+1

tλ
l

K̃(sλ, v)yN(v)dvds

=
h1+α+β

2

∫ 1

−1
(1− x)α(x + 1)βPα,β

k (x)
∫ ϕn,λ(x)

tλ
n

K̃(ϕn,λ(x), v)yN(v)dvdx

+
h1+α+β

2

∫ 1

−1
(1− x)α(x + 1)βPα,β

k (x)
n−1

∑
l=0

∫ tλ
l+1

tλ
l

K̃(ϕn,λ(x), v)yN(v)dvdx.

Hence, the moment integral < yN , ψ
λ,α,β
k,tλ

n ,tλ
n+1

>
λ,α,β
tλ
n ,tλ

n+1
can be computed in a closed form,

and other moments, such as < q̃, ψ
λ,α,β
k,tλ

n ,tλ
n+1

>
λ,α,β
tλ
n ,tλ

n+1
and < K̃yN , ψ

λ,α,β
k,tλ

n ,tλ
n+1

>
λ,α,β
tλ
n ,tλ

n+1
, can be

efficiently evaluated by Gauss-type quadrature rules in CHEBFUN (see [23]). Once the linear
system in Equation (8) is solved step by step, we will obtain the piecewise Galerkin solution
yN(t) immediately.
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3. Solvability and Convergence Property of PFG

In this section, we will study the solvability and convergence property of the Galerkin
approximation yN(t), defined in Equation (8). We begin with the approximation results of
truncated spectral expansions. Let us restrict the considered function in the current paper
to the following definition:

Definition 2. Any function f (x) is said to be in A([a, b], γ) with γ > −1 if it satisfies the
following conditions:

• f (x) has the form of (x− a)γg1(x) + g2(x), with γ being a positive real number;
• Both g1(x) and g2(x) are analytic in a sufficiently large domain containing the interval [a, b].

If we assume f (x) belongs to A([−1, 1], γ), then its orthogonal polynomial expansion
with respect to the weight function ω(x) = (1− x)α(x + 1)β is defined as

f (x) =
∞

∑
n=0

cn(α, β)Pα,β
n (x),

where

cn(α, β) =
1
σn

∫ 1

−1
(1− x)α(x + 1)β f (x)Pα,β

n (x)dx,

and

σn =
∫ 1

−1
(1− x)α(x + 1)βPα,β

n (x)Pα,β
n (x)dx.

Analysis of the decay rate of such coefficients helps with studying the error bound
derived from the truncation of the Jacobi series (see [24,25]). In fact, according to Rodrigues’
formula ([19], p. 72), we have

(1− x)α(x + 1)βPα,β
n (x) =

(−1)k

2k

k−1

∏
j=0

1
n− j

dk

dxk

(
(1− x)α+k(1 + x)β+kPα+k,β+k

n−k (x)
)

.

A direct integration by parts results in

cn(α, β) =

∫ 1

−1
(1− x)α+k(1 + x)β+k f (k)(x)Pα+k,β+k

n−k (x)dx

σn2k
k−1

∏
j=0

(n− j)

. (10)

Now, let us consider the Jacobi expansion on an arbitrary interval [a, b] with a ≥ 0.
Suppose that f (x) = (x− a)γg1(x) + g2(x) is defined on [a, b], where g1(x) and g2(x) are
analytic in a sufficiently large domain containing the interval [a, b]. Then, the coefficients of
the Jacobi expansion of f (x) can be computed by the following for k = 0, 1, · · · , n:

cn(α, β) =
1

σa,b
n

(
b− a

2

)1+α+β ∫ 1

−1
(1− x)α(x + 1)β f

(
b− a

2
x +

a + b
2

)
Pα,β

n (x)dx

=

(
b− a

2

)k+1+α+β

∫ 1

−1
(1− x)α+k(1 + x)β+k f (k)

(
b− a

2
x +

a + b
2

)
Pα+k,β+k

n−k (x)dx

σa,b
n 2k

k−1

∏
j=0

(n− j)

, (11)

where

σa,b
n =

∫ b

a
(b− x)α(x− a)βP1,α,β

n,a,b (x)P1,α,β
n,a,b (x)dx
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Furthermore, by letting b− a→ 0, we have the following by noting for Equation (11)
that n = 0, 1, 2, · · · :

cn(α, β) =

{
O((b− a)γ), γ < n,
O((b− a)n), γ ≥ n.

(12)

Let Pn
a,b denote the projection operator which satisfies

< y, P1,α,β
k,a,b >

α,β
a,b =< Pn

a,by, P1,α,β
k,a,b >

α,β
a,b , k = 0, 1, · · · , n.

Here, the inner product < ·, · >α,β
a,b is defined by

< f , g >
α,β
a,b =

∫ b

a
(b− x)α(x− a)β f (x)g(x)dx.

Since

(I −Pn
a,b) f =

∞

∑
j=n+1

cj(α, β)P1,α,β
j,a,b (x),

Then, we obtain the estimate for the truncated Jacobi approximation; that is, we have
the following:

Lemma 2. Suppose f (x) belongs to A([a, b], γ). Then, for the Jacobi expansion, it follows that as
b− a→ 0, the following holds:

‖(I −Pn
a,b) f ‖∞ =

{
O((b− a)γ), γ < n + 1,
O((b− a)n+1), γ ≥ n + 1.

The above classical Jacobi polynomial theory provides us powerful tools for analyzing
the fractional Jacobi expansions. Suppose that

e(x) :=
(
(I −Pn,λ

a,b ) f
)
(x) =

∞

∑
j=n+1

cj(λ)Pλ,α,β
j,a,b (x).

For j ≥ n + 1, we have

cj(λ) =

∫ b

a
λ−1x1/λ−1

(
b1/λ − x1/λ

)α(
x1/λ − a1/λ

)β
e(x)Pλ,α,β

j,a,b (x)dx∫ b

a
λ−1x1/λ−1

(
b1/λ − x1/λ

)α(
x1/λ − a1/λ

)β
Pλ,α,β

j,a,b (x)Pλ,α,β
j,a,b (x)dx

=

∫ b1/λ

a1/λ

(
b1/λ − t

)α(
t− a1/λ

)β
e(tλ)Pλ,α,β

j,a,b (tλ)dt∫ b1/λ

a1/λ

(
b1/λ − t

)α(
t− a1/λ

)β
Pλ,α,β

j,a,b (tλ)Pλ,α,β
j,a,b (tλ)dt

=

∫ 1

−1
(1− s)α(s− 1)βe

( b1/λ − a1/λ

2
s +

b1/λ + a1/λ

2

)λ
Pα,β

j (s)ds

∫ 1

−1
(1− s)α(s− 1)βPα,β

j (s)Pα,β
j (s)ds

=
1
σj

∫ 1

−1
(1− s)α(s− 1)β f

( b1/λ − a1/λ

2
s +

b1/λ + a1/λ

2

)λ
Pα,β

j (s)ds.
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Here, the variable transformations

x = tλ and t =
b1/λ − a1/λ

2
s +

b1/λ + a1/λ

2

are employed. If f (x) ∈ A([a, b], γ), then we have f

( b1/λ − a1/λ

2
s +

b1/λ + a1/λ

2

)λ


belonging to A([a1/λ, b1/λ], λγ), which implies

cλ
n(α, β) =

{
O((b1/λ − a1/λ)λγ), λγ < n + 1,
O((b1/λ − a1/λ)n+1), λγ ≥ n + 1.

(13)

With Lemma 2 in mind, we arrive at the following result:

Corollary 1. Suppose f (x) belongs to A([a, b], γ), where a ≥ 0. Then, for the fractional Jacobi
expansion, it follows that as b1/λ − a1/λ → 0, we have

‖(I −Pn,λ
a,b ) f ‖∞ =

{
O((b1/λ − a1/λ)λγ), λγ < n + 1,
O((b1/λ − a1/λ)n+1), λγ ≥ n + 1.

The solution to the VIDE in Equation (1) can be analyzed with the help of the basic
Volterra theory of the second kind. For sufficiently smooth p(t), q(t) and K(t, s), its asymp-
totic expansion can be obtained by utilizing Picard’s iteration ([2], Theorem 7.1.4). We
summarize these theoretical results in the following lemma:

Lemma 3. Assume q ∈ A([0, 1], µ + 1) and K ∈ Cm(D), where K(t, t) 6= 0, p ∈ Cm([0, 1]) and
µ ∈ (−1, 0). Then, the solution y of Equation (1) can be written in the following form:

y(t) = ∑
(j,k)µ

γj,k(µ)tj+k(2+µ) + Ym+1(t, µ), (14)

where
(j, k)µ := {(j, k) : j, k ∈ N, j + k(2 + µ) < m + 1}.

Moreover, Ym+1(t, µ) ∈ Cm+1(I).

It is noted that the exact solution y(t) to the VIDE in Equation (1) belongs toA([0, 1], 2+
µ) under the assumption of Lemma 3. Now, we arrive at the main theoretical result of the
current paper:

Theorem 1. Assume the following:

• The regularization parameter λ determining the mesh Xλ
N is given;

• The given functions in Equation (1) satisfy K(t, s) ∈ Cm+1(D)n p ∈ Cm([0, 1]) and q(t) ∈
A([0, 1], 1 + µ).

Let yN denote the piecewise fractional Galerkin solution computed by Equation (8), and denote
the error function as eN(t) := y(t)− yN(t). Then, the maximum of eN(t) over the interval [0, 1]
satisfies

‖eN(t)‖∞ ≤ B

{
N−λ(2+µ), λ(2 + µ) < m + 1,
N−m−1, λ(2 + µ) ≥ m + 1.

(15)

Here, the constant B does not depend on m and N.

Proof. First, we study the existence and uniqueness of the Galerkin approximation yN(t).
This is equivalent to proving the fact that yN(t) = 0 is the unique solution of the homoge-
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nous equation. In fact, the Galerkin solution for the corresponding homogenous version of
Equation (1) satisfies

Pλ,m,NyN = Pλ,m,NK̃yN . (16)

Noting the localization of the operator Pλ,m,N , we have

< yN , ψ
λ,α,β
k,0,tλ

1
>

λ,α,β
0,tλ

1
=< K̃yN , ψ

λ,α,β
k,0,tλ

1
>

λ,α,β
0,tλ

1
. (17)

The coefficient matrix Ale f t on the left-hand side is diagonal and invertible due to the

orthogonality of Pα,β
n (t). Furthermore, by letting h → 0, we have ‖Ale f t‖∞ = O(h1+α+β).

For the right-hand side, it follows by a direct calculation that

< K̃yN , yN >
λ,α,β
0,tλ

1
=
∫ tλ

1

0
(t1 − t1/λ)αtβ/λyN(t)

∫ t

0
K̃(t, v)yN(v)dvdt

≤ K̄
µ + 1

‖yN‖2
∞

∫ tλ
1

0
(t1 − t1/λ)αtβ/λ

∫ t

0
dvdt

≤Bhλ+1+α+β‖yN‖2
∞,

where K̄ denotes the maximum of K(t, s) in the domain {(t, s) : 0 ≤ s ≤ t ≤ 1}. This
implies that the maximum of the coefficient matrix on the right-hand side is O(hλ+1+α+β).
Hence, it follows that yN(t) ≡ 0 for any t ∈ [0, tλ

1 ]. Noting that

Pλ,m,NyN = Pλ,m,N

(
n−1

∑
j=0

∫ tλ
j+1

tλ
j

K̃(t, s)yN(s)ds

)
+ Pλ,m,N

(∫ t

tλ
n

K̃(t, s)yN(s)ds
)

Then, we can continue yN(t) ≡ 0 to [0, 1] by the induction, which implies that Equa-
tion (8) can be uniquely solved.

Secondly, let us study the convergence property of the fractional Galerkin solution
yN(t). Noting that

yN = Pλ,m,N q̃ + Pλ,m,NK̃yN , y = q̃ + K̃y,

Then, we can compute

eN =(Pλ,m,N − I)q̃ + Pλ,m,NK̃yN − K̃y

=(Pλ,m,N − I)q̃ + Pλ,m,NK̃eN + (Pλ,m,N − I)K̃y.

Let εn denote the maximum of eN(t) on (tλ
n , tλ

n+1]. Then, for any t ∈ (tλ
n , tλ

n+1], it
follows that

εn ≤ ‖(Pλ,m,N − I)q̃‖∞ + ‖Pλ,m,NK̃eN‖∞ + ‖(Pλ,m,N − I)K̃y‖∞. (18)

The remaining work is to estimate the above equation term by term. In fact, a direct
calculation leads to
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‖Pλ,m,NK̃eN‖∞ ≤K̄
∫ t

0

(∫ t

s
(t− τ)µdτ

)
|eN(s)|ds

=
K̄

µ + 1

∫ t

0
(t− s)µ+1|eN(s)|ds

=
K̄

µ + 1

(
n−1

∑
j=0

∫ tλ
j+1

tλ
j

(t− s)µ+1|eN(s)|ds +
∫ t

tλ
n

(t− s)µ+1|eN(s)|ds

)

≤ K̄
µ + 1

n

∑
j=0

ljεj,

where

lj =


∫ tλ

j+1

tλ
j

(t− s)µ+1ds, j = 0, 1, · · · , n− 1,∫ t

tλ
n

(t− s)µ+1ds, j = n.

Then, we estimate lj in two cases: j = n (Case I) and 0 ≤ j ≤ n− 1 (Case II).
For Case I (j = n) ,we obtain

∫ t

tλ
n

(t− s)µ+1ds ≤
∫ tλ

n+1

tλ
n

(tλ
n+1 − s)µ+1ds

=
1

2 + µ
(tλ

n+1 − tλ
n)

2+µ

≤ 1
2 + µ

N−λ(2+µ)(n + η1)
(λ−1)(2+µ)

≤ 1
2 + µ

N−λ(2+µ)(n + 1)(λ−1)(2+µ), (19)

with η1 ∈ (0, 1).
For Case II (0 ≤ j ≤ n− 1), a direct calculation leads to

∫ tλ
j+1

tλ
j

(t− s)µ+1ds ≤
∫ tλ

j+1

tλ
j

(tλ
n+1 − s)µ+1ds

≤
((

j + 1
N

)λ

−
(

j
N

)λ
)((

n + 1
N

)λ

−
(

j + 1
N

)λ
)µ+1

=λ

(
j + η2

N

)λ−1
λµ+1

(
n− j

N

)µ+1( j + 1 + η3

N

)(λ−1)(µ+1)

≤λµ+2N−λ(µ+2)(j + 1)λ−1 j(λ−1)(µ+1)(n− j)µ+1

≤λµ+2N−λ(µ+2)(n− j)µ+1(j + 1)(λ−1)(µ+2), (20)

with η2, η3 ∈ (0, 1).
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To sum up, it follows that

n

∑
j=0

lj ≤BN−γ(µ+2)(nα + (n− 1)µ+12(γ−1)(µ+2) + · · ·

+ 2µ+1(n− 1)(γ−1)(µ+2) + 1µ+1n(γ−1)(µ+2) + (n + 1)(γ−1)(µ+2))

≤B(n + 1)−γ(µ+2)(nµ+1 + (n− 1)µ+12(γ−1)(µ+2) + · · ·

+ 2µ+1(n− 1)(γ−1)(µ+2) + 1µ+1n(γ−1)(µ+2) + (n + 1)(γ−1)(µ+2))

=B

(
(n + 1)−(µ+2) +

1
n + 1

n

∑
j=1

(
1− j

n + 1

)µ+1( j
n + 1

)(γ−1)(µ+2)
)

≤B
(

1 +
∫ 1

0
(1− x)µ+1x(γ−1)(µ+2)dx

)
=B(1 + BETA((γ− 1)(µ + 2) + 1, µ + 2)). (21)

Here, BETA(·, ·) denotes the beta function ([26], p. 142).
Noting that (Pλ,m,N − I)q̃ and (Pλ,m,N − I)K̃y belong to A([0, 1], 1 + µ), we obtain

their error bounds by Lemma 2:

‖(Pλ,m,N − I)q̃‖∞ := εq ≤ B

{
N−λ(2+µ), λ(2 + µ) < m + 1,
N−m−1, λ(2 + µ) ≥ m + 1.

(22)

‖(Pλ,m,N − I)K̃y‖∞ := εKy ≤ B

{
N−λ(2+µ), λ(2 + µ) < m + 1,
N−m−1, λ(2 + µ) ≥ m + 1.

(23)

Here, the constant B does not depend on m and N.
On the other hand, since the inequality

εn ≤εq + εKy +
K̄

µ + 1

n

∑
j=0

ljεj

≤εq + εKy +
K̄lnε

µ + 1
+

K̄
µ + 1

n−1

∑
j=0

ljεj

holds, we have the following with the help of Grönwall’s inequality

εn ≤
(

εq + εKy +
K̄ln−1εn

µ + 1

)
e

K̄
µ+1 ∑n−2

j=0 lj (24)

Combining Equations (21)–(24) gives

ε ≤ B

{
N−λ(2+µ), λ(2 + µ) < m + 1,
N−m−1, λ(2 + µ) ≥ m + 1.

(25)

This completes the proof.

4. Numerical Experiments

In this section, we apply PFG to the weakly singular problem of the form in Equation (1)
to demonstrate the effectiveness of the piecewise discretization. The singular parameter µ
is chosen randomly to verify the estimate in Theorem 1.
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Consider the weakly singular VIDE

y′(t) = qµ(t) +
∫ t

0
(t− s)µy(s)ds, t ∈ [0, 1]. (26)

Here, qµ(t) = (2+µ)t1+µ−BETA(1+µ, 3+µ)t2µ+3, and the exact solution is y(t) = t2+µ.
By letting

eN :=
(

eN

(
tλ
0

)
, eN

(
tλ
0 +

h0

10

)
, · · · , eN

(
tλ
1

)
, · · · , eN

(
tλ

N

))T
, hj = tλ

j+1 − tλ
j ,

Then, we compute the maximum of eN and show the numerical results in Tables 1–3.
Here, we choose α = β = 0. The “error” in the tables represents the maximum of eN , and
the “order” is computed by

order =
log errorcurrent − log errorprevious

log Ncurrent − log Nprevious
.

That aside, “Refer Order” denotes the theoretical estimates given in Theorem 1. The
results shown in Tables 1–3 illustrate that the theoretical convergence rate coincided with
the numerical experiments well. In addition, we found that increasing the regularization pa-
rameter λ promoted the accuracy of the numerical solutions from the comparison between
the computed results in Tables 1–3.

Table 1. Absolute errors and convergence rates of PFG for Equation (26) when α = β = 0,
µ = −0.2 and λ = 1.

m = 2 m = 4
Error Order Error Order

N = 4 2.79× 10−4 – 1.78× 10−5 –

N = 8 8.00× 10−5 1.8023 5.10× 10−6 1.8004

N = 12 3.86× 10−5 1.8008 2.46× 10−6 1.8002

N = 16 2.30× 10−5 1.8004 1.47× 10−6 1.8001

N = 20 1.54× 10−5 1.8003 9.81× 10−7 1.8001

Refer Order 1.8000 1.8000

Table 2. Absolute errors and convergence rates of PFG for Equation (26) when α = β = 0,
µ = −0.2 and λ = 2.

m = 2 m = 4
Error Order Error Order

N = 4 8.00× 10−4 – 9.46× 10−7 –

N = 8 1.04× 10−4 2.9485 7.80× 10−8 3.5999

N = 12 3.15× 10−5 2.9081 1.81× 10−8 3.6000

N = 16 1.37× 10−5 2.9383 6.44× 10−9 3.6000

N = 20 7.08× 10−6 2.9534 2.88× 10−9 3.6000

Refer Order 3.0000 3.6000
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Table 3. Absolute errors and convergence rates of PFG for Equation (26) when α = β = 0,
µ = −0.2 and λ = 3.

m = 2 m = 4
Error Order Error Order

N = 4 3.48× 10−3 – 3.47× 10−6 –

N = 8 5.03× 10−4 2.7899 1.11× 10−7 4.9645

N = 12 1.55× 10−4 2.9047 1.45× 10−8 5.0125

N = 16 6.73× 10−5 2.8949 3.44× 10−9 5.0173

N = 20 3.55× 10−5 2.8677 1.12× 10−9 5.0169

Refer Order 3.0000 5.0000

Next, we compare the proposed PFG with the classical piecewise collocation methods
with Gauss–Legendre points in the case of µ = α = β = −0.5. The graded parameters for
the collocation methods are denoted as r. In Tables 4–9, we display the computed results. It
can be seen that the theoretical estimate for the convergence rates of PFG was optimal in
this case. In the case of λ = 2, PFG with m = 4 resulted in numerical solutions which were
able to achieve machine precision in MATLAB (see the right hand side of Table 6), while the
collocation method could not work out similar numerical approximations. We also found
that although the theoretical convergence rates of the PFG and collocation methods were
the same in the case of m = 4, the PFG provided more accurate approximations than the
collocation method.

Table 4. Absolute errors and convergence rates of PFG for Equation (26) when α = β = −0.5,
µ = −0.5 and λ = 1.

m = 2 m = 4
Error Order Error Order

N = 4 1.11× 10−3 – 1.52× 10−4 –

N = 8 3.89× 10−4 1.5116 5.36× 10−5 1.5020

N = 12 2.11× 10−4 1.5049 2.92× 10−5 1.5008

N = 16 1.37× 10−4 1.5029 1.89× 10−5 1.5005

N = 20 9.81× 10−5 1.5020 1.36× 10−5 1.5003

Refer Order 1.5000 1.5000

Table 5. Absolute errors and convergence rates of collocation methods on graded meshes for Equa-
tion (26) when µ = −0.5 and r = 1.

m = 2 m = 4
Error Order Error Order

4 4.34× 10−3 – 6.58× 10−4 –

8 1.49× 10−3 1.5472 2.31× 10−4 1.5106

12 8.00× 10−4 1.5260 1.25× 10−4 1.5060

16 5.17× 10−4 1.5181 8.13× 10−5 1.5042

20 3.69× 10−4 1.5139 5.82× 10−5 1.5033

Refer Order 1.5000 1.5000



Axioms 2022, 11, 530 15 of 19

Table 6. Absolute errors and convergence rates of PFG for Equation (26) when α = β = −0.5,
µ = −0.5 and λ = 2.

m = 2 m = 4
Error Order Error Order

N = 4 4.89× 10−4 – 6.07× 10−14 –

N = 8 6.10× 10−5 3.0022 6.31× 10−14 –

N = 12 1.81× 10−5 3.0004 6.39× 10−14 –

N = 16 7.63× 10−6 3.0001 6.93× 10−14 –

N = 20 3.91× 10−6 3.0001 7.57× 10−14 –

Refer Order 3.0000 3.0000

Table 7. Absolute errors and convergence rates of collocation methods on graded meshes for Equa-
tion (26) when µ = −0.5 and r = 2.

m = 2 m = 4
Error Order Error Order

4 8.86× 10−4 – 8.22× 10−5 –

8 1.13× 10−4 2.9670 1.02× 10−5 3.0042

12 3.38× 10−5 2.9844 3.03× 10−6 3.0013

16 1.43× 10−5 2.9893 1.28× 10−6 3.0007

20 7.34× 10−6 2.9916 6.55× 10−7 3.0004

Refer Order 2.5000 3.0000

Table 8. Absolute errors and convergence rates of PFG for Equation (26) when α = β = −0.5,
µ = −0.5 and λ = 3.

m = 2 m = 4
Error Order Error Order

N = 4 2.63× 10−3 – 1.33× 10−6 –

N = 8 3.68× 10−4 2.8360 5.88× 10−8 4.5001

N = 12 1.12× 10−4 2.9285 9.50× 10−9 4.5000

N = 16 4.80× 10−5 2.9550 2.60× 10−9 4.5000

N = 20 2.48× 10−5 2.9675 9.53× 10−10 4.5000

Refer Order 3.0000 4.5000

Table 9. Absolute errors and convergence rates of collocation methods on graded meshes for Equa-
tion (26) when µ = −0.5 and r = 3.

m = 2 m = 4
Error Order Error Order

4 1.01× 10−3 – 1.56× 10−5 –

8 8.07× 10−5 3.6519 6.90× 10−7 4.5014

12 1.74× 10−5 3.7848 1.11× 10−7 4.5008

16 5.76× 10−6 3.8413 3.05× 10−8 4.5002

20 2.43× 10−6 3.8750 1.12× 10−8 4.5000

Refer Order 2.5000 4.5000

5. Final Remark

We studied the piecewise fractional Galerkin method for the weakly singular VIDE
in Equation (1). The existence, uniqueness and convergence property of the piecewise
fractional Galerkin solution were analyzed in detail. The theoretical and numerical results
showed that the new Galerkin method is efficient at solving weakly singular problems. This
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is partly due to the approximate property of the transformed fractional Jacobi polynomial.
Hence, it is expected that the transformed fractional Jacobi polynomial will be a competitive
tool for solving many classes of singular problems.

It is noted that the proposed Galerkin method depends on the transformation of
Volterra integral equations, which may encounter difficulties in some practical calculation
and increases the computation cost due to the extra computation of integrals. An alternative
approach is to apply the Gakerkin method directly to the original problem (Equation (1)).
In fact, a direct Galerkin method can be constructed by carefully selecting the local basis
functions and weight functions. For example, the approximate solution yN(t) can be
represented by

yN(t) =
N−1

∑
n=0

(
2

t1/λ − tn

tn+1 − tn

m

∑
j=0

cn
j φ

α,β,λ
j,n (t) + yN(tλ

n)Φtλ
n ,tλ

n+1
(t)

)
, t ∈ (0, T], (27)

where Φa,b(t) denotes the characteristic function of the interval (a, b], expressed as

Φa,b(t) =
{

1, t ∈ (a, b],
0, others,

In addition, the local basis function φ
α,β,λ
j,n (t) is defined in Section 2. Furthermore,

we define the piecewise fractional projection operator Qλ,m,N with respect to the grid
{tλ

0 , tλ
1 , · · · , tλ

N} by
(Qλ,m,N f )(t) = f̄n(t), ∀t ∈ (tλ

n , tλ
n+1],

where f̄n(t) satisfies

( f , ψ
λ,α,β
k,tλ

n ,tλ
n+1

)
λ,α,β
tλ
n ,tλ

n+1
= ( f̄n, ψ

λ,α,β
k,tλ

n ,tλ
n+1

)
λ,α,β
tλ
n ,tλ

n+1
, k = 0, 1, · · · , m,

over the interval (tλ
n , tλ

n+1] and f̄n(t) ≡ 0 on [0, 1] \ (tλ
n , tλ

n+1]. Additionally, the modified

inner product (·, ·)λ,α,β
a,b is defined by

( f , g)λ,α,β
a,b =

∫ b

a
(b1/λ − t1/λ)α(t1/λ − a1/λ)β f (t)g(t)dt.

With the help of the operatorQλ,m,N , we obtain the direct piecewise fractional Galerkin
solution yN(t) by

Qλ,m,Ny′N = Qλ,m,N pyN +Qλ,m,Nq +Qλ,m,NKyN , (28)

or the equivalent

(y′N , ψ
λ,α,β
k,tλ

n ,tλ
n+1

)
λ,α,β
tλ
n ,tλ

n+1
= (pyN , ψ

λ,α,β
k,tλ

n ,tλ
n+1

)
λ,α,β
tλ
n ,tλ

n+1
+ (q, ψ

λ,α,β
k,tλ

n ,tλ
n+1

)
λ,α,β
tλ
n ,tλ

n+1
+ (KyN , ψ

λ,α,β
k,tλ

n ,tλ
n+1

)
λ,α,β
tλ
n ,tλ

n+1
. (29)
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A direct calculation leads to

(y′N , ψ
λ,α,β
k,tλ

n ,tλ
n+1

)
λ,α,β
tλ
n ,tλ

n+1

=
∫ tλ

n+1

tλ
n

(
tn+1 − t1/λ

)α(
t1/λ − tn

)β
y′N(t)Pλ,α,β

k,tλ
n ,tλ

n+1
(t)dt

=

(
h
2

)α+β ∫ 1

−1
(1− x)α(x + 1)βPα,β

k (x)

(
m

∑
j=0

2cn
j Pα,β

j (x)

)
dx

+

(
h
2

)α+β ∫ 1

−1
(1− x)α(x + 1)βPα,β

k (x)

(
m

∑
j=1

cn
j (j + α + β + 1)Pα+1,β+1

j−1 (x)

)
dx,

(pyN , ψ
λ,α,β
k,tλ

n ,tλ
n+1

)
λ,α,β
tλ
n ,tλ

n+1

=
∫ tλ

n+1

tλ
n

(
tn+1 − t1/λ

)α(
t1/λ − tn

)β
Pλ,α,β

k,tλ
n ,tλ

n+1
(t)p(t)yN(t)dt

=λ
h1+α+β

2

∫ 1

−1
(1− x)α(x + 1)βPα,β

n (x)p(ϕn,λ(x))

(
m

∑
j=0

cn
j Pα,β

j (x)

)
(ϕn,λ(x))1−1/λdx

+ yN(tλ
n)λ

h1+α+β

2

∫ 1

−1
(1− x)α(x + 1)βPα,β

n (x)p(ϕn,λ(x))(ϕn,λ(x))1−1/λdx,

(q, ψ
λ,α,β
k,tλ

n ,tλ
n+1

)
λ,α,β
tλ
n ,tλ

n+1

=
∫ tλ

n+1

tλ
n

(
tn+1 − t1/λ

)α(
t1/λ − tn

)β
Pλ,α,β

k,tλ
n ,tλ

n+1
(t)q(t)dt

=λ
h1+α+β

2

∫ 1

−1
(1− x)α(x + 1)βPα,β

k (x)q(ϕn,λ(x))(ϕn,λ(x))1−1/λdx,

and

(KyN , ψ
λ,α,β
k,tλ

n ,tλ
n+1

)
λ,α,β
tλ
n ,tλ

n+1

=
∫ tλ

n+1

tλ
n

(
tn+1 − t1/λ

)α(
t1/λ − tn

)β
Pλ,α,β

k,tλ
n ,tλ

n+1
(t)
∫ t

0
(t− v)µK(t, v)yN(v)dvdt

=λ
h1+α+β

2

∫ 1

−1
(1− x)α(x + 1)βPα,β

k (x)
∫ ϕn,λ(x)

tλ
n

(ϕn,λ(x)− v)µK(ϕn,λ(x), v)yN(v)dv(ϕn,λ(x))1−1/λdx

+ λ
h1+α+β

2

∫ 1

−1
(1− x)α(x + 1)βPα,β

k (x)
n−1

∑
l=0

∫ tλ
l+1

tλ
l

(ϕn,λ(x)− v)µK(ϕn,λ(x), v)yN(v)dv(ϕn,λ(x))1−1/λdx.

With the help of Gauss-type quadrature rules, we can implement the above direct
piecewise fractional Galerkin method (DPFG) easily. In Table 10, we apply DPFG to
Equation (26) again. The parameters employed in this numerical example are µ = −0.2,
λ = 2 and α = β = 0, where m and N are both variables. From the computed results, we
can conjecture that DPFG shares the same convergence rate with the PFG. However, the
convergence analysis remains open.
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Table 10. Absolute errors and convergence rates of DPFG for Equation (26) when µ = −0.2 and
λ = 2.

m = 2 m = 4
Error Order Error Order

N = 4 1.80× 10−3 – 3.49× 10−6 –

N = 8 2.10× 10−4 3.1022 2.88× 10−7 3.6000

N = 12 6.17× 10−5 3.0189 6.69× 10−8 3.6000

N = 16 2.63× 10−5 2.9653 2.37× 10−8 3.6000

N = 20 1.35× 10−5 2.9740 1.06× 10−8 3.6000

Refer Order 3.0000 3.6000
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