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Abstract: In this paper, we focus on a family of backward stochastic differential equations (BSDEs)
with subdifferential operators that are driven by infinite-dimensional martingales. We shall show that
the solution to such infinite-dimensional BSDEs exists and is unique. The existence and uniqueness
of the solution are established using Yosida approximations. Furthermore, as an application of
the main result, we shall show that the backward stochastic partial differential equation driven by
infinite-dimensional martingales with a continuous linear operator has a unique solution under the
special condition that the Ft-progressively measurable generator F of the model we proposed in this
paper equals zero.
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1. Introduction

In 1990, Pardoux and Peng [1] initially proposed the general nonlinear case of back-
ward stochastic differential equations (BSDEs): let (ξ, f ) include a square-integrable random
variable ξ and a progressively measurable process f , and let Wt(0≤t≤T) be a k-dimensional
Brownian process. It can be proven that there exists a unique solution of an adapted process
(Y, Z) of the following type of BSDEs:

Yt = ξ +
∫ T

t
f (s, Ys, Zs)ds−

∫ T

t
Zs dWs, 0 ≤ t ≤ T.

Since then, many scholars have begun to carry out more in-depth research on BSDEs.
As a result, BSDEs have developed rapidly, whether in their own development or in many
other related fields such as financial mathematics, stochastic control, biology, the financial
futures market, the theory of partial differential equations, and stochastic games. Reference
can be made to Karoui et al. [2], Hamadene and Lepeltial [3], Peng [4,5], Ren and Xia [6],
and Luo et al. [7], among others. Among the BSDEs, Pardoux and Răşcanu [8] considered
BSDEs involving a subdifferential operator, which are also dubbed Backward Stochastic
Variational Inequalities (BSVIs), and also utilized them with the Feymann–Kac formula
to represent a solution of the multivalued parabolic partial differential equations (PDEs).
Pardoux and Răşcanu [9] demonstrated that the result could be easily expanded to a spatial
setting Hilbert by giving examples of backward stochastic partial differential equations
with solutions. Diomande and Maticiuc [10] used a mixed Euler–Yosida scheme to prove
the existence of the solution of the multivalued BSDEs with time-delayed generators;
Maticiuc and Rotenstein [11] provided the numerical results of the multivalued BSDEs.
Boufoussi [12] showed that there is an existing and unique solution to a type of generalized

Axioms 2022, 11, 536. https://doi.org/10.3390/axioms11100536 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms11100536
https://doi.org/10.3390/axioms11100536
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0001-7465-6174
https://orcid.org/0000-0003-4174-6434
https://orcid.org/0000-0002-9908-5547
https://doi.org/10.3390/axioms11100536
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms11100536?type=check_update&version=2


Axioms 2022, 11, 536 2 of 12

backward doubly stochastic differential equation with a symmetric backward stochastic Itô
integral. Wang and Yu [13] explored this problem with an anticipated type of generalized
backward doubly stochastic differential equation. Instead of normal Brownian motion as
the interference source, Yang et al. [14] showed the existence and uniqueness of the solution
for a type of BSDE driven by a finite G-Brownian process with the subdifferential operator
by using the Method of Approximation of Moreau–Yosida.

Some authors have also obtained results in the type spaces of Lp, among which Briand
et al. [15] obtained an a priori estimate and demonstrated the existence and uniqueness of
solutions in Lp, p > 1. Under normal conditions, Fan et al. [16] studied bounded solutions,
Lp(p > 1) solutions, and L1 solutions of one-dimensional equations.

Instead of focusing on one-dimensional BSDEs (Y ∈ R), it is possible to extend to
multi-dimensional settings. Bahlali [17] had proven the existence, uniqueness, and stability
of the solution for multi-dimensional BSDEs with a local monotonous coefficient. Maticiuc
and Răşcanu [18] extended the existence and uniqueness results of the previous work of
Pardoux and Răşcanu [9] by supposing a weaker boundedness condition for the generator
and by considering the random time interval [0, T], the Lebesgue–Stieltjes integral terms,
where a fixed convex boundary is induced by the subdifferential of an appropriate lower
semicontinuous convex function. Răşcanu [19] proved that in the case of p ≥ 2, the
variational solution is a strong one since they have certified the uniqueness of that solution.

Moreover, the martingale has a broader range of applications than Brownian motion.
The properties of the martingale described may not hold true, and one generally needs to
enter more martingale into the response. Hamaguchi [20] proposed an endless dimensional
BSDE driven by a barrel-shaped martingale, demonstrated the presence and uniqueness
of the arrangement of such boundless dimensional BSDEs, and showed the grouping
of arrangements of related BSDEs. El Karoui and Huang [2] studied BSDEs driven by
finite-dimension martingales. Al-Hussein [21] demonstrated an aftereffect of the presence
and uniqueness of the solution of a BSDE which is driven by a limitless dimensional
martingale and applied the outcome to track down a special answer for a regressive
stochastic fractional differential condition in boundless measurements. Because the case
of p = 2 is more common and p > 2 is more complex in Lp space, it is necessary to study
BSDEs with the subdifferential operator, whose drives are infinite-dimensional martingales
in L2 space.

By considering the subdifferential operator and martingale simultaneously, Nie [22]
concentrated on the existence and uniqueness of the solution to a multi-dimensional
forward-backward stochastic differential equation (FBSDE) with the subdifferential opera-
tor in the backward condition where the backward equation is reflected on the boundary
of a closed convex area. However, as far as we know, research on infinite dimensional
martingale has not been done before.

The purpose of this paper is to consider a class of BSDEs driven by infinite dimensional
martingales with the subdifferential operator of the following type: dYt + F(t, Yt, ZtQ1/2

t )dt ∈ ∂ϕ(Yt)dt + Zt dMt + dNt, 0 ≤ t ≤ T,

Y(T) = ξ.
(1)

Equation (1) is written in the context of a completion probability space (Ω,F , P) with
a continuous filter {Ft}t≥0 on the right side. Here ξ is a random variable, given as a final
value; the function F is a mapping from Ω× [0, ∞)× H × L2(H) to H; M is a continuous
martingale in the space of H; andQM is a predictable process that captures values from the
space L2(H) of nuclear operators on H, that was introduced by Al-Hussein [23], and will
be explained in the next section.

The main aim of this paper is to find an adapted process (Y, Z, U, N) in a proper space
such that the BSDE in Equation (1) holds. Then, it allows us to establish the uniqueness of
the viscosity solution of a certain type of non-local variational inequality. The following is
a list of how this paper is organized. Section 2 introduces certain fundamental notations,
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assumptions, and preliminaries, as well as the a priori estimation of a series of penalized
approximations to the equations. In Section 3, we verify the existence and uniqueness of
the BSDE solution using the Yosida approximation approach. In Section 4, an example is
provided for illustration of the proposed methodology.

2. Preliminaries

Al-Hussein [23] established the concepts of space and martingales as follows: Denote
M2

[0,T](H) as the vector space of the cadlag square-integrable martingales {M(t), 0 ≤ t ≤ T},

that take values in the space of H; moreover E[|M(t)|H2] < ∞ for each t ∈ [0, T]. A Hilbert
space with respect to the inner product (M, N) 7→ E[〈M(T), N(T)〉H ] if P-equivalence
classes have been established. Let M2,c

[0,T](H) be a Hilbert subspace containing contin-
uous square integrable martingale in H. These are very strongly orthogonal for M, N ∈
M2

[0,T](H), for all [0, T]-valued stopping times u, if we can satisfy E[M(u)
⊗

N(u)] =

E[M(0)
⊗

N(0)]. In particular, if N(0) = 0, E[M(u)
⊗

N(u)] = 0, then M and N are very
strongly orthogonal.

Let M ∈ M2
[0,T](H), and let the process 〈M〉 represent the predictable quadratic

variation of M; let QM represent a predicted process that takes values from the set of
positive symmetric elements that is linked to a Doléans measure of M

⊗
N. We define

〈〈M〉〉t =
∫ t

0 QM(s)d〈M〉s, and assume there exists a predictable process Q(t, ·) which is a
symmetric positive definite nuclear operator on H and satisfies 〈〈M〉〉t =

∫ t
0 Q(s)ds.

Under the space L∗(H;P , M) of processes Φ, we first consider E(L(H)) to be the
space of predictable simple processes, and let Λ2(H;P , M) be the closure of E(L(H))
in L∗(H;P , M). Hence, the space Λ2(H;P , M) is one Hilbert subspace of L∗(H;P , M).
Additionally, the stochastic integral

∫
Φ dM is defined for an element Φ ∈ Λ2(H;P , M)

which belongs toM2
[0,T](H), and also fulfills the condition

E
[∣∣∣∣∫ T

0
Φ(t)dM(t)

∣∣∣∣2
H

]
= E

[∫ T

0
|Φ(t) ◦ Q 1/2

M (t)|2L2(H) d〈M〉t
]
< ∞.

Consider the following spaces [21]:

L2
F (0, T; H) :=

{
φ : [0, T]×Ω→ H, φ is predictable and satisfies E

[∫ T

0
|Φ(t)|2H d〈M〉t

]
< ∞

}
;

S2(H) :=

{
φ : [0, T]×Ω→ H, φ is continuous, adaptable and satisfies E

[
sup

0≤t≤T
|φ(t)|2H

]
< ∞

}
.

As stated in Al-Hussein [21], S2(H) is a separable Banach space which conforms to the norm

‖φ‖2
S (H) =

(
E
[

sup
0≤t≤T

|φ(t)|2H

]) 1/2

.

Let M ∈ M2
[0,T](H) be M(0) = 0 and consider the following assumptions:

(H1) The function F : Ω× [0, ∞)×H× L2(H)→ H fulfills the requirement α ∈ R, β, γ ≥ 0,
and also let η be one Ft−progressively measurable process.

(H2) (i) F(·, ·, y, z) is Ft− progressively measurable,
(ii) y 7→ F(t, y, z) is continuous, dp× dt a.e. ,
(iii) ∀y, y′ ∈ H and ∀z, z′ ∈ L2(H)

(F(t, y, z)− F(t, y′, z), y− y′) ≤ α|y− y′|2,
(iv) |F(t, y, z)− F(t, y, z′)| ≤ β‖z− z′‖,
(v) |F(t, y, 0)| ≤ ηt + γ|y|,
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(vi) E[
∫ T

0 |F(t, 0, 0)|2H dt] < ∞.
(H3) (i) ϕ is just a valid convex function,

(ii) ϕ(y) ≥ ϕ(0) = 0.
(H4) (i) ξ ∈ L2(Ω,FT ,P; H),

(ii) E[eλt(|ξ|2 + |ϕ(ξ)|)] < ∞,
(iii) E[

∫ t
0 eλt|η(s)2|ds] < ∞, here λ > 2α + β2.

(H5) Every H-valued square integrable martingale with filtering {Ft, 0 ≤ t ≤ T} has a
continuous version.

We introduce ϕ, which is a subdifferential of the l.s.c. convex function from the space
H to R. ∂ϕ is a multivalued function from the space H to H, which was given by Pardoux
and Răşcanu [1].

For any u ∈ H,

∂ϕ(u) = {h ∈ H : (h, v− u) + ϕ(u) ≤ ϕ(v), ∀v ∈ H}.

Let Dom(∂ϕ) be the set of u ∈ H such that ∂ϕ(u) is not empty, and define (u, v) ∈ ∂ϕ to
imply that u ∈ Dom(∂ϕ) and v ∈ ∂ϕ(u).

The function ϕ is then approximated by the convex C1-function ϕε, ε > 0 which was
defined by Pardoux and Răşcanu [8] as

ϕε(u) = inf
{

1
2
|u− v|2 + εϕ(v) : v ∈ H

}
=

1
2
|u− Jεu|2 + εϕ(Jεu),

where Jεu = (I + ε∂ϕ)−1(u). For all u, v ∈ H, ε > 0, the properties of the approximation
presented by Barbu [24] are given by

1
ε Dϕε(u) = 1

ε ∂ϕε(u) = 1
ε (u− Jεu) ∈ ∂ϕ(Jεu),

|ϕ(Jεu)− ϕ(Jεv)| ≤ |u− v|, and lim
ε→0

Jεu = PrDomϕ(u).

Hence, for all u, v ∈ H, ε > 0, ε′ > 0, we have 0 ≤ ϕε ≤ (Dϕε(u), u) where(
1
ε

Dϕε(u)−
1
ε′

Dϕε′(v)
)
≥ −

(
1
ε
+

1
ε′

)
|Dϕε(u)| × |Dϕε′(v)|. (2)

Consider the approximating equation

Yε
t +

1
ε

∫ T

t
Dϕε(Yε

s )ds = ξ +
∫ T

t
F(t, Yε

s , Zε
sQ1/2

s )ds−
∫ T

t
Zε

s dMs −
∫ T

t
dNε

s . (3)

As a result of the conclusion of Al-Hussein [21], for this Equation (3) there exists a unique
solution (Yε, Zε, Nε) ∈ S2

[0,T](H)×M2
[0,T](L2(H))×M2

[0,T](H).

Lemma 1. Let the assumptions (H1)-(H5) be satisfied, then for all 0 ≤ a ≤ T,

E
[

sup
a≤t≤T

eλt|Yε
t |2 +

∫ T

a
eλt(|Yε

s |2 + ‖Zε
sQ1/2

s ‖2)ds +
∫ T

a
eλs d〈N〉s

]
≤ CΓ1(a, T), (4)

where

Γ1(a, T) = E
[

eλT |ξ|2 +
∫ T

a
eλs|F(s, 0, 0)|2 ds

]
.
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Proof. Firstly, Itô’s formula for eλt|Yε
t |2 yields

eλt|Yε
t |2 +

∫ T

t
eλs(λ|Yε

s |2 + ‖Zε
sQ1/2

s ‖2)ds +
∫ T

t
eλs d〈N〉s +

2
ε

∫ T

t
eλs(Yε

s , Dϕε(Yε
s )ds

= eλT |ξ|2 + 2
∫ T

t
eλs(Yε

s , F(t, Yε
s , Zε

sQ1/2
s )ds− 2

∫ T

t
eλs(Yε

s , Zε
s dMs)− 2

∫ T

t
eλs(Yε

s , dNε
s ).

Then applying Schwarz’s inequalites and considering
(

1
ε Dϕε(y), y

)
≥ 0,

2(y, F(s, y, z)) = 2(y, F(s, y, z)− F(s, y, 0) + F(s, y, 0)− F(s, 0, 0) + F(s, 0, 0))

≤ 2β(y, z) + 2α|y|2 + 2(y, F(s, 0, 0))

≤ (2α + (1 + r)β2 + r)|y|2 + 1
1 + r

‖z‖2 +
1
r
|F(s, 0, 0)|2,

where λ > 2α + β2, 0 ≤ r ≤ λ−(2α+β2)
1+β2 ∧ 1. Hence,

eλt|Yε
t |2 +

∫ T

t
eλs[(λ− 2α− β2 − r(1 + β2))|Yε

s |2 +
r

r + 1
‖Zε

sQ1/2
s ‖2]ds +

∫ T

t
eλs d〈N〉s

≤ eλT |ξ|2 + 1
r

∫ T

t
eλs|F(s, 0, 0)|2 ds− 2

∫ T

t
eλs(Yε

s , Zε
s dMs)− 2

∫ T

t
eλs(Yε

s , dNs).

It can be shown that

sup
a≤t≤T

eλt|Yε
t |2 ≤ eλT |ξ|2 + 1

r

∫ T

t
eλs|F(s, 0, 0)|2 ds + 2 sup

a≤t≤T

∣∣∣∣∫ T

t
eλs(Yε

s , Zε
s dMs)

∣∣∣∣
+2 sup

a≤t≤T

∣∣∣∣∫ T

t
eλs(Yε

s , dNs)

∣∣∣∣.
Then, taking the expectation in the above inequality using Burkholder–Davise–Gundy’s

inequality,

E
[

sup
a≤t≤T

eλt|Yε
t |2
]
≤ C1 + 2E

[
sup

a≤t≤T

∣∣∣∣∫ T

t
eλs(Yε

s , Zε
s dMs)

∣∣∣∣
]

+2E
[

sup
a≤t≤T

∣∣∣∣∫ T

t
eλs(Yε

s , dNs)

∣∣∣∣
]

≤ C1 +
1
2
E
[

sup
a≤t≤T

eλt|Yε
t |2
]
+ C2E

[∫ T

a
eλt‖Zε

sQ1/2
s ‖2 ds

]

+
1
2
E
[

sup
a≤t≤T

eλt|Yε
t |2
]
+ C3E

[∫ T

a
eλt d〈N〉s

]
.

Hence, the proof is completed.

Lemma 2. Let the assumptions (H1)–(H5) be satisfied, then there exists a positive constant C such
that for 0 ≤ a ≤ T,

E
[∫ T

a
eλs
(

1
ε

Dϕε(Yε
s )

)2
ds

]
≤ CΓ2(a, T), (5)

E
[
eλa ϕ(JεYε

s )
]
+E

[∫ T

a
eλs ϕ(JεYε

s )ds
]
≤ CΓ2(a, T), (6)

E
[
eλa|Yε

s − JεYε
s |2
]
≤ ε2CΓ2(a, T), (7)
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where

Γ2(a, T) = E
[

eλT(|ξ|2 + ϕ(ξ)) +
∫ T

0
eλs|η(s)|2 ds

]
.

Proof. Consider the subdifferential inequality below:

eλs ϕε(Yε
s ) ≥ (eλs − eλr)ϕε(Yε

s ) + eλr ϕε(Yε
r ) + eλr(Dϕε(Yε

r ), Yε
s −Yε

r ),

for s = ti+1 ∧ T,r = ti ∧ T, where t = t0 < t1 < t2 < · · · and ti+1 − ti = 1/n. By summing
up over i, and going to the limit as n→ ∞, ∀t ∈ [0, T], we can deduce that

eλt ϕε(Yε
t ) +

∫ T

t
λeλs ϕε(Yε

s )ds +
1
ε

∫ T

t
eλs|Dϕε(Yε

s )|2 ds

≤ eλT ϕε(ξ) +
∫ T

t
(Dϕε(Yε

s ), F(s, Yε
s , Zε

s))ds−
∫ T

t
eλs(Dϕε(Yε

s ), Zε
s dMs).

As a consequence, we obtain the result by combining Equation (4) with the inequalities
in Proposition 2.2 from Pardoux and Răşcanu [8]:

1
2
|Dϕε(y)|2 + εϕ(Jεy) = ϕε(y), εϕ(Jεy) ≤ ϕε(y),

−λϕε(y) ≤ |λ|ϕε(y) ≤ |λ|(Dϕε(y), y),

ϕε(ξ) ≤ εϕ(ξ),

0 ≤ ϕε(u) ≤ (Dϕε(u), u),

(Dϕε(y), |λ|y + F(s, y, z)) ≤ 1
2ε
|Dϕε(y)|2 +

ε

2
(|λ||y|+ |F(s, y, z)|)2

≤ 1
2ε
|Dϕε(y)|2 + ε(|λ|2|y|2 + |F(s, y, z)|2)

≤ 1
2ε
|Dϕε(y)|2 + ε[|λ|2|y|2

+4(β2‖z‖2 + γ2|y|2 + η2(s))].

Hence, the end result is obtained.

Lemma 3. Assuming that assumptions (H1)–(H5) are satisfied, then for any ε, ε′ > 0,

E
[ ∫ T

0
eλs(|Yε

s −Yε′
s |2 + ‖Zε

sQ1/2
s − Zε′

s Q1/2
s ‖2)ds

]
≤ (ε + ε′)CΓ(T), (8)

E
[

sup
0≤t≤T

eλt|Yε
s −Yε′

s |2
]
≤ (ε + ε′)CΓ(T), (9)

where

Γ(T) = E
[

eλT(|ξ|2 + ϕ(ξ)) +
∫ T

0
|F(s, 0, 0)|2 ds

]
.

.



Axioms 2022, 11, 536 7 of 12

Proof. Firstly, Itô’s formula for eλt|Yε
s −Yε′

s |2 yields

eλt|Yε
t −Yε′

s |2 +
∫ T

t
eλs(λ|Yε

s −Yε′
s |2 + ‖Zε

sQ1/2
s − Zε′

s Q1/2
s ‖2)ds

+
∫ T

t
eλs d〈Nε − Nε′〉s + 2

∫ T

t
eλs(Yε

s −Yε′
s ,

1
ε

Dϕε(Yε
s )−

1
ε′

Dϕε′(Y
ε′
s ))ds

= eλT |ξ|2 + 2
∫ T

t
eλs(Yε

s −Yε′
s , F(t, Yε

s , Zε
sQ1/2

s )− F(t, Yε
s , Zε

sQ1/2
s ))ds

− 2
∫ T

t
eλs(Yε

s −Yε′
s , (Zε

s − Zε′
s )dMs)− 2

∫ T

t
eλs(Yε

s −Yε′
s , dNε

s − dNε′
s ).

Moreover,

2(Yε
s −Yε′

s , F(t, Yε
s , Zε

sQ1/2
s )− F(t, Yε

s , Zε
sQ1/2

s ))

≤ (2α + (1 + r)β2)|Yε
t −Yε′

s |2 +
1

1 + r
‖Zε

sQ1/2
s − Zε′

s Q1/2
s ‖2.

Based on Equation (2), hence,

eλt|Yε
t −Yε′

s |2 +
∫ T

t
eλs d〈Nε − Nε′〉s

+
∫ T

t
eλs

[
(λ− 2α− β2 − rβ2)|Yε

s −Yε′
s |2 +

r
r + 1

‖Zε
sQ1/2

s − Zε′
s Q1/2

s ‖2
]

ds

≤ 2
(

1
ε
+

1
ε′

) ∫ T

t
eλs|DϕεYε

t | × |Dϕε′Y
ε′
s |ds− 2

∫ T

t
eλs(Yε

s −Yε′
s , Zε

s − Zε′
s dMs)

− 2
∫ T

t
eλs(Yε

s −Yε′
s , dNε

s − dNε′
s ).

Taking the expectations on both sides of the above inequation, and combining it with
the inequation below from Lemma 2,

2
(

1
ε
+

1
ε′

)
E
[∫ T

t
eλs|DϕεYε

t | × |Dϕε′Y
ε′
s |ds

]
≤ C(ε + ε′)Γ(T),

we can obtain

E
[ ∫ T

0
eλs(|Yε

s −Yε′
s |2)ds

]
≤ C(ε + ε′)Γ(T).

On the other hand, on the basis of Equation (10), we obtain

E
[

eλs‖Zε
sQ1/2

s − Zε′
s Q1/2

s ‖2 ds

]
≤ C(ε + ε′)E

[ ∫ T

t
eλs|DϕεYε

t | × |Dϕε′Y
ε′
s |ds

]
.

Indeed, it follows from Burkholder–Davis–Gundy’s inequality that the result below
can be obtained:

E
[

sup
0≤t≤T

eλt|Yε
s −Yε′

s |2
]
≤ (ε + ε′)CΓ(T).

We then complete the proof.
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3. The Existence and Uniqueness of the Solution

Lemma 4. Let the assumptions (H1)–(H5) be satisfied, and let (Y, Z, U, N) be a solution to the
BSDE in Equation (1) and (Y′, Z′, U′, N′) likewise be another solution to this type of BSDE. Denote
(δY, δZ, δU, δN) , (Y−Y′, Z− Z′, U −U′, N − N′), and let λ be a real number, hence,

E
[∫ T

t
eλs(|δYs|2 + ‖δZsQ1/2

s ‖2)ds
]
= 0, (10)

E
[

sup
0≤t≤T

eλt|δYt|2
]
= 0. (11)

Proof. Itô’s formula for eλt|δYt|2 yields

eλT |δYT |2 − eλt|δYt|2 =
∫ T

t
eλs(λ|δYs|2 + ‖δZsQ1/2

s ‖2)ds +
∫ T

t
eλs d〈δN〉s

+2
∫ T

t
eλs(δYs, [F(s, Ys, ZsQ1/2

s )− F(s, δYs, δZsQ1/2
s )]ds

− |δUs|ds− |δZs|dMs − dδNs).

Taking the expectation of the above equation, we obtain

E
[
eλt|δYt|2

]
+E

[∫ T

t
eλs(λ|δYs|2 + ‖δZsQ1/2

s ‖2)ds
]

+E
[∫ T

t
eλs d〈δN〉s

]
+ 2E

[∫ T

t
eλs(δYt, δUs)ds

]
= 2E

[∫ T

t
eλs(δYt, [F(s, Ys, ZsQ1/2

s )− F(s, δYs, δZsQ1/2
s )])ds

]
.

However, consider the following,

2(δYt, δUs) ≥ 0,

(δYt, F(s, Ys, ZsQ1/2
s )− F(s, δYs, δZsQ1/2

s )) ≤ 2α|δYt|2 + β(|δYs|2 + ‖δZsQ1/2
s ‖2)

≤ (2α + β2 + rβ2)|δYt|2 +
1

1 + r
‖δZsQ1/2

s ‖2.

Hence, we can obtain Equation (10). By the use of Burkholder–Davis–Gundy’s inequality,
Equation (11) can also be obtained.

Theorem 1. Suppose that the conditions (H1)–(H5) hold, then there will exist a unique quadruple
(Y, Z, U, N) so that

Y ∈ S2
[0,T](H), Z ∈ M2

[0,T](L2(H)), U ∈ M2
[0,T](H), N ∈ M2

[0,T](H),

E
[∫ T

t
eλs ϕ(Ys)ds

]
≤ ∞, (12)


Yt +

∫ T

t
Us ds = ξ +

∫ T

t
F(t, Ys, ZsQ1/2

s )ds−
∫ T

t
Zs dMs −

∫ T

t
dNs,

Yt ∈ Dom(∂ϕ), and Ut ∈ ∂ϕ(Yt).

(13)
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Proof. Uniqueness can be proven by using Lemma 4 above. As a limit of the quadru-
ple (Yε

s , Zε
s , 1

ε Dϕε(Yε
s ), Nε

s ), the existence of the solution (Y, Z, U, N) is established. The
following results come from Lemma 3,

∃Y ∈ S2
[0,T](H), Z ∈ M2

[0,T](L2(H)),

lim
ε→0

Yε = Y in S2
[0,T](H),

lim
ε→0

Zε = Z in M2
[0,T](L2(H)),

and from Equations (5) and (7), for ∀t ∈ [0, T], we have

lim
ε→0

Jε(Yε) = Y in S2
[0,T](H),

lim
ε→0

E
[
eλt|Jε(Yε

t )−Yt|2
]
= 0.

Equation (12) follows from Equations (6) and (10).
For all ε > 0, let Uε

t = 1
ε Dϕε(Yε

t ), and Ûε
t =

∫ T
t Uε

s ds. As a result of the convergence
result which was presented by Pardoux and Rascanu [8] and Equation (13), there exists a
progressively measurable process {Ût, 0 ≤ t ≤ T} so that for each T > 0,

E
[

sup
0≤t≤T

|Ûε
t − Ût|2

]
→ 0, ε→ 0.

Furthermore, from Equation (5),

sup
ε>0

E
[∫ T

0
eλt|Uε

t |2 ds
]
< ∞.

In the space L2(Ω, H1(0, T)), Ûε is bounded for all T < 0, and lim
ε→0

Ûε = Û in

L2(Ω, H1(0, T)); specifically, Ût adopts the form Ût =
∫ T

t Us ds, where {Ût, 0 ≤ t ≤ T} is
gradually measurable, and Û is completely continuous.

Moreover, from Gegout–Petit and Pardoux’s Lemma 5.8 [25], for each 0 ≤ a ≤ b ≤ T,
V ∈ M2

[a,b](H),

∫ b

a
(Uε

t , Vt −Yε
t )dt→

∫ b

a
(Ut, Vt −Yt)dt

in probability, and from Equation (5) we obtain
∫ b

a (U
ε
t , Jε(Yε

t )− Yε
t )dt → 0. Now, since

Uε
t ∈ ∂ϕ(Jε(Yε

t )),∫ b

a
(Uε

t , Vt − Jε(Yε
t ))dt +

∫ b

a
ϕ(Jε(Yε

t ))dt ≤
∫ b

a
ϕ(Vt)dt.

Taking the limit inferior in the probability of the above inequation, we obtain

∫ b

a
(Ut, Vt −Yt)dt +

∫ b

a
ϕ(Yt)dt ≤

∫ b

a
ϕ(Vt)dt.

When the constants a, b, and the process V are random, Equation (13) can be proven.
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4. Examples

Considering Theorem 4.2 and Example 4.3 of Al-Hussein [21], the following backward
stochastic partial differential equation (BSPDE) has its solution (Y, Z, N) where

−dYt = A dt− Zt dMt − dNt, 0 ≤ t ≤ T,

Y(T) = ξ.
(14)

Here, let F(t, Yt, ZtQ1/2
t ) = 0, and assume A is a linear operator with no bounds fromD(A)

to H. If A : V → V
′

is a continuous linear operator, Equation (14) has an unique solution.
Now, let (Ω,F ,Ft, P) be a full probability space and D ⊂ Rd be an open bounded

subset with suitably smooth border ∂(D). Let Mt be martingales and set H = H1 := L2(D).
Then, consider the BSPDE given below: −dYt + ∂j(Yt)dt 3 A dt + F(t, Yt, ZtQ1/2

t )dt− Zt dMt − dNt, 0 ≤ t ≤ T,

Yt = 0 on Ω× [0, T]× ∂(D).
(15)

Firstly, let us apply Theorem 3.2 of Maticiuc and Răşcanu [18], where ϕ is a function
from L2(D)→ R, which is provided below:

ϕ(u) =


1
2

∫
D
|∇u(x)|2 dx +

∫
D

j(u(x))dx, if u ∈ H1
0(D), j(u) ∈ L1(D),

+∞, otherwise.
(16)

Then, considering Proposition 2.8 of Barbu [26], the following properties hold:

(i) ϕ is a function what proper, convex as well as 1.s.c.,
(ii) ∂ϕ(u) = {u∗ ∈ L2(D) : ∗ ∈ ∂j(u(x))−4u(x) a.e. on D}, ∀u ∈ Dom(∂ϕ),
(iii) Dom(∂ϕ) = {u ∈ H1(D)⋂H2(D) : u(x) ∈ Dom(∂j) a.e. on D},
(iv) ‖u‖ ≤ C‖u∗‖, ∀(u, u∗) ∈ ∂ϕ.

Lastly, by applying Theorem 1 from Section 3, we decide that, under the above
conditions, Equation (15) has an unique solution (Y, Z, U, N) ∈ S2(H) × M2(L2(H)) ×
M2(H)×M2(H), such that (Yt, Zt) = (η, 0), where η is a H1(D)-valued random variable,
Ft-measurable and

(a) Yt +
∫ T

t Us ds = ξ +
∫ T

t AYs dQs −
∫ T

t Zs dMs −
∫ T

t dNs a.s.,
(b) Yt ∈ H1(D) ∩ H2(D),
(c) Yt(x) ∈ Dom(j),
(d) Ut(x) ∈ ∂j(Yt(x)).

5. Conclusions

The goal of this paper is to present and study a type of BSDEs that is driven by infinite-
dimensional martingales with subdifferential operators. We have shown that the adaptive
solution of this BSDE exists and is unique. Additionally, we have presented a special
example for a simple case. For future work, we will focus on this interesting problem and
pay more attention to the simulation of numerical solutions of BSDEs of multidimensional
and even infinite-dimensional types and their applications in finance and computing, such
as [27–29].
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