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Abstract: In this paper, we study the eigenfunctions to one nonlocal second-order differential operator
with double involution. We give an explicit form of the eigenfunctions to the boundary value problem
in the unit ball with Dirichlet conditions on the boundary. For the problem under consideration, the
completeness of the system of eigenfunctions is established.
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1. Introduction and the Problem Statement

Among the nonlocal differential equations, which are the subject of many works,
a special place is occupied by equations with involutive deviations of the argument. An in-
volution is a mapping S : Rn → Rn such that S2x = x. It should be noted monographs [1–3]
from a variety of research papers in this direction. Refs. [4–15] are devoted to the questions
of solvability of boundary and initial-boundary value problems for differential equations
with involution. Spectral questions of differential equations with involution are studied
in [16–25]. For example, in [22], the following boundary value problem

y′′(t) + ay′′(−t) = λy(t), −π < t < π,

y(−π) = y(π) = 0

is studied. The eigenfunctions and eigenvalues of this problem are given explicitly. The
system of eigenfunctions is complete in L2[−π, π].

In [10], the following nonlocal analog of the Laplace operator is introduced

Ll [u](x) ≡ a0∆u(x) + a1∆u(Sx) + . . . + al−1∆u(Sl−1x),

where ∆ is the Laplace operator, ai for i = 0, 1, . . . , l − 1 are real numbers, S is an n× n
orthogonal matrix for which there exists a number l ∈ N such that Sl = I and I is the
identity matrix. In the paper [10] cited above, for the corresponding nonlocal Poisson
equation Ll [u] = f (x) in the unit ball Ω, the solvability questions for some boundary value
problems with different boundary conditions are studied. The corresponding spectral
problem for the Dirichlet boundary value problem is studied in [14]. In that work, as in the
case of the one-dimensional problem from [22], the eigenfunctions and eigenvalues of the
considered problem are obtained explicitly. A theorem on the completeness of the system
of eigenfunctions in the space L2(Ω) is proved.
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Furthermore, in [24], a nonlocal Laplace operator with multiple involution of the
following form is introduced:

Ln[u](x) ≡
2n−1

∑
(in ...i1)2=0

a(in ...i1)2
∆u
(

Sin
n . . . Si1

1 x
)

,

where a(in ...i1)2
are real numbers, (in . . . i1)2 is a representation of the index i in the bi-

nary number system, Si are orthogonal n × n matrices satisfying the condition S2
i = I,

i = 1, . . . , n. In this paper [24], the explicit form of the eigenfunctions and eigenvalues of
the corresponding Dirichlet problem

Ln[u](x) + λu(x) = 0, x ∈ Ω; u(x) = 0, x ∈ ∂Ω

is given and the completeness of the system of eigenfunctions in the space L2(Ω) is proved.
In [26], one boundary value problem for the biharmonic equation is studied. This problem

contains modified Hadamard integrodifferential operators in the boundary conditions.
In the present paper, continuing the above studies of the solvability of boundary

value problems for harmonic and biharmonic equations with both ordinary involution
and multiple involution, we are going to investigate similar issues for the Laplace op-
erator with double involution of arbitrary orders. Special form matrices arising in the
considered problem are investigated in Theorems 1–3 of Section 2. Then, in Section 3 (see
Theorems 4 and 5), with the help of Lemma 1, the existence of eigenfunctions and eigenval-
ues of the problem under consideration is investigated. In Section 4 (see Theorems 6 and 7),
with the help of Lemma 2, the eigenfunctions and eigenvalues of the considered nonlocal
differential equation are constructed. These eigenfunctions are presented explicitly. The
completeness of the resulting system of eigenfunctions in L2(Ω) is established. All new
concepts and results obtained are illustrated by seven examples.

Let Ω = {x ∈ Rn : |x| < 1} be the unit ball in Rn, n ≥ 2, and ∂Ω = {x ∈ Rn : |x| = 1}
be the unit sphere. Let also S1, S2 be two real commutative orthogonal n × n matrices
such that Sli

i = I, li ∈ N, i = 1, 2. Note that, since |x|2 = (ST
i Six, x) = (Six, Six) = |Six|2,

then x ∈ Ω ⇒ Six ∈ Ω and y ∈ ∂Ω ⇒ Siy ∈ ∂Ω. For example, the matrix Si can be an
orthogonal matrix of the following form:

S =


Ik 0 0 0
0 cos α − sin α 0
0 sin α cos α 0
0 0 0 In−k−2

,

where α = 2π
l , 0 ≤ k ≤ n− 2, and 0 are zero matrices of appropriate size. It is clear that

Sl = I.
Let l1, l2 ∈ N0 and a0, . . . , al1−1, al1 , . . . , a2l1−1, . . . , a(l2−1)l1−1, . . . , al2l1−1 be a sequence

of real numbers which we denote by a. If we represent the index i in the form i = (i2, i1) ≡
i2 · l1 + i1, where ik = 0, 1, . . . lk − 1 for k = 1, 2, then the elements of a can be represented
as a(0,0), . . . , a(0,l1−1), a(1,0), . . . , a(1,l1−1), . . . , a(l2−2,l1−1), . . . , a(l2−1,l1−1). It is clear that, if
0 ≤ i < l1l2, then i1 = {i/l1}, i2 = [i/l1], where [·] and {·} are integer and fractional parts
of a number. Furthermore, we consider the sequence a also as a vector.

We introduce a new nonlocal differential operator formed by the sequence a and the
Laplace operator ∆

Lau ≡
(l2−1,l1−1)

∑
(i2,i1)=0

a(i2,i1)∆u(Si2
2 Si1

1 x)

and formulate a natural boundary value problem with La.
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Problem S2. Find a non-zero function u(x) such that u ∈ C(Ω̄) ∩ C2(Ω) and which
satisfied the equations

Lau(x) + λu(x) = 0, x ∈ Ω, (1)

u(x) = 0, x ∈ ∂Ω, (2)

where λ ∈ R.
In a special case l1 = l2 = 2, this problem coincides with the spectral boundary value

problem studied in [24].

2. Auxiliary Results

In order to start studying the above problem (1) and (2), we need some auxiliary
assertions. We introduce the function

v(x) =
(l2−1,l1−1)

∑
(i2,i1)=0

a(i2,i1)u(S
i2
2 Si1

1 x), (3)

where the summation is carried out over the index i = (i2, i1) ≡ i2 · l1 + i1 in the form
(0, 0), . . . , (0, l1− 1), (1, 0), . . . , (1, l1− 1), . . . , (l2− 2, l1− 1), . . . , (l2− 1, l1− 1). From equal-
ity (3), taking into account that Sl2

2 = Sl1
1 = I, it can be concluded that the following

functions v(Sj2
2 Sj1

1 x), where j = 0, . . . , l2l1 − 1 are expressed as a linear combinations of the
functions u(Si2

2 Si1
1 x). Let us introduce the following vectors:

U(x) =
(

u(Si2
2 Si1

1 x)
)T

i=0,...,l2l1−1
, V(x) =

(
v(Si2

2 Si1
1 x)

)T

i=0,...,l2l1−1

of order l2l1. Then, the dependence V(x) on U(x) can be presented in the matrix form:

V(x) = A(2)U(x), (4)

where A(2) =
(
ai,j
)

i,j=0,...,l2l1−1 is some matrix of order l2l1 × l2l1.
Let us investigate the structure of matrices of the form A(2). For this, we introduce a

new operation on indices of matrix coefficients as follows: i⊕ j = (i2, i1)⊕ (j2, j1) ≡ ((i2 +
j2 mod l2), (i1 + j1 mod l1)), where (i2, i1) is a representation of the index i as mentioned
above. It is clear that ⊕ is a commutative and associative operation on i ∈ {0, . . . , l2l1 − 1}
and (i2, i1)⊕ (0, 0) = (i2, i1). Since (i2, i1)⊕ (j2, j1) = (0, 0)⇔ i2 + j2 = 0 mod l2, i1 + j1 =
0 mod l1 ⇔ j2 = l2 − i2, j1 = l1 − i1, then we can write 	i = (l2 − i2, l1 − i1). For example,
if l1 = 2, l2 = 3, then 	(2, 1) = (1, 1) or 	5 = 3. If we assume that (−i2,−i1) ≡ 	i =
(l2 − i2, l1 − i1), then we have

(−i2,−i1)⊕ (j2, j1) = (l2 − i2, l1 − i1)⊕ (j2, j1)

= (l2 − i2 + j2 mod l2, l1 − i1 + j1 mod l1) = (−i2 + j2 mod l2,−i1 + j1 mod l1)

i.e., the operation ⊕ is formally applicable to numbers of the form (−i2,−i1). We as-
sume that

i	 j ≡ i⊕ (	j) = (i2 − j2 mod l2, i1 − j1 mod l1).

We extend the operations ⊕ and 	 to all numbers of the form (i2, i1) by setting
(i2, i1) ≡ (i2 mod l2, i1 mod l1). For example, if l1 = 2, l2 = 3, then (1,−1) = (1, 1) and
(5,−3) = (2, 1).

Theorem 1. The matrix A(2) defined by the equality (4) is represented as

A(2) ≡
(
ai,j
)

i,j=0,...,l2l1−1 =
(
aj	i

)
i,j=0,...,l2l1−1. (5)
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The sum of matrices of the form (5) is a matrix of the same form.

Proof. Consider the function v(Si2
2 Si1

1 x) whose coefficients at u(Sj2
2 Sj1

1 ) make up the i ≡
(i2, i1)th row of the matrix A(2)

v(Si2
2 Si1

1 x) =
(l2−1,l1−1)

∑
(j2,j1)=0

a(j2,j1)u(S
j2
2 Sj1

1 Si2
2 Si1

1 x)

=
(l2−1,l1−1)

∑
(j2,j1)=0

a(j2,j1)u(S
j2+i2 mod l2
2 Sj1+i1 mod l1

1 x). (6)

Here, the following properties Sl2
2 x = x, Sl1

1 x = x and S1S2x = S2S1x of matrices S1
and S2 have been used. If we replace the index j by the index k using the equality k = i⊕ j,
then k 	 i = i ⊕ j	 i = j, and we have j ↔ k. Substitution j → k changes the order of
summation in (6). For instance, if l1 = 2, l2 = 3 and i = (0, 1), then j : 0, 1, 2, 3, 4, 5 goes to
k = 1⊕ j : 1, 0, 3, 2, 5, 4. After changing the index, we have

v(Si2
2 Si1

1 x) =
(l2−1,l1−1)

∑
(k2,k1)=0

ak	iu(S
k2
2 Sk1

1 x).

Comparing the resulting equality with (4), we make sure that (5) is true ai,k = ak	i.
There is no doubt that, if α, β ∈ R, then

α
(
aj	i

)
i,j=0,...,l2l1−1 + β

(
bj	i

)
i,j=0,...,l2l1−1 =

(
αaj	i + βbj	i

)
i,j=0,...,l2l1−1,

which completes the proof of the theorem.

Example 1. For example, let us write the matrix A(2) for l2 = 3 and l1 = 2

A(2) =



a(0,0)	(0,0) a(0,1)	(0,0) a(1,0)	(0,0) a(1,1)	(0,0) a(2,0)	(0,0) a(2,1)	(0,0)
a(0,0)	(0,1) a(0,1)	(0,1) a(1,0)	(0,1) a(1,1)	(0,1) a(2,0)	(0,1) a(2,1)	(0,1)
a(0,0)	(1,0) a(0,1)	(1,0) a(1,0)	(1,0) a(1,1)	(1,0) a(2,0)	(1,0) a(2,1)	(1,0)
a(0,0)	(1,1) a(0,1)	(1,1) a(1,0)	(1,1) a(1,1)	(1,1) a(2,0)	(1,1) a(2,1)	(1,1)
a(0,0)	(2,0) a(0,1)	(2,0) a(1,0)	(2,0) a(1,1)	(2,0) a(2,0)	(2,0) a(2,1)	(2,0)
a(0,0)	(2,1) a(0,1)	(2,1) a(1,0)	(2,1) a(1,1)	(2,1) a(2,0)	(2,1) a(2,1)	(2,1)



=



a0 a1 a2 a3 a4 a5
a1 a0 a3 a2 a5 a4
a4 a5 a0 a1 a2 a3
a5 a4 a1 a0 a3 a2
a2 a3 a4 a5 a0 a1
a3 a2 a5 a4 a1 a0

.

Let us present some corollaries of Theorem 1.

Corollary 1. The matrix A(2) is uniquely determined by its first row a =
(
a0, a1, . . . , al2l1−1

)
.

It is not difficult to see that the i-th row of the matrix A(2) is represented via its 1st row

as
(

a0	i, a1	i, . . . , a(l2l1−1)	i

)
. We indicate this property of the matrix A(2) by the equality

A(2) ≡ A(2)(a). For example, the matrix A(2) from Example 1 can be written as A(2)(a),
where a = (a0, a1, a2, a3, a4, a5).
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In Ref. [10], matrices of the following form are studied:

A(1)(a0, . . . , al−1) = (aj−i mod l)i,j=0,l−1 =


a0 a1 . . . al−1

al−1 a0 . . . al−2
. . .

a1 a2 . . . a0

, (7)

which coincide with the matrix A(2) in the case l2 = 1, l1 = l since, in this case, (i2, i1) =
(0, i1) = i1 and i1 = 0, . . . , l − 1.

Corollary 2. The matrix A(2) has the structure of a matrix consisting of l2 × l2 square blocks, each
of which is an l1 × l1 matrix of type A(1). If we represent the sequence a as a = (a0, . . . , al2−1),

where aj2 = (aj2l1 , . . . , a(j2+1)l1−1) and denote A(j2)
(1) = A(1)(aj2), then the equality is true

A(2)(a) = A(1)
(

A(0)
(1), A(1)

(1), . . . , A(l2−1)
(1)

)
≡


A(0)
(1) A(1)

(1) . . . A(l2−1)
(1)

A(l2−1)
(1) A(0)

(1) . . . A(l2−2)
(1)

. . .
A(1)
(1) A(2)

(1) . . . A(0)
(1)

. (8)

Proof. Obviously, the block matrix on the right side of (8) has size l2l1 × l2l1. Denote its
arbitrary element as ai,j, where i, j = 0, . . . , l2l1 − 1. If we write i = (i2, i1), j = (j2, j1), then
we have ai,j = a(i2,i1),(j2,j1). This means that the element ai,j is in the j2th block column and
in the i2th block row of this block matrix. Therefore, in accordance with the structure of
the matrix A(1), we have ai,j ∈ A(j2−i2 mod l2)

(1) . If we now take into account the values of the
indices j1 and i1, which mean that the element ai,j is in the j1-th column and in the i1-th row

of the matrix A(j2−i2 mod l2)
(1) , then ai,j = bj1−i1 mod l1 , where bk is the element of the 1st row

of the matrix A(j2−i2 mod l2)
(1) . Since from the definition of A(j2)

(1) it follows that bk = aj2l1+k,
k = 0, . . . , l1 − 1, then we have

ai,j = bj1−i1 mod l1 = a(j2−i2 mod l2)l1+(j1−i1 mod l1) = a((j2−i2 mod l2),(j1−i1 mod l1)) = aj	i.

Taking into account equality (5), from Theorem 1, this implies the equality of matrices
(8). This proves the corollary.

Example 2. We can see the property (8) of matrices of the form A(2) by the matrix A(2)(a)
from Example 1, where l2 = 3, l1 = 2, a = (a0, a1, a2, a3, a4, a5). If denote a0 = (a0, a1)

T ,
a1 = (a2, a3)

T , a2 = (a4, a5)
T and

A(1)(a0) =

(
a0 a1
a1 a0

)
= A(0)

(1), A(1)(a1) =

(
a2 a3
a3 a2

)
= A(1)

(1), A(1)(a2) =

(
a4 a5
a5 a4

)
= A(2)

(1),

then a = (a0, a1, a2)
T and the matrix A(2)(a) is written as

A(2)(a) =



a0 a1 a2 a3 a4 a5
a1 a0 a3 a2 a5 a4
a4 a5 a0 a1 a2 a3
a5 a4 a1 a0 a3 a2
a2 a3 a4 a5 a0 a1
a3 a2 a5 a4 a1 a0

 =


A(0)
(1) A(1)

(1) A(2)
(1)

A(2)
(1) A(0)

(1) A(1)
(1)

A(1)
(1) A(2)

(1) A(0)
(1)

 = A(1)
(

A(0)
(1), A(1)

(1), A(2)
(1)

)
.
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Corollary 3. The transposed matrix AT
(2)(a) has the structure of the matrix AT

(2), and besides

AT
(2)(a) = A(2)(b), where b = (a(−j2,−j1))(j2,j1)=0,...,(l2−1,l1−1), and both index components −j2

and −j1 are taken by mod l2 and by mod l1, respectively.

Proof. By Theorem 1, we write

AT
(2)(a) =

(
aj	i

)T
i,j=0,...,(l2−1,l1−1)

=
(
ai	j

)
i,j=0,...,(l2−1,l1−1) =

(
a	(j	i)

)
i,j=0,...,(l2−1,l1−1)

=
(
bj	i

)
i,j=0,...,(l2−1,l1−1).

This is why b = (a	j)j=0,...,l2l1−1 = (a(−j2,−j1))(j2,j1)=0,...,(l2−1,l1−1). The corollary is
proved.

Example 3. For the matrix AT
(2)(a) from Example 2, we have

b = (a	j)j=0,...,5 = (a0, a−1, a−2, a−3, a−4, a−5)

= (a0, a(0,−1), a(−1,0), a(−1,−1), a(−2,0), a(−2,−1)) = (a0, a(0,1), a(2,0), a(2,1), a(1,0), a(1,1))

= (a0, a1, a4, a5, a2, a3).

Is the multiplication of matrices of the form (5) again such a matrix?

Theorem 2. The product of matrices of form (5) is again the same matrix and multiplication is
commutative.

Proof. Let the matrices A(2)(a) and B(2)(b) be two matrices of the form (5). Then,

A(2)(a)B(2)(b) =
(
aj	i

)
i,j=0,...l2l1−1

(
bj	i

)
i,j=0,...l2l1−1 =

(
l2l1−1

∑
k=0

ak	ibj	k

)
i,j=0,...l2l1−1

.

As in the proof of Theorem 1, let us change the index k → s; in the sum above,
in accordance with the equation k	 i = s. Then, k = k	 i⊕ i = s⊕ i and therefore the
correspondence k↔ s is one-to-one. Thus, the index replacement k→ s changes only the
summation order. Due to the commutativity and associativity of ⊕, we obtain

A(2)(a)B(2)(b) =

(
l2l1−1

∑
s=0

asbj	(s⊕i)

)
i,j=0,...l2l1−1

=

(
l2l1−1

∑
s=0

asb(j	i)	s

)
i,j=0,...l2l1−1

. (9)

The elements of the first row of the resulting matrix have the form cj =
l2l1−1

∑
s=0

asbj	s

and hence A(2)(a)B(2)(b) = (cj	i)i,j=0,...l2l1−1. Therefore, matrix A(2)(a)B(2)(b) has the
form (5).

The commutativity of the product A(2)B(2) can be easily obtained from the equality (9).
Replacing (j	 i)	 s→ k in the last sum from (9) and hence s = (j	 i)	 k, we obtain

l2l1−1

∑
s=0

asb(j	i)	s =
l2l1−1

∑
k=0

a(j	i)	kbk =
l2l1−1

∑
k=0

bka(j	i)	k.

The last sum in this equality is a common element of the matrix (B(2)A(2))i,j. Hence, (9)
means that A(2)B(2) = B(2)A(2). The theorem is proved.

Let λk = exp(i2πk/l), k = 0, . . . , l − 1 be the lth root of unity. In [10], it is shown that,
for the matrix of the form
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A(1)(a) =


a0 a1 . . . al−1

al−1 a0 . . . al−2
. . .

a1 a2 . . . a0

,

where a = (a0, . . . , al−1), eigenvectors and eigenvalues have the form

bk = (1, λk, . . . , λl−1
k )T , µk =

l−1

∑
s=0

asλs
k = a · bk. (10)

Note that the eigenvectors of the matrices A(1)(a) do not depend on the vector a. Is
this true for matrices of type A(2)(a)? We will see below.

We present a theorem that clarifies questions about eigenvectors and eigenvalues of
matrices A(2) from (5).

Theorem 3. Eigenvectors of the matrix A(2)(a) are written as

a(i2,i1) =
(

Il1 , λi2 Il1 , . . . , λl2−1
i2

Il1

)T
bi1 , (11)

where Il1 is identity l1 × l1 matrix, vector bi1 is taken from (10) at l = l1 and λi2 is the l2th root of
unity, i1 = 0, . . . , l1 − 1, i2 = 0, . . . , l2 − 1. The eigenvectors of the matrix A(2)(a) do not depend
on the vector a.

Proof. In accordance with Theorem 1, represent the matrix A(2) as

A(2)(a0, . . . , al2l1−1) =


A(0)
(1) A(1)

(1) . . . A(l2−1)
(1)

A(l2−1)
(1) A(0)

(1) . . . A(l2−2)
(1)

. . .
A(1)
(1) A(2)

(1) . . . A(0)
(1)

, (12)

where A(j2)
(1) = A(1)(aj2l1 , . . . , a(j2+1)l1−1), j2 = 0, . . . , l2 − 1. Consider the block multiplica-

tion of a l2l1 × l2l1 matrix by a l2l1 × l1 matrix of the form
A(0)
(1) A(1)

(1) . . . A(l2−1)
(1)

A(l2−1)
(1) A(0)

(1) . . . A(l2−2)
(1)

. . .
A(1)
(1) A(2)

(1) . . . A(0)
(1)

 ·


Il1
λi2 Il1

. . .
λl2−1

i2
Il1

 =


B0
B1
. . .

Bl2−1

,

where square blocks Bi2 have size l1× l1. Let us extend the values of the upper indices of the

matrices A(i2)
(1) to Z and calculate them by mod l2. Then, similarly to (7), the mth block row

of the matrix A(2) we represent as
(

A(−m mod l2)
(1) , A(1−m mod l2)

(1) . . . , A(l2−m mod l2)
(1)

)
. Since

the exponent of λk
i2

can also be calculated by mod l2, then we write

Bi2 =
l2−1

∑
k=0

A(k−m mod l2)
(1) Il1 λk

i2 =
l2−1

∑
k=0

λk
i2 A(k−m mod l2)

(1) =
l2−1

∑
s=0

λs+m
i2

A(s)
(1) = λm

i2 B0.

Here, the substitution s = k−m mod l2 of the index has been made. Thus, we have
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A(2)(a0, . . . , al2l1−1) ·


Il1

λi2 Il1
. . .

λl2−1
i2

Il1

 =


B0
B1
. . .

Bl2−1

 =


Il1

λi2 Il1
. . .

λl2−1
i2

Il1

B0.

It is easy to see that, in the obtained equality, the matrix B0 = B0(λi2) =
l2−1
∑

s=0
λs

i2
A(s)
(1)

has a type of A(1) and hence the vectors bi1 , for i1 = 0, . . . , l1 − 1 are eigenvectors of B0. We
multiply the above matrix equality on the right by the vector bi1 . Then, we obtain

A(2)


Il1

λi2 Il1
. . .

λl2−1
i2

Il1

bi1 =


Il1

λi2 Il1
. . .

λl2−1
i2

Il1

B0bi1 = λ(i2,i1)


Il1

λi2 Il1
. . .

λl2−1
i2

Il1

bi1 ,

where λ(i2,i1) is the eigenvalue of the matrix B0(λi2) corresponding to the eigenvector bi1 .
If we now recall the notation (11), then we obtain

A(2)(a)a(i2,i1) = λ(i2,i1)a(i2,i1),

i.e., a(i2,i1) is an eigenvector of A(2)(a). This completes the proof.

Now, present some corollaries from Theorem 3 that make it possible to construct
eigenvectors and eigenvalues of the matrix A(2)(a).

Corollary 4. 10. The eigenvector of A(2)(a) numbered by (i2, i1) one can write as

a(i2,i1) =
(

λ
j2
i2

λ
j1
i1

)T

(j2,j1)=0,...,(l2−1,l1−1)
, (13)

where λ2 is the l2th root of unity and λ1 is the l1th root of unity. The eigenvalue corresponding to
this eigenvector can be written in a similar form

λ(i2,i1) =
(l2−1,l1−1)

∑
(j2,j1)=0

a(j2,j1)λ
j2
i2

λ
j1
i1
= a · a(i2,i1). (14)

20. The eigenvectors of the matrix AT
(2)(a) coincide with the eigenvectors a(i2,i1), and the

corresponding eigenvalues have the form λt
(i2,i1)

= λ̄(i2,i1) = λ(−i2,−i1).

Proof. It is easy to see that the Equality (11) can be written as

a(i2,i1) =
(

bT
i1 , λi2 bT

i1 , . . . , λl2−1
i2

bT
i1

)T

=
(

1, λi1 , . . . , λl1−1
i1

, λi2 , λi2 λi1 , . . . λi2 λl1−1
i1

, . . . , λl2−1
i2

, λl2−1
i2

λi1 , . . . , λl2−1
i2

λl1−1
i1

)T

=
(

λ
j2
i2

λ
j1
i1

)T

(j2,j1)=0,...,(l2−1,l1−1)
,

where the order of the vector elements corresponds to the order established for numbers
(j2, j1). This proves equality (13).

Furthermore, from Theorem 3, it follows that the eigenvalue λ(i2,i1) of the matrix
A(2)(a) corresponding to the eigenvector a(i2,i1) is the same as the eigenvalue of the matrix

B0(λi2) =
l2−1

∑
j2=0

λ
j2
i2

A(j2)
(1) ,
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corresponding to the eigenvector bi1 . Here, A(j2)
(1) = A(1)(aj2l1 , . . . , a(j2+1)l1−1). Since the

matrix B0(λi2) is of type A(1), then, in accordance with (10), we find the vector representing
the first row of the matrix B0(λi2). Denote this vector as b0(λi2)

b0(λi2) =

(
l2−1

∑
j2=0

λ
j2
i2

aj2l1 , . . . ,
l2−1

∑
j2=0

λ
j2
i2

aj2l1+l1−1

)
.

Using the formula (10), we find

λ(i2,i1) =
l1−1

∑
j1=0

λ
j1
i1

l2−1

∑
j2=0

aj2l1+i1 λ
j2
i2
=

(l2−1,l1−1)

∑
(j2,j1)=0

a(j2,j1)λ
j2
i2

λ
j1
i1

,

which is the same as (14). Statement 10 is proved.
By Corollary 3 and Theorem 3, the eigenvectors of AT

(2)(a) coincide with the eigenvec-
tors of A(2)(a). Let us find the eigenvalue corresponding to the vector a(i2,i1). According to
Corollary 3 AT

(2)(a) = A(2)(b), where b = (a(−j2,−j1))(j2,j1)=0,...,(l2−1,l1−1). This is why

λt
(i2,i1)

=
(l2−1,l1−1)

∑
(j2,j1)=0

a(−j2,−j1)λ
j2
i2

λ
j1
i1
=

(l2−1,l1−1)

∑
(k2,k1)=0

a(k2,k1)
λ−k2

i2
λ−k1

i1

=
(l2−1,l1−1)

∑
(k2,k1)=0

a(k2,k1)
λ̄k2

i2
λ̄k1

i1
= λ̄(i2,i1).

It can be seen from the last equality that λ̄(i2,i1) = λ(−i2,−i1). Statement 20 is proved
and hence the corollary is proved.

Another property of the eigenvectors of the matrix A(2)(a) is given later in Corollary 7.

Remark 1. The expression λi2 λi1 is an ordered pair, and the first place in it is λi2 – the l2-th root
of unity, and the second place in it is λi1 – the l1th root of unity. Therefore, in the general case,
λ1λ1 6= λ2

1.

Remark 2. In ([24], Corollary 3), eigenvectors and eigenvectors of matrices, which for n = 2 are a
special case of matrices A(2), are obtained. The eigenvectors were written as

a(i2,i1)
2 =

(
(−1)j2i2+j1i1

)
(j2,j1)=0,...,3

,

which is the same as (13) for l1 = l2 = 2. Indeed, in this case λi2 = (−1)i2 , λi1 = (−1)i1 ,
(l2 − 1, l1 − 1) = (1, 1) = 3 and hence the common term of the eigenvector from (13) has the form

λ
j2
i2

λ
j1
i1
= (−1)i2 j2+i1 j1 ,

which coincides with the common term of the vector a(i2,i1)
2 . The eigenvalues obtained in (14) also

coincide with those found in [24] for n = 2.

Example 4. For the matrix A(2)(a) from Example 2, we have λi2 = λi2 , λi1 = (−1)i1 , where

λ = exp (i 2π
3 ). Therefore, according to the formula a(i2,i1) =

(
λ

j2
i2

λ
j1
i1

)T

(j2,j1)=0,...,(2,1)
(13), we obtain

a(0,0) = (1, 1, 1, 1, 1, 1), a(0,0) = (1,−1, 1,−1, 1,−1), a(1,0) = (1, 1, λ, λ, λ̄, λ̄),

a(1,1) = (1,−1, λ,−λ, λ̄,−λ̄), a(2,0) = (1, 1, λ̄, λ̄, λ, λ), a(2,1) = (1,−1, λ̄,−λ̄, λ,−λ),
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and, using the formula λ(i2,i1) = a · a(i2,i1) (14), we calculate

λ(0,0) = a0 + a1 + a2 + a3 + a4 + a5, λ(0,1) = a0 − a1 + a2 − a3 + a4 − a5,

λ(1,0) = a0 + a1 + λ(a2 + a3) + λ̄(a4 + a5), λ(1,1) = a0 − a1 + λ(a2 − a3) + λ̄(a4 − a5),

λ(2,0) = a0 + a1 + λ̄(a2 + a3) + λ(a4 + a5), λ(2,1) = a0 − a1 + λ̄(a2 − a3) + λ(a4 − a5).

3. The Problem S2

To consider Problem S2, we need the following statement.

Lemma 1. ([10], Lemma 3.1) Let S be an orthogonal matrix, then the operator ISu(x) = u(Sx)
and the Laplace operator ∆ satisfy the equality ∆ISu(x) = IS∆u(x) for u ∈ C2(Ω). The operator

Λ =
n
∑

i=1
xiuxi (x) and operator IS also satisfy the equality ΛISu(x) = ISΛu(x) for u ∈ C1(Ω̄).

Corollary 5. Equation (1) generates a matrix equation which is equivalent to it

A(2)(a)∆U(x) + λU(x) = 0, (15)

where U(x) =
(

u(Si2
2 Si1

1 x)
)T

(i2,i1)=0,...,(l2−1,l1−1)
and λ ∈ R.

Proof. Let the function u(x) be a solution to equation (1). Let us denote

v(x) =
(l2−1,l1−1)

∑
(i2,i1)=0

a(i2,i1)u(S
i2
2 Si1

1 x).

and V(x) =
(

v(Sj2
2 Sj1

1 x)
)T

(j2,j1)=0,...,(l2−1,l1−1)
. The function v(x) generates equality (4). Let

us apply the Laplace operator ∆ to (4). Since the matrices of the form Si2
2 Si1

1 are orthogonal,
by Lemma 1, we obtain

∆V(x) =
(

∆I
Sj2

2 S
j1
1

v(x)
)T

(j2,j1)=0,...,(l2−1,l1−1)
=

(
I
Sj2

2 S
j1
1

∆v(x)
)T

(j2,j1)=0,...,(l2−1,l1−1)

=

I
Sj2

2 S
j1
1

(l2−1,l1−1)

∑
(i2,i1)=0

a(i2,i1) I
Si2

2 S
i1
1

∆u(x)

T

(j2,j1)=0,...,(l2−1,l1−1)

=

(l2−1,l1−1)

∑
(i2,i1)=0

a(i2,i1) I
Sj2+i2 mod l2

2 S
j1+i1 mod l1
1

∆u(x)

T

(j2,j1)=0,...,(l2−1,l1−1)

=

(l2−1,l1−1)

∑
(k2,k1)=0

ak	j ISk2
2 S

k1
1

∆u(x)

T

(k2,k1)=0,...,(l2−1,l1−1)

=

(l2−1,l1−1)

∑
(k2,k1)=0

ak	j∆u(Sk2
2 Sk1

1 x)

T

(k2,k1)=0,...,(l2−1,l1−1)

= A(2)(a)∆U(x).

In the transformations made, the replacement of the summation index j⊕ i = k was
used. Hence, using the equality ∆v(Sk2

2 Sk1
1 x) + λu(Sk2

2 Sk1
1 x) = 0 (see (1)), which implies

that ∆V(x) + λU(x) = 0, we easily obtain (15). Finally, note that the first equation in (15)
is the same as (1). This completes the proof.
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Using Lemma 1, we are going to state the existence of the eigenvalues of Problem S2.

Theorem 4. Assume that the non-zero function u(x) is an eigenfunction of Problem S2, and λ is
its eigenvalue corresponding to u(x). The function

w(x) = U(x) · a(i2,i1),

where U(x) = u
(

Sj2
2 Sj1

1 x)
)T

(j2,j1)=0,...,(l2−1,l1−1)
and a(i2,i1) is an eigenvector of the matrix A(2)(a)

such that λ(i2,i1) 6= 0 is a solution to the boundary value problem

∆w(x) + µw(x) = 0, x ∈ Ω, (16)

w(x) = 0, x ∈ ∂Ω, (17)

where µ = λ/λ̄(i2,i1).

Proof. Let us take u(x) a non-zero eigenfunction of Problem S2 and the corresponding
eigenvalue λ. In accordance with Corollary 5, equality (15) holds. If we multiply this
equality by the vector a(i2,i1) scalarly, then we obtain

A(2)(a)∆U(x) · a(i2,i1) + λU(x) · a(i2,i1) = 0,

where we find
∆
(

U(x) · AT
(2)(a)a(i2,i1)

)
+ λU(x) · a(i2,i1) = 0.

Since, due to Corollary 4, the vector a(i2,i1) is also an eigenvector of the matrix AT
(2),

and λ̄(i2,i1) is its eigenvalue, then we have

λ̄(i2,i1)∆w(x) + λw(x) = 0

and, since λ = λ̄(i2,i1)µ, we obtain

0 = λ̄(i2,i1)(∆w(x) + µw(x)),

where, because λ(i2,i1) 6= 0, we obtain the equality (16)

∆w(x) + µw(x) = 0, x ∈ Ω.

Lastly, because u(x) = 0, for x ∈ ∂Ω, and x ∈ ∂Ω ⇒ Sj2
2 Sj1

1 x ∈ ∂Ω, then we have
U(x) = 0 for x ∈ ∂Ω. Therefore, we obtain w(x) = U(x) · a(i2,i1) = 0, for x ∈ ∂Ω. This
completes the proof.

Let us prove the assertion converse to Theorem 4. It provides an opportunity to find
solutions to the main Problem S2.

Theorem 5. Assume that the non-zero function u(x) is a solution of the boundary value problem
(16) and (17) for some µ > 0

∆w(x) + µw(x) = 0, x ∈ Ω, w(x) = 0, x ∈ ∂Ω,

then the function u(i2,i1)(x) determined from the equality

u(i2,i1)(x) = W(x) · a(i2,i1), (18)

where
W(x) =

(
w(Sj2

2 Sj1
1 x)

)T

(j2,j1)=0,...,(l2−1,l1−1)
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and the vector a(i2,i1) from (13) is an eigenvector of the matrix A(2)(a) with an eigenvalue λ(i2,i1) 6=
0, which is a solution to Problem S2 for λ = µλ̄(i2,i1).

Proof. Let w(x) 6= 0 be a solution to the problem (16) and (17). Consider the vector

W(x) =
(

w(Sj2
2 Sj1

1 x)
)T

(j2,j1)=0,...,(l2−1,l1−1)
and compose the function

u(i2,i1)(x) = W(x) · a(i2,i1),

where x ∈ Ω. It is not difficult to see that, according to Corollary 4, we have in Ω

u(i2,i1)(S
j2
2 Sj1

1 x) = W(Sj2
2 Sj1

1 x) · a(i2,i1)

=
(

w(Sj2+k2
2 Sj1+k1

1 x)
)T

(k2,k1)=0,...,(l2−1,l1−1)
·
(

λk2
i2

λk1
i1

)T

(k2,k1)=0,...,(l2−1,l1−1)

=
(l2−1,l1−1)

∑
(k2,k1)=0

w(Sj2+k2
2 Sj1+k1

1 x)λk2
i2

λk1
i1

=
(l2−1,l1−1)

∑
(m2,m1)=0

w(Sm2
2 Sm1

1 x)λm2−j2
i2

λ
m1−j1
i1

=

(l2−1,l1−1)

∑
(m2,m1)=0

w(Sm2
2 Sm1

1 x)λm2
i2

λm1
i1

λ
−j2
i2

λ
−j1
i1

= λ̄
j2
i2

λ̄
j1
i1

W(x) · a(i2,i1).

Therefore, again by Corollary 4,

U(i2,i1)(x) =
(

u(i2,i1)(S
j2
2 Sj1

1 x)
)T

(j2,j1)=0,...,(l2−1,l1−1)

= W(x) · a(i2,i1)

(
λ̄

j2
i2

λ̄
j1
i1

)T

(j2,j1)=0,...,(l2−1,l1−1)
= u(i2,i1)(x)ā(i2,i1).

Here, we used the substitution of indexes j⊕ k = m⇔ k = m	 j. Thus,

∆U(i2,i1)(x) = ∆u(i2,i1)(x)ā(i2,i1)

and therefore because, by Lemma 1,

∆W(x) =
(

∆w(Sj2
2 Sj1

1 x)
)T

(j2,j1)=0,...,(l2−1,l1−1)

=
(
−µw(Sj2

2 Sj1
1 x)

)
(j2,j1)=0,...,(l2−1,l1−1)

= −µW(x),

we obtain

A(2)(a)∆U(i2,i1)(x) = ∆u(i2,i1)(x)A(2)(a)ā(i2,i1) = ∆u(i2,i1)(x)A(2)(a)a(i2,i1)

= (∆W(x) · a(i2,i1))λ̄(i2,i1)ā(i2,i1) = −µ(W(x) · a(i2,i1))λ̄(i2,i1)ā(i2,i1)

= −µλ̄(i2,i1)u(i2,i1)(x)ā(i2,i1) = −µλ̄(i2,i1)U(i2,i1)(x).

Considering the first component of this equality, we obtain

(l2−1,l1−1)

∑
(j2,j1)=0

a(j2,j1)∆u(i2,i1)(S
j2
2 Sj1

1 x) = −µλ̄(i2,i1)u(i2,i1)(x), x ∈ Ω,

which means that the function u(i2,i1)(x) satisfies the equation (1).
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Let us make sure that the boundary conditions (2) are met. Since x ∈ ∂Ω⇒ Sj2
2 Sj1

1 x ∈
∂Ω, then, for x ∈ ∂Ω, we have

u(i2,i1)(x) = W(x) · a(i2,i1) =
(

w(Sj2
2 Sj1

1 x)
)T

(j2,j1)=0,...,(l2−1,l1−1)
· a(i2,i1) = 0 · a(i2,i1) = 0.

Thus, the function u(i2,i1)(x) is a solution to Problem S2. This completes the proof.

Example 5. Consider the problem (1) and (2) with l2 = 3, l1 = 2 and a = (a0, a1, a2, a3, a4, a5).
Let us use Theorem 5. To do this, take the eigenvectors of the matrix A(2)(a) in the form (13) from
Example 4. Let µ be an eigenvalue of the boundary value problem (16) and (17) and wµ(x) be a
corresponding eigenfunction. Then, the eigenfunctions of the problem (1) and (2) corresponding to
µ can be taken in the form u(i2,i1)(x) = W(x) · a(i2,i1) (18):

u(0,0)(x) = wµ(x) + wµ(S1x) + wµ(S2x) + wµ(S2S1x) + wµ(S2
2x) + wµ(S2

2S1x),

u(0,1)(x) = wµ(x)− wµ(S1x) + wµ(S2x)− wµ(S2S1x) + wµ(S2
2x)− wµ(S2

2S1x),

u(1,0)(x) = wµ(x) + wµ(S1x) + λwµ(S2x) + λwµ(S2S1x) + λ̄wµ(S2
2x) + λ̄wµ(S2

2S1x),

u(1,1)(x) = wµ(x)− wµ(S1x) + λwµ(S2x)− λwµ(S2S1x) + λ̄wµ(S2
2x)− λ̄wµ(S2

2S1x),

u(2,0)(x) = wµ(x) + wµ(S1x) + λ̄wµ(S2x) + λ̄wµ(S2S1x) + λwµ(S2
2x) + λwµ(S2

2S1x),

u(2,0)(x) = wµ(x)− wµ(S1x) + λ̄wµ(S2x)− λ̄wµ(S2S1x) + λwµ(S2
2x)− λwµ(S2

2S1x).

If we use the eigenvalues of the matrix A(2)(a) from (13), then the eigenvalues of the problem
(1) and (2) corresponding to the eigenfunctions written above look like µ(i2,i1) = µλ̄(i2,i1) =
µλ(−i2,−i1):

µ(0,0) = µλ(0,0), µ(0,1) = µλ(0,1), µ(1,0) = µλ(2,0),

µ(1,1) = µλ(2,1), µ(2,0) = µλ(1,0), µ(2,1) = µλ(1,1).

Next, we need to expand a given polynomial into a sum of “generalized parity”
polynomials. Let H(x) be some function defined on Ω. Let us denote

F(i2,i1)[H](x) =
1

l2l1

(l2−1,l1−1)

∑
(j2,j1)=0

λ
j2
i2

λ
j1
i1

H
(
Sj2

2 Sj1
1 x
)
, x ∈ Ω. (19)

Lemma 2. The function F(i2,i1)[H](x) has the “generalized parity” property

F(i2,i1)[H]
(
Sk2

2 Sk1
1 x
)
= λ̄k2

i2
λ̄k1

i1
F(i2,i1)[H](x) (20)

and the following equality

F(k2,k1)

[
F(i2,i1)[H]

]
(x) =

{
F(i2,i1)[H](x) (i2, i1) = (k2, k1),
0 (i2, i1) 6= (k2, k1).

(21)

holds true. In addition, the function H(x) can be expanded in the form

H(x) =
(l2−1,l1−1)

∑
(i2,i1)=0

F(i2,i1)[H](x), x ∈ Ω. (22)
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Proof. It is not hard to see that

F(i2,i1)[H]
(
Sk2

2 Sk1
1 x
)
=

1
l2l1

(l2−1,l1−1)

∑
(j2,j1)=0

λ
j2
i2

λ
j1
i1

H
(
Sk2+j2

2 Sk1+j1
1 x

)

=
1

l2l1

(l2−1,l1−1)

∑
(m2,m1)=0

λm2−k2
i2

λm1−k1
i1

H
(
Sm2

2 Sm1
1 x

)
= λ−k2

i2
λ−k1

i1
F(i2,i1)[H](x) = λ̄k2

i2
λ̄k1

i1
F(i2,i1)[H](x),

where, as in Theorem 2, the replacement of the index k⊕ j = m is done. Therefore, equality
(20) holds true.

Consider now the equality (22). It is easy to see that

(l2−1,l1−1)

∑
(i2,i1)=0

F(i2,i1)[H](x) =
1

l2l1

(l2−1,l1−1)

∑
(i2,i1)=0

(l2−1,l1−1)

∑
(j2,j1)=0

λ
j2
i2

λ
j1
i1

H
(
Sj2

2 Sj1
1 x
)

=
(l2−1,l1−1)

∑
(j2,j1)=0

H
(
Sj2

2 Sj1
1 x
) 1

l2l1

(l2−1,l1−1)

∑
(i2,i1)=0

λ
j2
i2

λ
j1
i1

. (23)

Let us transform the inner sum from the right side of (23). Let (j2, j1) 6= 0, then,
for example, j2 6= 0 which means λj2 6= 1. Taking into account that λl2

j2
= 1, by a simple

combinatorial identity, we find

(l2−1,l1−1)

∑
(i2,i1)=0

λ
j2
i2

λ
j1
i1
=

(l2−1,l1−1)

∑
(i2,i1)=0

λi2
j2

λi1
j1
=

l2−1

∑
i2=0

λi2
j2

l1−1

∑
i1=0

λi1
j1
=

λl2
j2
− 1

λj2 − 1

l1−1

∑
i1=0

λi1
j1
= 0. (24)

If (j2, j1) = 0, then λj2 = 1, λj1 = 1 and so

(l2−1,l1−1)

∑
(i2,i1)=0

λ
j2
i2

λ
j1
i1
= l2l1.

Therefore, the expression on the right side of (23) is equal to H(S0
2S0

1x) = H(x). This
proves the equality (22).

Now, let us prove (21). It is not hard to see that, using (20) and (22), we can write

F(k2,k1)

[
F(i2,i1)[H]

]
(x)

=
1

l2l1

(l2−1,l1−1)

∑
(j2,j1)=0

λ
j2
k2

λ
j1
k1

F(i2,i1)[H]
(
Sj2

2 Sj1
1 x
)
=

1
l2l1

(l2−1,l1−1)

∑
(j2,j1)=0

λ
j2
k2

λ
j1
k1

λ̄
j2
i2

λ̄
j1
i1

F(i2,i1)[H](x)

= F(i2,i1)[H](x)
1

l2l1

(l2−1,l1−1)

∑
(j2,j1)=0

(λk2 λ̄i2)
j2(λk1 λ̄i1)

j1 = F(i2,i1)[H](x)
1

l2l1

(l2−1,l1−1)

∑
(j2,j1)=0

λ
j2
k2−i2

λ
j1
k1−j1

.

Since, by virtue of (24), the formula

1
l2l1

(l2−1,l1−1)

∑
(j2,j1)=0

λ
j2
k2−i2

λ
j1
k1−j1

=

{
1 (k2, k1) = (i2, i1),
0 (k2, k1) 6= (i2, i1)

holds true, then (21) follows from the last equality. Here, the equalities λk2 λ̄i2 = λk2 λ−i2 =
λk2−i2 are taken into account. The lemma is proved.

Example 6. Let l2 = l1 = 2, S1x = (−x1, x2), S2x = (x1,−x2). Taking into account that
λi2 = (−1)i2 , λi1 = (−1)i1 , we obtain
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F(0,0)[H](x) =
1
4
(

H(x1, x2) + H(−x1, x2) + H(x1,−x2) + H(−x1,−x2)
)
,

F(0,1)[H](x) =
1
4
(

H(x1, x2)− H(−x1, x2) + H(x1,−x2)− H(−x1,−x2)
)
,

F(1,0)[H](x) =
1
4
(

H(x1, x2) + H(−x1, x2)− H(x1,−x2)− H(−x1,−x2)
)
,

F(1,1)[H](x) =
1
4
(

H(x1, x2)− H(−x1, x2)− H(x1,−x2) + H(−x1,−x2)
)
.

Let the function H(x) be even in x1. Then, its components F(i2,i1)[H] of generalized parity
(0, 1) and (1, 1) are zero.

Consider homogeneous harmonic polynomial Hm(x1, x2) of degree m and let (r, ϕ) be the
polar coordinates of x = (x1, x2). Then, there exist α, β ∈ R such that

Hm(x) = α Re(x1 + ix2)
m + β Im(x1 + ix2)

m = rm(α cos mϕ + β sin mϕ)

and hence

Hm(−x1, x2) = α Re(−x1 + ix2)
m + β Im(−x1 + ix2)

m = (−r)m(α cos mϕ− β sin mϕ),

Hm(x1,−x2) = α Re(x1 − ix2)
m + β Im(x1 − ix2)

m = rm(α cos mϕ− β sin mϕ),

Hm(−x1,−x2) = (−r)m(α cos mϕ + β sin mϕ).

The operator F(i2,i1)[·] extracts the following components of the harmonic polynomial Hm(x):

F(0,0)[Hm](x) = αrm 1 + (−1)m

2
cos mϕ, F(0,1)[Hm](x) = αrm 1− (−1)m

2
cos mϕ,

F(1,0)[Hm](x) = βrm 1− (−1)m

2
sin mϕ, F(1,1)[Hm](x) = βrm 1 + (−1)m

2
sin mϕ.

Thus, for m ∈ N0,

F(0,0)[H2m](x) = αr2m cos 2mϕ, F(1,1)[H2m](x) = βr2m sin 2mϕ,

F(0,1)[H2m+1](x) = αr2m+1 cos(2m + 1)ϕ, F(1,0)[H2m+1](x) = βr2m+1 sin(2m + 1)ϕ,
(25)

and the rest of the components vanish

F(0,1)[H2m](x) = F(1,0)[H2m](x) = 0, F(0,0)[H2m+1](x) = F(1,1)[H2m+1](x) = 0.

4. Finding Solutions to Problem S2

Let us rewrite the result of Theorem 5 in a more convenient form.

Theorem 6. Solutions to the boundary value problem (1) and (2) can be represented as

û(i2,i1)(x) = F(i2,i1)[wµ](x), λµ,(i2,i1) = µ
(l2−1,l1−1)

∑
(j2,j1)=0

a(j2,j1)λ̄
j2
i2

λ̄
j1
i1

, (26)

where the operator F(i2,i1)[·] is defined in (19), the function wµ(x) is a solution to the boundary
value problem (16) and (17)

∆w(x) + µw(x) = 0, x ∈ Ω; w(x) = 0, x ∈ ∂Ω

for some µ ∈ R+. Eigenfunctions û(i2,i1)(x) for (i2, i1) = 0, . . . , (l2 − 1, l1 − 1) and fixed µ are
orthogonal in L2(Ω).
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The functions û(i2,i1)(x) are a part of the function wµ(x) in the sense that

(l2−1,l1−1)

∑
(i2,i1)=0

û(i2,i1)(x) = wµ(x). (27)

Proof. Denote û(i2,i1)(x) = 1
l2l1

u(i2,i1)(x). It is clear that û(i2,i1)(x) is also an eigenfunction
of the problem (1) and (2). It is not hard to see that (18) implies

û(i2,i1)(x) =
1

l2l1
u(i2,i1)(x) =

1
l2l1

Wµ(x) · a(i2,i1)

=
1

l2l1

(
wµ(S

j2
2 Sj1

1 x)
)T

(j2,j1)=0,...,(l2−1,l1−1)
·
(

λ
j2
i2

λ
j1
i1

)T

(j2,j1)=0,...,(l2−1,l1−1)

=
1

l2l1

(l2−1,l1−1)

∑
(j2,j1)=0

wµ(S
j2
2 Sj1

1 x)λj2
i2

λ
j1
i1
= F(i2,i1)[wµ](x),

which proves the first formula from (26).
The eigenvalues of the problem (1) and (2) corresponding to eigenfunction û(i2,i1)(x),

by Theorem 5 and (14) from Corollary 4 can be taken in the form

λµ,(i2,i1) = µλ̄(i2,i1) = µ
(l2−1,l1−1)

∑
(j2,j1)=0

a(j2,j1)λ̄
j2
i2

λ̄
j1
i1

.

We now prove that the functions û(i2,i1)(x) and û(j2,j1)(x) for (i2, i1) 6= (j2, j1) are
orthogonal in L2(Ω). Indeed, if (i2 − j2, i1 − j1) 6= 0, then either i2 − j2 6= 0 mod l2 or
i1 − j1 6= 0 mod l1. Let, for example, i2 − j2 6= 0 and hence λi2−j2 6= 1. Then, using
Lemma 4.1 from [10], we obtain the following equality for g ∈ C(Ω)∫

Ω
g(S2ξ) dξ =

∫
Ω

g(ξ) dξ.

Therefore, by the Equality (20) from Lemma 2, we have

∫
Ω

û(i2,i1)(x) ¯̂u(j2,j1)(x) dx =
∫

Ω
F(i2,i1)[wµ](x)F̄(j2,j1)[wµ](x) dx

=
∫

Ω
F(i2,i1)[wµ](S2x)F̄(j2,j1)[wµ](S2x) dx

= λ̄i2 λj2

∫
Ω

F(i2,i1)[wµ](x)F̄(j2,j1)[wµ](x) dx = λ̄i2−j2

∫
Ω

û(i2,i1)(x) ¯̂u(j2,j1)(x) dx. (28)

Since λi2−j2 6= 1, then this immediately implies the orthogonality∫
Ω

û(i2,i1)(x) ¯̂u(j2,j1)(x) dx = 0.

Finally, the equality (27) is a consequence of the equality (22) from Lemma 2 for
H = wµ. The theorem is proved.

Corollary 6. If H(x) is a harmonic polynomial with real coefficients, then the harmonic polynomials
F(i2,i1)[H](x), (i2, i1) = 0, . . . , (l2 − 1, l1 − 1) are orthogonal and linearly independent.
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Proof. Indeed, let (i2, i1) 6= (j2, j1), which is possible, for example, for i1 6= j1 whence
λi1−j1 6= 1. By analogy with (28) and according to Lemma 4.1 from [10], we obtain

∫
∂Ω

F(i2,i1)[H](x)F̄(j2,j1)[H](x) ds =
∫

∂Ω
F(i2,i1)[H](S2x)F̄(j2,j1)[H](S2x) ds

= λ̄i1 λj1

∫
∂Ω

F(i2,i1)[H](x)F̄(j2,j1)[H](x) ds = λ̄i1−j1

∫
∂Ω

F(i2,i1)[H](x)F̄(j2,j1)[H](x) ds,

where, because λi1−j1 6= 1, we obtain the orthogonality of F(i2,i1)[H](x) and F(j2,j1)[H](x) on
∂Ω, and hence their linear independence. The corollary is proved.

Corollary 7. The matrix E(a) =
(

a(j2,j1)

)
(j2,j1)=0,...,(l2−1,l1−1)

consisting of the eigenvectors of

the matrix A(2)(a) is orthogonal and symmetric.

Proof. Let a(j2,j1) and a(i2,i1) be two different columns of the matrix E(a). Then, using the
equality λj2 λ̄i2 = λj2−i2 , we write

a(j2,j1) · ā(i2,i1) =
(

λk2
j2

λk1
j1

)T

(k2,k1)=0,...,(l2−1,l1−1)
·
(

λ̄k2
i2

λ̄k1
i1

)T

(k2,k1)=0,...,(l2−1,l1−1)

=
(l2−1,l1−1)

∑
(k2,k1)=0

λk2
j2

λk1
j1

λ̄k2
i2

λ̄k1
i1

=
(l2−1,l1−1)

∑
(k2,k1)=0

(λj2 λ̄i2)
k2(λj1 λ̄i1)

k1 =
(l2−1,l1−1)

∑
(k2,k1)=0

λk2
j2−i2

λk1
j1−i1

=
l2−1

∑
k2=0

λk2
j2−i2

l1−1

∑
k1=0

λk1
j1−i1

.

If (j2, j1) 6= (i2, i1), then (j2 − i2, j1 − i1) 6= 0, which means that one of the equalities
j2− i2 6= 0 or j1− i1 6= 0 holds true. Therefore, either λj2−i2 6= 1 or λj1−i1 6= 1, which means
that, similarly to (24), we obtain a(j2,j1) · ā(i2,i1) = 0.

The symmetry of the matrix E(a) follows from the equalities

ET(a) =
(

λi2
j2

λi1
j1

)T
(i2,i1)=0,...,(l2−1,l1−1)
(j2,j1)=0,...,(l2−1,l1−1)

=
(

λ
j2
i2

λ
j1
i1

)
(i2,i1)=0,...,(l2−1,l1−1)
(j2,j1)=0,...,(l2−1,l1−1)

=
(

λi2
j2

λi1
j1

)
(i2,i1)=0,...,(l2−1,l1−1)
(j2,j1)=0,...,(l2−1,l1−1)

= E(a).

The corollary is proved.

Note that the matrix of eigenvectors in the case of multiple involution and for
l1 = . . . = ln = 2 has a similar property [24].

Now, we can explore the completeness of the eigenfunctions of Problem S2.
LetHm be the space of homogeneous harmonic polynomials of degree m. By Lemma 2,

it can be split into a sum of l2l1 orthogonal on ∂Ω subspaces F(i2,i1)[Hm], (i2, i1) = 0, . . . , (l2−
1, l1 − 1) of homogeneous harmonic polynomials of parity (i2, i1). Let {H(i2,i1),k

m : k =
1, 2, . . . , m(i2,i1)} be a complete in F(i2,i1)[Hm] system of orthogonal on ∂Ω polynomials.

Theorem 7. Let the numbers λ(i2,i1) defined in (14) be all not zero. Then, the system of eigenfunc-
tions of the Dirichlet problem (1) and (2) is complete in L2(Ω) and has the form

uµ,m,(i2,i1),k(x) =
1

|x|m+n/2−1 Jm+n/2−1(
√

µ|x|)H(i2,i1),k
m (x), (29)
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where m ∈ N0, (i2, i1) = 0, . . . , (l2 − 1, l1 − 1), k = 1, . . . , m(i2,i1), Jν(t) is the Bessel function of
the first kind, and

√
µ is a root of the Bessel function Jm+n/2−1(t). The eigenvalues of Problem S2

are numbers λµ,(i2,i1), defined in (26)

λµ,(i2,i1) = µ
(l2−1,l1−1)

∑
(j2,j1)=0

a(j2,j1)λ̄
j2
i2

λ̄
j1
i1

.

Proof. By Theorem 6, to find eigenfunctions of the problem (1) and (2), it is necessary to
find the function wµ(x)—a solution to the problem (16) and (17) and then write out the
function û(i2,i1)(x) = F(i2,i1)[wµ](x). A maximal system of eigenfunctions of the problem
(16) and (17) have the form (see, for example, [27,28])

wµ,m,j(x) =
1

|x|m+n/2−1 Jm+n/2−1(
√

µ|x|)H j
m(x), (30)

where
{

H j
m(x) : j = 1, . . . , hm

}
, hm = 2m+n−2

n−2 (m+n−3
n−3 ) (n > 2) is the maximal system of

linearly independent homogeneous harmonic polynomials of degree m, and
√

µ is a root of
the Bessel function Jm+n/2−1(t). Then, since |S2S1x| = |x|, then

û(i2,i1)(x) = F(i2,i1)[wµ,m,j](x) =
1

l2l1

(l2−1,l1−1)

∑
(j2,j1)=0

λ
j2
i2

λ
j1
i1

wµ,m,j
(
Sj2

2 Sj1
1 x
)

=
1

l2l1

(l2−1,l1−1)

∑
(j2,j1)=0

λ
j2
i2

λ
j1
i1

1

|Sj2
2 Sj1

1 x|m+n/2−1
Jm+n/2−1

(√
µ|Sj2

2 Sj1
1 x|
)

H j
m

(
Sj2

2 Sj1
1 x
)

=
1

|x|m+n/2−1 Jm+n/2−1(
√

µ|x|)F(i2,i1)[H
j
m](x). (31)

Since F(i2,i1)[H
j
m] ⊂ F(i2,i1)[Hm], then choose in the space F(i2,i1)[Hm] a complete system

of polynomials
{

H(i2,i1),k
m : k = 1, 2, . . . , m(i2,i1)

}
orthogonal on ∂Ω, to which correspond

some polynomials from Hm. Note that, for some value of m, it is possible m(i2,i1) = 0,

that is, for such m, the component H(i2,i1)
m (x) is missing (see Example 6) and therefore

û(i2,i1) = 0. Choosing in the resulting expression for û(i2,i1)(x) instead of F(i2,i1)[H
j
m](x) the

harmonic polynomials H(i2,i1),k
m (x) and adding indices, indicating the dependence of the

eigenfunction û(i2,i1)(x) on µ, m and k, we have (29).

Since, in formula (29), H(i2,i1),k
m (x) are homogeneous harmonic polynomials of degree

m, the functions uµ,m,(i2,i1),k(x) have the form (30) and hence are eigenfunctions of problem

(16) and (17). The reverse is also true. Each homogeneous harmonic polynomial H j
m(x)

by the formula (22) can be represented as a linear combination of harmonic polynomials
of the form H(i2,i1)

m (x), and those are linear combinations of the polynomials H(i2,i1),k
m (x)

and hence any function from (30) is a linear combination of functions of the form (29).
The eigenvalues of the problem (1) and (2), in accordance with Theorem (6), are found
from (26).

Let us study the orthogonality of the functions uµ,m,(i2,i1),k(x). The equality holds true

∫
Ω

uµ1,m1,(i2,i1),k1
(x)ūµ2,m2,(j2,j1),k2

(x) dx

=
∫ 1

0
ρJm1+n/2−1(

√
µ1ρ)Jm2+n/2−1(

√
µ2ρ) dρ ·

∫
∂Ω

H(i2,i1),k1
m1 (ξ)H̄(j2,j1),k2

m2 (ξ) dsξ = 0.
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Consider the right side of the obtained equality. For µ1 6= µ2 and m1 = m2, due to
the properties of the Bessel functions (orthogonality in L2((0, 1); t)), the first factor is zero.
If m1 6= m2, by the property of harmonic polynomials, the second factor from the right side
is zero. If µ1 = µ2, m1 = m2, then, for (i2, i1) 6= (j2, j1), the second factor from the right side
is zero by Corollary 6. Finally, if (i2, i1) = (j2, j1) and k1 6= k2, then the second factor is zero
in accordance with the scheme for constructing polynomials H(i2,i1),k

m (x).
By Lemma 2 from ([29], p. 33), the obtained system (29) of functions is complete

in L2(Ω) = L2((0, 1)× ∂Ω) because the system
{

Jm+n/2−1(
√

µρ) : Jm+n/2−1(
√

µ) = 0
}

is

orthogonal and complete in L2((0, 1); t) for each m, and the system
{

H(i2,i1),k)
m (ξ)

}
is or-

thogonal and complete in L2(∂Ω) for different m, (i2, i1) and k. The theorem is proved.

Example 7. Let n = 2, l2 = l1 = 2, S1x = (−x1, x2), S2x = (x1,−x2) then Problem S2 has
the form

a0∆u(x1, x2) + a1∆u(−x1, x2) + a2∆u(x1,−x2) + a3∆u(−x1,−x2) + λu(x) = 0, x ∈ Ω,

u(x) = 0, x ∈ ∂Ω.

Using Example 6, we find the eigenfunctions of the problem (1) and (2). In the polar coordinate
system, the eigenfunctions of the problem (16) and (17) are determined according to the equality
(30) in the form

wµ,m,0(x) = Jm(
√

µr) cos mϕ, wµ,m,1(x) = Jm(
√

µr) sin mϕ, m ∈ N0,

where
√

µ is a root of the Bessel function Jm(t)

Jm(t) =
∞

∑
j=0

(−1)j

(j + m)!j!

(
t
2

)2j+m
.

Using (31), we have

uµ,m,(i2,i1)(x) = Jm(
√

µ|x|)F(i2,i1)[Hm](x/|x|).

In the written formula, the dependence of the eigenfunction uµ,m,(i2,i1)(x) on the index k is not
indicated because, in accordance with Example 6, the dimension of the space F(i2,i1)[Hm] is equal to
1. According to (25) and taking into account (26), we write

uµ,2m,(0,0)(x) = J2m(
√

µr) cos(2mϕ), λµ,(0,0) = µ(a0 + a1 + a2 + a3),

uµ,2m+1,(0,1)(x) = J2m+1(
√

µr) cos((2m + 1)ϕ), λµ,(0,1) = µ(a0 − a1 + a2 − a3),

uµ,2m+1,(1,0)(x) = J2m+1(
√

µr) sin((2m + 1)ϕ), λµ,(1,0) = µ(a0 + a1 − a2 − a3),

uµ,2m,(1,1)(x) = J2m(
√

µr) sin(2mϕ), λµ,(1,1) = µ(a0 − a1 − a2 + a3),

where m ∈ N0,
√

µ is a root of the Bessel function Jm(t) and λµ,(i2,i1) 6= 0. It is clear that the
obtained system of eigenfunctions is complete in L2(Ω).

Let n = 3. Then, the maximal system of homogeneous harmonic polynomials of degree m
in (30) {H j,0

m (x), H j,1
m (x) : j = 0, . . . , m} has the form [27]

H j,0
m (x1, x2, x3) = Gj

m−j(x)Re(x1 + ix2)
j, H j,1

m (x1, x2, x3) = Gj
m−j(x) Im(x1 + ix2)

j, (32)

where 0 ≤ j ≤ m and

Gj
m(x) ≡ Gj

m(x1, x2, x3) =
[m/2]

∑
k=0

(−1)k (x2
1 + x2

2)
kxm−2k

3
(2k)!!(2j + 2k)!!(m− 2k)!

.
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The system (32) has 2m + 1 members for every m because H j,1
0 (x) = 0. In the spherical

coordinate system (r, ϕ, θ), we can write it in a more compact way

H j,0
m (x1, x2, x3) = rmGj

m−j(r, ϕ, θ) cos jϕ, H j,1
m (x1, x2, x3) = rmGj

m−j(r, ϕ, θ) sin jϕ,

where

Gj
m(r, ϕ, θ) =

[m/2]

∑
k=0

(−1)k sin2k+j θ cosm−2k θ

(2k)!!(2j + 2k)!!(m− 2k)!
,

since cos θ = x3/|x|, sin θ =
√

x2
1 + x2

2/|x| and cos ϕ = x1/
√

x2
1 + x2

2. In this case, the dimen-
sion of the space F(i2,i1)[Hm] is greater than 1. Note that the operator F(i2,i1)[·] acts only on the
second multiplier of polynomials in (32). For example, in the space F(0,0)[Hm], one can choose the

following basic polynomials {H2k,0
m (r, ϕ, θ) : k = 0, . . . , [m/2]}, which means

uµ,m,(0,0),k(x) = r−1/2 Jm+1/2(
√

µr)G2k
m−2k(r, ϕ, θ) cos(2kϕ), k = 0, . . . , [m/2].

The remaining eigenfunctions are obtained similarly.

5. Conclusions

The results obtained allow one to find explicitly, using the formula (29), the eigen-
functions and eigenvalues of the boundary value problem (1) and (2) for the nonlocal
differential equation with double involution. The completeness of the system of eigenfunc-
tions make it possible to use the Fourier method to construct solutions of initial-boundary
value problems for nonlocal parabolic and hyperbolic equations.

Possible applications of the obtained results can be found in the modeling of optical
systems, since differential equations with involution are an important part of the general
theory of functional differential equations, which has numerous applications in optics.
Applications of equations with involution in modeling optical systems are given, for ex-
ample, in [30,31]. In particular, in [30], mathematical models important for applications in
nonlinear optics are considered in the form of nonlinear functional-differential equations
of a parabolic type with feedback and transformation of spatial variables, which is speci-
fied by the involution operator. The following parabolic functional differential equation
is considered

∂u
∂t

+ u = µ∆u + K(1 + γ cos Qu), r1 ≤ r ≤ r2, t ≥ 0, µ > 0,

which describes the dynamics of the phase modulation of a light wave, in an optical system
with an involution operator Q such that Ql = I.

With the above in mind, as further research steps on the topic of the presented
article, we are going to investigate nonlocal initial-boundary value problems with in-
volution for parabolic equations. In addition, we are going to study nonlocal bound-
ary value problems in the case of multiple involution of arbitrary orders, generalizing
the results obtained in [24], and also consider similar boundary value problems for a
nonlocal biharmonic equation.
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