On Entire Function Solutions to Fermat Delay-Differential Equations
Abstract
:1. Introduction and Main Results
2. Preliminaries
3. Proof of Theorem 6
4. Proof of Theorem 7
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gol’dberg, A.A.; Ostrovskii, I.V. Distribution of Values of Meromorphic Functions; Nauka: Moscow, Russia, 1970. (In Russian) [Google Scholar]
- Hayman, W.K. Meromorphic Functions; Clarendon Press: Oxford, UK, 1964. [Google Scholar]
- Yang, C.C.; Yi, H.X. Uniqueness Theory of Meromorphic Functions; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2004; Volume 557. [Google Scholar]
- Baker, I.N. On a class of meromorphic functions. Proc. Am. Math. Soc. 1966, 17, 819–822. [Google Scholar] [CrossRef]
- Gross, F. On the equation fn + gn = 1. I. Bull. Am. Math. Soc. 1966, 72, 86–88. [Google Scholar] [CrossRef] [Green Version]
- Gross, F. On the equation fn + gn = 1. II. Bull. Am. Math. Soc. 1966, 72, 647–648. [Google Scholar]
- Gross, F. On the functional equation fn + gn = hn. Am. Math. Mon. 1966, 73, 1093–1096. [Google Scholar] [CrossRef]
- Montel, P. Lecons Sur Les Familles Normales de Fonctions Analytiques et Leurs Appliciations; Collect. Borel: Paris, France, 1927; pp. 135–136. [Google Scholar]
- Yang, C.C.; Li, P. On the transcendental solutions of a certain type of nonlinear differential equations. Arch. Math. 2004, 82, 442–448. [Google Scholar] [CrossRef]
- Liu, K.; Yang, L.Z. A note on meromorphic solutions of Fermat types equations. An. Stiint. Univ. Al. I. Cuza Lasi Mat. (NS) 2016, 1, 317–325. [Google Scholar]
- Xu, H.Y.; Xuan, Z.X.; Luo, J.; Liu, S.M. On the entire solutions for several partial differential difference equations (systems) of Fermat type in . AIMS Math. 2021, 6, 2003–2017. [Google Scholar] [CrossRef]
- Han, Q.; Lü, F. On the equation fn(z) + gn(z) = eαz+β. J. Contemp. Math. Anal. 2019, 54, 98–102. [Google Scholar] [CrossRef]
- Luo, J.; Xu, H.Y.; Hu, F. Entire solutions for several general quadratic trinomial differential difference equations. Open Math. 2021, 19, 1018–1028. [Google Scholar] [CrossRef]
- Hu, P.C.; Wang, Q. On meromorphic solutions of functional equations of Fermat type. Bull. Malays. Math. Sci. Soc. 2019, 42, 2497–2515. [Google Scholar] [CrossRef] [Green Version]
- Hu, P.C.; Wang, W.B.; Wu, L.L. Entire solutions of differential-difference equations of Fermat type. Bull. Korean Math. Soc. 2022, 59, 83–99. [Google Scholar]
- Jiang, Y.Y.; Liao, Z.H.; Qiu, D. The existence of entire solutions of some systems of the Fermat type differential-difference equations. AIMS Math. 2022, 7, 17685–17698. [Google Scholar] [CrossRef]
- Li, B.Q. On meromorphic solutions of f2 + g2 = 1. Math. Z. 2008, 258, 763–771. [Google Scholar] [CrossRef]
- Liu, K.; Laine, I.; Yang, L. Complex Delay-Differential Equations; De Gruyter: Berlin, Germany, 2021. [Google Scholar]
- Liu, K.; Ma, L.; Zhai, X. The generalized Fermat type difference equations. Bull. Korean Math. Soc. 2018, 55, 1845–1858. [Google Scholar] [CrossRef]
- Liu, K.; Yang, L.Z.; Liu, X.L. Existence of entire solutions of nonlinear difference equations. Czech. Math. J. 2011, 61, 565–576. [Google Scholar] [CrossRef]
- Yang, L.Z.; Zhang, J.L. Non-existence of meromorphic solutions of a Fermat type functional equation. Aequationes Math. 2008, 76, 140–150. [Google Scholar] [CrossRef]
- Halburd, R.G.; Korhonen, R.J.; Tohge, K. Holomorphic curves with shift-invariant hyperplane preimages. Trans. Am. Math. Soc. 2014, 366, 4267–4298. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.-Y.; Xu, Z.-K.; Lü, W.-R. On Entire Function Solutions to Fermat Delay-Differential Equations. Axioms 2022, 11, 554. https://doi.org/10.3390/axioms11100554
Zhang X-Y, Xu Z-K, Lü W-R. On Entire Function Solutions to Fermat Delay-Differential Equations. Axioms. 2022; 11(10):554. https://doi.org/10.3390/axioms11100554
Chicago/Turabian StyleZhang, Xue-Ying, Ze-Kun Xu, and Wei-Ran Lü. 2022. "On Entire Function Solutions to Fermat Delay-Differential Equations" Axioms 11, no. 10: 554. https://doi.org/10.3390/axioms11100554
APA StyleZhang, X. -Y., Xu, Z. -K., & Lü, W. -R. (2022). On Entire Function Solutions to Fermat Delay-Differential Equations. Axioms, 11(10), 554. https://doi.org/10.3390/axioms11100554