Geometric Properties of Some Generalized Mathieu Power Series inside the Unit Disk
Abstract
:1. Introduction and Preliminaries
2. Close-to-Convexity and Starlikeness of
3. Close-to-Convexity and Starlikeness of
4. Two Further Examples
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duren, P.L. Univalent Functions; Springer: Berlin, Germany, 1983. [Google Scholar]
- Goodman, A.W. Univalent Functions, Vols. I and II; Mariner Publishing Co.: Tampa, FL, USA, 1983. [Google Scholar]
- Frasin, B.A.; Al-Hawary, T.; Yousef, F. Necessary and sufficient conditions for hypergeometric functions to be in a subclass of analytic functions. Afrika Matematika 2019, 30, 223–230. [Google Scholar] [CrossRef]
- Frasin, B.A.; Al-Hawary, T.; Yousef, F.; Aldawish, I. On subclasses of analytic functions associated with Struve functions. Nonlinear Funct. Anal. Appl. 2022, 27, 99–110. [Google Scholar]
- Sangal, P.; Swaminathan, A. Starlikeness of Gaussian hypergeometric functions using positivity techniques. Bull. Malays. Math. Sci. Soc. 2018, 41, 507–521. [Google Scholar] [CrossRef]
- Mathieu, E.L. Traité de Physique Mathematique. VI-VII: Theory de L’élasticité des Corps Solides (Part 2); Gauthier-Villars: Paris, France, 1890. [Google Scholar]
- Emersleben, O. Über die Reihe . Math. Ann. 1952, 125, 165–171. [Google Scholar] [CrossRef]
- Tomovski, Ž. New integral and series representations of the generalized Mathieu series. Appl. Anal. Discrete Math. 2008, 2, 205–212. [Google Scholar] [CrossRef] [Green Version]
- Alzer, H.; Brenner, J.L.; Ruehr, O.G. On Mathieu’s inequality. J. Math. Anal. Appl. 1998, 218, 607–610. [Google Scholar] [CrossRef] [Green Version]
- Cerone, P.; Lenard, C.T. On integral forms of generalized Mathieu series. J. Inequal. Pure Appl. Math. 2003, 4, 1–11. [Google Scholar]
- Diananda, P.H. Some inequalities related to an inequality of Mathieu. Math. Ann. 1980, 250, 95–98. [Google Scholar] [CrossRef]
- Makai, E. On the inequality of Mathieu. Publ. Math. Debrecen 1957, 5, 204–205. [Google Scholar]
- Pogány, T.K.; Srivastava, H.M.; Tomovski, Ž. Some families of Mathieu a-series and alternating Mathieu a-series. Appl. Math. Comput. 2006, 173, 69–108. [Google Scholar] [CrossRef]
- Choi, J.; Srivastava, H.M. Mathieu series and associated sums involving the zeta functions. Comput. Math. Appl. 2010, 59, 861–867. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Tomovski, Ž.; Leškovski, D. Some families of Mathieu type series and Hurwitz-Lerch zeta functions and associated probability distributions. Appl. Comput. Math. 2015, 14, 349–380. [Google Scholar]
- Tomovski, Ž.; Leškovski, D.; Gerhold, S. Generalized Mathieu Series; Springer: Berlin, Germany, 2021. [Google Scholar]
- Pogány, T.K.; Srivastava, H.M. Some Mathieu-type series associated with the Fox-Wright function. Comput. Math. Appl. 2009, 57, 127–140. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Mehrez, K.; Tomovski, Ž. New inequalities for some generalized Mathieu type series and the Riemann zeta function. J. Math. Inequal. 2018, 12, 163–174. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Tomovski, Ž. Some problems and solutions involving Mathieu’s series and its generalizations. J. Inequal. Pure Appl. Math. 2004, 5, 1–13. [Google Scholar]
- Bansal, D.; Sokol, J. Geometric properties of Mathieu-type power series inside unit disk. J. Math. Inequal. 2019, 13, 911–918. [Google Scholar] [CrossRef] [Green Version]
- Gerhold, S.; Hubalek, F.; Tomovski, Ž. Asymptotics of some generalized Mathieu series. Math. Scand. 2020, 126, 424–450. [Google Scholar] [CrossRef]
- Ozaki, S. On the theory of multivalent functions. Sci. Rep. Tokyo Bunrika Daigaku A 1935, 2, 167–188. [Google Scholar]
- Fejér, L. Untersuchungen über Potenzreihen mit mehrfach monotoner Koeffizientenfolge. Acta Literarum Sci. 1936, 8, 89–115. [Google Scholar]
- Balasubramanian, R.; Ponnusamy, S.; Vuorinen, M. On hypergeometric functions and function spaces. J. Comput. Appl. Math. 2002, 139, 299–322. [Google Scholar] [CrossRef] [Green Version]
- Fejér, L. Über die Positivität von Summen, die nach trigonometrischen oder Legendreschen Funktionen fortschreiten. Acta Szeged 1925, 2, 75–86. [Google Scholar]
- Mitrinović, D.S. Analytic Inequalities; Springer: Berlin, Germany, 1970. [Google Scholar]
- Merkle, M. Gurland’s ratio for the gamma function. Comput. Math. Appl. 2005, 49, 389–406. [Google Scholar] [CrossRef] [Green Version]
- Goodman, A.W. Univalent functions and nonanalytic curves. Proc. Am. Math. Soc. 1957, 8, 598–601. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomovski, Ž.; Gerhold, S.; Bansal, D.; Soni, A. Geometric Properties of Some Generalized Mathieu Power Series inside the Unit Disk. Axioms 2022, 11, 568. https://doi.org/10.3390/axioms11100568
Tomovski Ž, Gerhold S, Bansal D, Soni A. Geometric Properties of Some Generalized Mathieu Power Series inside the Unit Disk. Axioms. 2022; 11(10):568. https://doi.org/10.3390/axioms11100568
Chicago/Turabian StyleTomovski, Živorad, Stefan Gerhold, Deepak Bansal, and Amit Soni. 2022. "Geometric Properties of Some Generalized Mathieu Power Series inside the Unit Disk" Axioms 11, no. 10: 568. https://doi.org/10.3390/axioms11100568
APA StyleTomovski, Ž., Gerhold, S., Bansal, D., & Soni, A. (2022). Geometric Properties of Some Generalized Mathieu Power Series inside the Unit Disk. Axioms, 11(10), 568. https://doi.org/10.3390/axioms11100568