Local Grey Predictor Based on Cubic Polynomial Realization for Market Clearing Price Prediction
Abstract
:1. Introduction
- Transformation of the original series if there are negative terms in the series [10];
- To develop a mathematical model based on a cubic realization of a grey differential equation and present the solution of the proposed CGM.
- To present the data analysis of the MCP signals on the basis of different attributes.
- To develop a forecasting model for predicting the MCPs for different data samples from different grey models. In addition, to present a comparative analysis of the performance of these models based on mean absolute percentage error (MAPE) analysis and other relevant error analyses.
2. Development of New Proposed Grey Model Comprising Cubic Polynomial (CGM)
Discussion
3. Data Analysis
- Case 1. Thirty samples of a time duration of a month, considering the average MCP of whole day (monthly values of MCP). The data distribution of the case is showcased in Figure 1.
- Case 2. Twenty-four samples of a trading day (hourly values of MCP). The data distribution of the case is showcased in Figure 2.
- Case 3. Ninety-six samples of a day with the values of MCP measured for every 15 min (per 15 min values of MCP for a day). The data distribution of the case is showcased in Figure 3.
- Case 4. Twelve samples of the mean of monthly MCP for a particular year. The data distribution of the case is showcased in Figure 4.
4. Results and Discussion
4.1. Average Rank-Based Analysis
4.2. Box Plot Analysis
5. Conclusions
- A case study of the Indian stock exchange was taken and 24 different data samples of a diverse nature were applied to test the efficacy of the proposed CGM.
- It is observed by error analysis that the proposed method yields accurate results, as prediction MAPEs are optimal. For developing a deep understanding of the performance of CGM, rank-based analysis and box-plot-analysis-based observations were exhibited. All analyses indicate that CGM possesses a better quality regarding the anticipation of market conditions for MCP prediction.
- With the help of the proposed CGM, a generating company can emulate their rivals and use the information for profit accumulation. Further, the development of a neighborhood-algorithm-based cubic model lies in the future scope.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Deng, J. Introduction to grey system theory. J. Grey Syst. 1989, 1, 1–24. [Google Scholar]
- Zhang, L.; Luh, P.B. Neural network-based market clearing price prediction and confidence interval estimation with an improved extended Kalman filter method. IEEE Trans. Power Syst. 2005, 20, 59–66. [Google Scholar] [CrossRef]
- Yan, X.; Chowdhury, N.A. Mid-term electricity market clearing price forecasting: A multiple SVM approach. Int. J. Electr. Power Energy Syst. 2014, 58, 206–214. [Google Scholar] [CrossRef]
- Zhang, L.; Luh, P.B. Power market clearing price prediction and confidence interval estimation with fast neural network learning. In Proceedings of the 2002 IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No.02CH37309), New York, NY, USA, 27–31 January 2020. [Google Scholar]
- Akay, D.; Mehmet, A. Grey prediction with rolling mechanism for electricity demand forecasting of Turkey. Energy 2007, 32, 1670–1675. [Google Scholar] [CrossRef]
- Shi, J.; Ding, Z.; Lee, W.J.; Yang, Y.; Liu, Y.; Zhang, M. Hybrid forecasting model for very-short term wind power forecasting based on grey relational analysis and wind speed distribution features. IEEE Trans. Smart Grid 2013, 5, 521–526. [Google Scholar] [CrossRef]
- Wu, L. Modelling and forecasting CO2 emissions in the BRICS (Brazil, Russia, India, China, and South Africa) countries using a novel multi-variable grey model. Energy 2015, 79, 489–495. [Google Scholar] [CrossRef]
- Wu, L.; Liu, S.; Yao, L.; Yan, S.; Liu, D. Grey system model with the fractional order accumulation. Commun. Nonlinear Sci. Numer. Simul. 2013, 18, 1775–1785. [Google Scholar] [CrossRef]
- Wu, L.; Liu, S.; Yang, Y. A gray model with a time varying weighted generating operator. IEEE Trans. Syst. Man, Cybern. Syst. 2015, 46, 427–433. [Google Scholar]
- Hsu, C.C.; Chen, C.Y. A modified Grey forecasting model for long-term prediction. J. Chin. Inst. Eng. 2003, 26, 301–308. [Google Scholar] [CrossRef]
- Ma, X.; Liu, Z.; Wang, Y. Application of a novel nonlinear multivariate grey Bernoulli model to predict the tourist income of China. J. Comput. Appl. Math. 2019, 347, 84–94. [Google Scholar] [CrossRef]
- Zhang, J.; Jiang, Z. A new grey quadratic polynomial model and its application in the COVID-19 in China. Sci. Rep. 2021, 11, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Saxena, A. Grey forecasting models based on internal optimization for Novel Corona virus (COVID-19). Appl. Soft Comput. 2021, 111, 107735. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.I. Application of the novel nonlinear grey Bernoulli model for forecasting unemployment rate. Chaos Solitons Fractals 2008, 37, 278–287. [Google Scholar]
- Saxena, A. Optimized Fractional Overhead Power Term Polynomial Grey Model (OFOPGM) for market clearing price prediction. Electr. Power Syst. Res. 2023, 214, 108800. [Google Scholar] [CrossRef]
- Saxena, A.; Ashutosh, S.; Shalini, S. Parameter extraction of solar cell using intelligent grey wolf optimizer. Evol. Intell. 2020, 15, 167–183. [Google Scholar] [CrossRef]
- Saini, V.K.; Kumar, R.; Mathur, A.; Saxena, A. Short term forecasting based on hourly wind speed data using deep learning algorithms. In Proceedings of the 2020 3rd International Conference on Emerging Technologies in Computer Engineering: Machine Learning and Internet of Things (ICETCE), Jaipur, India, 7–8 February 2022. [Google Scholar]
- Ding, S.; Tao, Z.; Zhang, H.; Li, Y. Forecasting nuclear energy consumption in China and America: An optimized structure-adaptative grey model. Energy 2022, 239, 121928. [Google Scholar]
- Jana, C.; Pal, M. A dynamical hybrid method to design decision making process based on GRA approach for multiple attributes problem. Eng. Appl. Artif. Intell. 2021, 100, 104203. [Google Scholar]
- Jana, C.; Pal, M.; Liu, P. Multiple attribute dynamic decision making method based on some complex aggregation functions in CQROF setting. Comput. Appl. Math. 2022, 41, 1–28. [Google Scholar] [CrossRef]
- Jana, C.; Garg, H.; Pal, M. Multi-attribute decision making for power Dombi operators under Pythagorean fuzzy information with MABAC method. J. Ambient. Intell. Humaniz. Comput. 2022. [Google Scholar] [CrossRef]
- Available online: https://www.iexindia.com/ (accessed on 3 December 2021).
- Cui, J. A novel grey forecasting model and its optimization. Appl. Math. Model. 2013, 37, 4399–4406. [Google Scholar] [CrossRef]
- Xie, N.; Liu, S. Discrete grey forecasting model and its optimization. Appl. Math. Model. 2009, 33, 1173–1186. [Google Scholar] [CrossRef]
Cases | Data Indicator | Time Duration | Specifcation | Skewness | Kurtosis | Mean | SD |
---|---|---|---|---|---|---|---|
Case-1 | D-1 | 1-06-2021 to 30-06-2021 | 30 samples | 0.6069 | 3.0648 | 3061.8813 | 604.4347 |
D-2 | 1-07-2021 to 30-07-2021 | 30 samples | 0.7097 | 3.1813 | 2970.2250 | 780.1299 | |
D-3 | 1-01-2019 to 01-02-2019 | 32 samples | 0.3974 | 3.2540 | 3316.9563 | 317.0100 | |
D-4 | 1-03-2019 to 01-04-2020 | 32 samples | −0.3324 | 1.9490 | 2448.4938 | 278.9202 | |
D-5 | 1-05-2021 to 01-06-2021 | 32 samples | −0.0267 | 2.1373 | 2838.6059 | 270.8984 | |
D-6 | 1-03-2021 to 01-04-2021 | 32 samples | 0.6606 | 2.8131 | 4051.9459 | 615.3318 | |
Case-2 | D-7 | 1-01-2020 | 24 samples | −0.0716 | 1.9723 | 2978.2167 | 735.0516 |
D-8 | 1-03-2020 | 24 samples | 0.7272 | 3.1536 | 2636.5188 | 307.6723 | |
D-9 | 24-10-2020 | 24 samples | 2.5992 | 9.8850 | 2552.3067 | 480.6052 | |
D-10 | 24-10-2019 | 24 samples | 2.2243 | 7.2330 | 2685.7975 | 349.8738 | |
D-11 | 14-08-2020 | 24samples | 1.3077 | 3.4041 | 3671.4146 | 1354.6820 | |
D-12 | 15-07-2020 | 24 samples | 1.1664 | 4.6392 | 2587.3438 | 362.8971 | |
Case-3 | D-13 | 7-08-2021 | 96 samples | 1.4135 | 3.5530 | 3887.9233 | 1596.6424 |
D-14 | 9-09-2021 | 96 samples | 1.5307 | 4.1393 | 3778.4663 | 1627.1399 | |
D-15 | 14-08-2019 | 96 samples | 1.3947 | 3.8070 | 3671.4132 | 1359.4739 | |
D-16 | 20-08-2020 | 96 samples | 1.1191 | 4.9793 | 2271.0991 | 410.5623 | |
D-17 | 10-09-2019 | 96 samples | 0.7981 | 2.8497 | 2546.1361 | 759.2563 | |
D-18 | 15-05-2019 | 96 samples | 0.5152 | 2.8808 | 3423.6879 | 589.5000 | |
Case-4 | D-19 | Monthly average of 2015 | 12 samples | 2.0346 | 6.6163 | 2820.7017 | 302.7745 |
D-20 | Monthly average of 2016 | 12 samples | 1.1875 | 4.0746 | 2400.7325 | 206.3804 | |
D-21 | Monthly average of 2017 | 12 samples | 0.9295 | 2.4451 | 3018.3925 | 585.8632 | |
D-22 | Monthly average of 2018 | 12 samples | 1.3335 | 3.9808 | 3930.0533 | 815.6535 | |
D-23 | Monthly average of 2019 | 12 samples | −0.4774 | 1.7014 | 3114.3142 | 241.0883 | |
D-24 | Monthly average of 2020 | 12 samples | 0.0988 | 1.5406 | 2619.4675 | 196.1199 |
Original | GM | QGM | DGM | CGM |
---|---|---|---|---|
3198.1 | 3198.1 | 3198.1 | 3198.1 | 3198.1 |
3236.8 | 2696.623 | 3631.085 | 2708.123 | 3650.643 |
3331.72 | 2720.255 | 3440.045 | 2731.1 | 3447.441 |
3589.98 | 2744.094 | 3269.987 | 2754.272 | 3266.313 |
3781.45 | 2768.143 | 3120.119 | 2777.641 | 3106.671 |
2834.2 | 2792.401 | 2989.677 | 2801.208 | 2967.909 |
2899.43 | 2816.873 | 2877.929 | 2824.975 | 2849.411 |
2709.61 | 2841.559 | 2784.169 | 2848.943 | 2750.544 |
2694.05 | 2866.461 | 2707.716 | 2873.115 | 2670.659 |
2652.28 | 2891.581 | 2647.917 | 2897.492 | 2609.095 |
3151.76 | 2916.922 | 2604.143 | 2922.076 | 2565.173 |
2249.54 | 2942.484 | 2575.788 | 2946.868 | 2538.199 |
2039.33 | 2968.271 | 2562.271 | 2971.871 | 2527.463 |
2171.33 | 2994.284 | 2563.03 | 2997.086 | 2532.237 |
2473.47 | 3020.524 | 2577.527 | 3022.515 | 2551.777 |
2601.42 | 3046.995 | 2605.243 | 3048.159 | 2585.321 |
2661.71 | 3073.697 | 2645.678 | 3074.022 | 2632.09 |
2906.26 | 3100.634 | 2698.352 | 3100.103 | 2691.285 |
2772.75 | 3127.806 | 2762.802 | 3126.406 | 2762.089 |
2482.96 | 3155.217 | 2838.585 | 3152.932 | 2843.668 |
2729.16 | 3182.868 | 2925.27 | 3179.683 | 2935.164 |
3299.16 | 3210.761 | 3022.448 | 3206.661 | 3035.702 |
4009.4 | 3238.899 | 3129.722 | 3233.868 | 3144.386 |
4119.55 | 3267.283 | 3246.709 | 3261.306 | 3260.299 |
3186.65 | 3295.916 | 3373.044 | 3288.977 | 3382.501 |
3465.28 | 3324.8 | 3508.373 | 3316.882 | 3510.031 |
2799.51 | 3353.938 | 3652.357 | 3345.024 | 3641.905 |
3475.56 | 3383.33 | 3804.668 | 3373.405 | 3777.118 |
3688.21 | 3412.98 | 3964.992 | 3402.027 | 3914.638 |
4645.81 | 3442.89 | 4133.027 | 3430.891 | 4053.41 |
GM | QGM [12] | DGM [24] | CGM | NGM [23] | |
---|---|---|---|---|---|
D-1 | 15.18395 | 9.270227 | 15.18601 | 9.194595 | 212.4705 |
D-2 | 13.07943 | 12.5719 | 13.11626 | 11.38833 | 96728.94 |
D-3 | 4.943737 | 4.966602 | 4.940739 | 4.624694 | 956.5385 |
D-4 | 6.987991 | 6.782471 | 6.983572 | 6.748549 | 151.9457 |
D-5 | 6.992565 | 9.914095 | 6.975714 | 3.945423 | 2.15 × 1010 |
D-6 | 11.84488 | 9.993427 | 11.8372 | 10.15447 | 13.84575 |
D-7 | 19.44901 | 9.683639 | 19.52746 | 9.837551 | 15.35724 |
D-8 | 9.136202 | 7.988542 | 9.141686 | 7.588309 | 10.26142 |
D-9 | 9.703319 | 9.892095 | 9.682081 | 10.5868 | 15.53634 |
D-10 | 6.955285 | 6.943842 | 6.943957 | 8.097218 | 11.86641 |
D-11 | 27.15006 | 16.96214 | 27.06731 | 15.40635 | 52.48131 |
D-12 | 7.809574 | 8.075531 | 7.798247 | 7.056193 | 10.49084 |
D-13 | 24.66103 | 16.28119 | 24.62086 | 15.21046 | 222.4543 |
D-14 | 25.41172 | 15.68077 | 25.39927 | 15.21671 | 58.44042 |
D-15 | 28.20147 | 17.41897 | 28.16229 | 16.37026 | 217.168 |
D-16 | 11.54929 | 9.324261 | 11.5432 | 10.3146 | 24.1126 |
D-17 | 24.29577 | 14.34776 | 24.26541 | 14.5537 | 380.3055 |
D-18 | 12.24162 | 5.921934 | 12.24239 | 5.841004 | 90.67132 |
D-19 | 6.394083 | 6.462649 | 6.353714 | 4.753319 | 12.13664 |
D-20 | 5.760683 | 5.503576 | 5.800825 | 5.074644 | 9.191136 |
D-21 | 8.57278 | 9.446656 | 8.544085 | 31.38439 | 16.1163 |
D-22 | 14.08237 | 13.16862 | 13.94257 | 13.17557 | 17.83858 |
D-23 | 5.041229 | 3.683989 | 5.041314 | 42.6211 | 10.45466 |
D-24 | 4.766011 | 2.319754 | 4.793671 | 2.30511 | 8.837341 |
GM | QGM | DGM | CGM | NGM | |
---|---|---|---|---|---|
Min | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Q1 | 2.87 | 2.47 | 2.96 | 2.72 | 3.31 |
Median | 4.90 | 4.23 | 4.87 | 4.89 | 3.96 |
Q3 | 8.90 | 8.05 | 9.01 | 7.24 | 11.4 |
Max | 15.6 | 15.6 | 15.5 | 12.2 | 40.1 |
Box Characteristics | |||||
Box1 (hidden) | 2.87 | 2.47 | 2.96 | 2.72 | 3.31 |
Box2 (lower) | 2.03 | 1.76 | 1.91 | 2.17 | 0.654 |
Box3 (upper) | 4.00 | 3.82 | 4.14 | 2.35 | 7.47 |
Whisker Statistics | |||||
Whisker Top | 6.69 | 7.60 | 6.49 | 4.96 | 28.7 |
Whisker Bottom | 2.87 | 2.47 | 2.96 | 2.72 | 3.31 |
Data-Sample | GM | QGM | DGM | CGM | NGM |
---|---|---|---|---|---|
D-1 | 5.252159 | 1.620585 | 5.518314 | 1.652447 | 125.0758 |
D-2 | 4.363537 | 3.454967 | 4.486975 | 3.396315 | 503.5049 |
D-3 | 2.151343 | 2.172548 | 2.137846 | 1.845989 | 188.3042 |
D-4 | 1.646958 | 0.996663 | 1.651975 | 1.433694 | 110.3121 |
D-5 | 2.227184 | 2.726051 | 2.196458 | 1.858524 | 15885.64 |
D-6 | 3.894088 | 3.345588 | 3.805262 | 3.633281 | 4.630946 |
D-7 | 5.572624 | 3.100285 | 5.80758 | 2.099111 | 5.221259 |
D-8 | 3.298597 | 5.199594 | 3.148692 | 3.254303 | 2.939336 |
D-9 | 3.36086 | 2.832068 | 3.322605 | 4.683704 | 4.689639 |
D-10 | 2.315975 | 2.230016 | 2.171853 | 2.402969 | 4.131091 |
D-11 | 19.32161 | 8.371239 | 19.1147 | 6.050676 | 30.90563 |
D-12 | 2.436188 | 4.239803 | 2.503431 | 2.178686 | 1.511468 |
D-13 | 11.91881 | 10.21054 | 11.90255 | 7.965385 | 129.2233 |
D-14 | 15.03638 | 6.916835 | 14.66576 | 6.946082 | 36.37131 |
D-15 | 15.18945 | 8.042814 | 15.26803 | 6.831108 | 126.8702 |
D-16 | 4.763766 | 2.902926 | 4.744045 | 3.691789 | 13.27542 |
D-17 | 10.57584 | 5.694458 | 10.5343 | 5.965359 | 153.128 |
D-18 | 6.906703 | 1.701408 | 6.897625 | 1.672846 | 88.30793 |
D-19 | 2.647887 | 3.149512 | 2.498998 | 0.494169 | 4.285859 |
D-20 | 2.866761 | 2.466218 | 2.958643 | 2.716202 | 3.307033 |
D-21 | 1.034131 | 1.955302 | 0.937485 | 8.818959 | 5.760807 |
D-22 | 5.594835 | 8.168625 | 5.580734 | 5.603662 | 10.87225 |
D-23 | 2.392003 | 1.268331 | 2.355543 | 1.879085 | 3.99963 |
D-24 | 2.023046 | 0.621496 | 2.09803 | 0.657267 | 3.093761 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saxena, A.; Alrasheedi, A.F.; Alnowibet, K.A.; Alshamrani, A.M.; Shekhawat, S.; Mohamed, A.W. Local Grey Predictor Based on Cubic Polynomial Realization for Market Clearing Price Prediction. Axioms 2022, 11, 627. https://doi.org/10.3390/axioms11110627
Saxena A, Alrasheedi AF, Alnowibet KA, Alshamrani AM, Shekhawat S, Mohamed AW. Local Grey Predictor Based on Cubic Polynomial Realization for Market Clearing Price Prediction. Axioms. 2022; 11(11):627. https://doi.org/10.3390/axioms11110627
Chicago/Turabian StyleSaxena, Akash, Adel Fahad Alrasheedi, Khalid Abdulaziz Alnowibet, Ahmad M. Alshamrani, Shalini Shekhawat, and Ali Wagdy Mohamed. 2022. "Local Grey Predictor Based on Cubic Polynomial Realization for Market Clearing Price Prediction" Axioms 11, no. 11: 627. https://doi.org/10.3390/axioms11110627
APA StyleSaxena, A., Alrasheedi, A. F., Alnowibet, K. A., Alshamrani, A. M., Shekhawat, S., & Mohamed, A. W. (2022). Local Grey Predictor Based on Cubic Polynomial Realization for Market Clearing Price Prediction. Axioms, 11(11), 627. https://doi.org/10.3390/axioms11110627