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Abstract: The enhanced virulence and infectiousness of the Omicron variant of SARS-CoV-2 is
having more significant impacts on certain socioeconomic areas, and rapidly suppressing the spread
of the epidemic remains a priority for maintaining public health security throughout the world.
Thus, we applied multi-agent modeling theory to create a social simulation model of Omicron
variant transmission and prevention and control in order to analyze the virus transmission status in
complex urban systems and its changing trends under different interventions. By considering the six
municipal districts under the jurisdiction of Taiyuan City as examples, we developed state transition
rules between five types of resident agents, mobility and contact behavior rules, and rules for patient
admission behavior by hospital agents. We then conducted multi-scenario simulation experiments
based on single measures of pharmacological and non-pharmacological interventions under non-
governmental control as well as multiple interventions in combination to evaluate the effects of
different measures on rapidly suppressing the spread of the epidemic. The experimental results
demonstrated the utility of the model and the multi-agent modeling method effectively analyzed
the transmission trends for the Omicron variant, thereby allowing a comprehensive diagnosis of
the future urban epidemic situation and providing an important scientific basis for exploring more
accurate normalized prevention and control measures.

Keywords: Omicron variant B.1.1.529; COVID-19; urban epidemic prevention and control; public
health safety; virus prevention and control strategy; multi-agent modeling

1. Introduction

The outbreak of a novel coronavirus pneumonia attracted worldwide attention as an
important event in the history of global public health security. In early 2020, the World
Health Organization (WHO) named the disease caused by this pathogen as COVID-19 [1].
Subsequently, the Omicron strain, also known as B. 1.1.529, was first identified in South
Africa in November as a variant of the 2021 coronavirus [2]. Omicron spread rapidly to
many countries in a short time due to its high viral load and strong infectivity [3]. Within
two weeks of its emergence, the Omicron variant had caught the world’s attention by
spreading several times faster than the original strain as well as other variants of the
virus [4]. It has rapidly become a major epidemic strain in several countries, attracting
widespread attention from scholars at home and abroad [5–7]. Since the outbreak of the
domestic epidemic, the growth of the local epidemic has been controlled to some extent by
the active preventive and control measures of the Chinese government and the concerted
efforts of the whole country [8,9], but the recurrence of the epidemic in many scattered
locations and the long-term isolation and prevention and control initiatives have brought
many inconveniences to the daily life of the people. Thus, it seems that the previous
preventive and control measures against the original novel coronavirus pneumonia have
been unable to fully meet the transmission characteristics of the present and even future
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mutated strains, and the effectiveness of the existing coronavirus vaccine in blocking the
infection of the mutated strains has been somewhat compromised [10]. The transmission
of variant strains of Omicron is very different from that of the original novel coronavirus,
with stronger infectivity, different symptoms of infection, and greater susceptibility to
genetic mutations [11]. Therefore, based on the current knowledge we have about the
Omicron variant, there is an urgent need to construct a social simulation model for the
transmission and prevention and control of Omicron strains to test the effectiveness of
different prevention and control strategies in order to provide decision support for urban
virus prevention and control.

In the global cooperative anti-epidemic process, researchers in China and other coun-
tries established various models to study the spread of the original coronavirus and its
developmental trend [12]. Auto-regressive models, system dynamics models, logistic mod-
els, SIR models, and SEIR models are widely used at present. Huaxiong et al. [13] used
a logistic model, SIR model, and differential recurrence method to analyze and predict
the changes in the epidemic situation in different cities. Annas S et al. [14] improved the
SEIR model by introducing vaccine and isolation factors to serve as a reference model for
the spread of COVID-19 in Indonesia. Wenjing et al. [15] constructed the directional trans-
mission relationship among confirmed patients according to the contact history published
for cases in Anhui Province and constructed an auto-regressive transmission model of the
later stage of the epidemic situation in Anhui Province. Bin et al. [16] analyzed outbreak
transmission and human contact networks separately by using the SEIR model to simulate
artificial social scenarios. Saikia et al. [17] constructed an SEIR model of the COVID-19
epidemic in India by incorporating the time-varying incubation period of the virus and
asymptomatic infected individuals in order to analyze and predict the development of the
epidemic in India. Ruguo et al. [18] developed an SEIR propagation dynamics model based
on complex network theory to simulate different scenarios, and to predict and analyze
epidemic inflection points. Li D et al. [19] combined a novel population intelligence algo-
rithm with the SISR model to find the optimal parameters to improve the accuracy of the
simulation. Huang J et al. [1] fused temperature and humidity from climate factors into
the new crown prediction model to improve the accuracy of the prediction. Most of the
aforementioned models were improved based on existing models of infectious diseases to
analyze the transmission regularity and factors that influenced the original coronavirus
over time, but no studies have been conducted on the transmission characteristics of the
new crown variant strains, and the influence of spatial effects, autonomous human decision
making, and variability across groups on virus transmission has been ignored.

In the present study, we constructed a social simulation model for the transmission
and control of the Omicron virus strain by using the multi-agent simulation method.
In particular, we abstracted human beings as agents to simulate the decision-making
behavior of micro-agents. We divided humans into groups of different states to analyze
the impact on the propagation trend of the virus and to translate the complex response
relationship between the agents and the environment layer into the behavior rules of the
agents. This method was used to simulate the adaptive changes in the decision-making
behavior of residents with changes in the environment to more accurately identify the roles
of people in preventing and controlling the spread of the virus. The physical geography
and social environment in Taiyuan were taken as an example and the model was used
to conduct multi-scenario simulation experiments based on multiple interventions. The
different interventions included non-governmental control with a single intervention and
a combination of interventions. We analyzed the prevention and control effect of these
interventions on the Omicron variant virus strain to comprehensively assess the urban
epidemic situation. Our model may help epidemic prevention personnel to conduct
epidemiological investigations and adjust the prevention and control strategy in a timely
manner, which is of great importance for stopping the spread of the epidemic.
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2. Multi-Agent Behavior Design
2.1. Overview of Agent Behavior

The social simulation model of the transmission and control of the Omicron virus
strain is a virtual simulation system. The changes in the states of the residents, behavioral
decisions of residents, adjustment of the response level and prevention and control policy
in an urban system to public health emergencies, and the allocation of medical resources
are part of a complex interactive process, which is closely connected with time and space
via complex dynamics [20,21]. The model contains five types of resident agents, as well
as government, hospital, airport, railway station, bus station, university, and business
circle agents. The distribution of various resources and environments in the urban social
system, locations of various buildings, implementation of different prevention and control
measures, and the cooperation of residents with prevention and control measures are the
main factors that affect the spread of the epidemic, and the different agents in the model
follow certain rules and carry out periodic activities according to the evolution of time and
space and the interaction between different agents [22]. These behavioral activities are a
realistic reflection of the real Omicron virus transmission and control process.

Based on the perception of the space environment, a resident agent makes its own
decision, which leads to the space flow behavior and behavioral state transition under
certain conditions. The healthy agent can perceive self-protection behaviors in real time,
such as mask wearing, self-disinfection, or vaccination. The latent agent and close contact
agent can flow through the relevant tracks, where the healthy agent within a certain range
will be affected by close contact behavior and virus infection behavior, and the healthy
agent is then transformed into other state agent types. According to the personal prevention
and control measures taken previously and the current level of prevention and control, a
state transition occurs from a close contact agent to a latent agent or quarantined agent. The
quarantined agent is detected by nucleic acid analysis according to a certain time interval
and period, and then transformed into a confirmed agent according to the corresponding
nucleic acid detection results. The confirmed agent determines the course of the disease
through the preventive and control measures taken before the disease is diagnosed, the
timely treatment after diagnosis, and its own physical indicators; the hospital agent treats
the confirmed agent according to the available effective treatment beds, medical resources,
and the number of medical and nursing staff. According to the numbers of currently
confirmed agents, close contact agents, and quarantined agents, the station agent, business
circle agent, and university agent adjust the prevention and control policy in real time,
and conduct inspection behavior or closed behavior to different degrees. For example,
inspection may involve one or more combinations of checking itinerary codes, health codes,
vaccination records, or a negative certificate for a nucleic acid test. The station agent can
also track a confirmed agent after it appears in its jurisdiction and transform a healthy
agent into a close contact agent.

2.2. Resident Agent Flow Behavior Rules

In the simulation of Omicron virus transmission and control, the resident agent has
anthropomorphic characteristics, and its most important behavior is to move and contact
through autonomous decision-making behavior, and its willingness to move is based on a
comprehensive index [23,24]. In this model, the quarantined agent and confirmed agent lack
mobility, whereas the other three resident agent types make purposeful movements through
autonomous decision-making. The initial states of the healthy agents are distributed in the
model according to the proportion of the real population distribution in the six municipal
districts under the jurisdiction of Taiyuan City in 2020, as shown in Table 1.
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Table 1. Permanent Resident Population of Taiyuan.

Unit: Person, Household

Serial Municipal District Population Total Households

1 Yingze 547,718 161,954

2 Xinghualing 619,463 190,583

3 Wanbailin 592,184 177,510

4 Jiancaoping 333,077 113,440

5 Jinyuan 215,551 68,512

6 Xiaodian 694,166 206,339

Total 3,002,159 918,338

Each agent’s initial position Lm(x1, y1) is randomly distributed within the designated
municipal area, where m is the municipal area code and 1 ≤ m ≤ 6, x1 is the horizontal
coordinate of the initial position point, and y1 is the vertical coordinate of the initial
position. The probability of target points flowing to different municipal districts is different.
According to the number of people, airports, stations, hospitals, universities, and so on
contained in the current municipal area, the principal component analysis method is used
to determine the different weights, then, according to the weight of the random factors
generated, the flow to the target jurisdiction sequence number. The central limit theorem
states that a new variable obtained by combining a large number of random factors with
different distributions will eventually have a Gaussian distribution [25]. Applying this
theorem to the present model, the points in the current jurisdiction will combine multiple
random factors to generate their target location points Gm(x2, y2), x2 as the horizontal
coordinates of the target point, and y2 as the vertical coordinates of the target point. The
selection of the target points is based on many random factors, where the moving target
points of the agent are set as random target points with a Gaussian distribution in the
specified municipal area.

A social simulation model of Omicron virus transmission and control was developed
for the central Chinese city of Taiyuan based on the different population densities, locations
of public facilities, and the natural geographical environment in the six municipal districts
in Taiyuan. Taiyuan, the capital city of Shanxi Province, is located in the center of Shanxi
Province, at the northern end of the Taiyuan Basin, in the middle of the Yellow River Basin
in North China. The city has six districts (Xiaodian District, Yingze District, Xinghualing
District, Jiancaoping District, Wanbailin District, and Jinyuan District), three counties
(Qingxu County, Yangqu County, and Gujiao County), and one county-level city (Gujiao
City) under its escrow. As shown in Figure 1, the pink areas are the six municipal districts
of Taiyuan simulated by the model. A study was also conducted to select 1:13 of the land
in the urban district of Taiyuan, where the grid technique was used to set up the coordinate
system for the geographical space.

The resident agent could sense stimuli from surrounding entities and the environment,
and react instinctively. In the model, the motivation to move is expressed by Flowi. The
resident agents’ motivation to move increases in the areas around the business circle,
railway station, and bus station agents. The willingness to move of resident agents is
reduced in the vicinity of university agents according to the number of confirmed agents,
close contact agents, and quarantined agents in order to adjust the control policy with a
certain weight to affect the flow of resident agents. The individual mobility intention value
is the sum of the mean mobility intention and the random mobility intention, as shown in
Equation (1):

Flowi = σ× Rmovei + µ (1)

where Rmovei is a Gaussian-distributed random number generated based on the weight of
the willingness to flow β j, where β j = {β1, β2, · · · · · · , βn}, and the cumulative sum of β j is
1. Willingness to flow Flowi obeys a normal distribution that has a mean of µ and a variance
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of σ2, and the volatility of the value of individual mobility intentions is denoted by σ. The
larger the value, the greater the variation in mobility intention among individuals, which
affects the distribution pattern as well as the overall mobility intention distribution of the
population. µ indicates the mean value of mobility intention, which affects the position
of the central axis of the normal distribution. During the iterative modeling process, the
normalized value of the individual’s willingness to move, Flowi, determines whether
an agent moves, and where movement occurs when the value is positive. The distance
Lm(x1, y1) between the initial point Gm(x2, y2) and the target point D determines whether
the agent has reached the target point, as shown in Equation (2).

D =

√
(x2 − x1)

2 + (y2 − y1)
2 (2)

If D < 1, the target point has been reached, where D > 1 indicates that L is still in the
process of moving toward G.

Figure 1. Location of Taiyuan Municipal District.

2.3. State Transition Rules for Resident Agents

In order to better describe the heterogeneity and stochastic nature of the Omicron virus
transmission process, the model represents the resident agent in different states of health,
i.e., latent, close contact, quarantined, morbidity, confirmed, death, and cured. During the
simulation, the state of the resident agent changes with space and time, as shown in Figure 2.

In the initialization phase of the model, the resident agents are fed into the model
according to the population size and health status of the different municipal districts, and
different personal preventive and control measures are taken, such as wearing masks and
vaccination. The agent exhibits contact behavior during movement (the quarantined agent and
confirmed agent do not have the ability to move), and thus the virus propagates to varying
degrees. The resident agent generates new state types and completes the corresponding state
transitions in the process. The inputs of latent agents at railway stations and airports will make
healthy agents in close contact with them transform into close contact agents during their
latent movement. A close contact agent will change into a quarantined agent, mobile latent
agent, or uninfected mobile close contact agent with a probability that depends on the current
level of control and the control measures taken prior to becoming a close contact. During the
period of isolation, the quarantined agent undergoes regular nucleic acid testing, and those
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with negative test results are transformed into healthy agents, whereas those with positive test
results are transformed into confirmed agents, who may also be placed in isolation without
timely treatment and death could occur. The confirmed agent will determine the probability
of minor illness, major illness, death, cure, or the duration of treatment based on the age of
the agent, preventive and control measures taken prior to exposure, adequacy of medical
resources, and the promptness of treatment.

Figure 2. Resident agent state transition diagram.

2.4. Contact Propagation Rules between Agents

Close contact transmission has been the main route of transmission since the outbreak
of COVID-19, where people who have close contact with suspected and confirmed cases
two days before the onset of the disease and who do not take effective preventive and
control measures are defined as close contacts [26]. The COVID-19 Omicron variant is more
virulent and contagious, and people who are in the same building two days before the
onset of the case are defined as close contacts. Therefore, in the Omicron virus transmission
and prevention and control simulation model, a larger spatial safety distance is set for the
resident agent. When the distance between the healthy agent and latent agent is less than
the safe distance, the state of the healthy agent transforms into a close contact agent and
the model sets the close contact area RE as shown in Equation (3):

RE = Area(Gridi ± Gridi±2) (3)

where Area(x) is the area of close contact at risk of infection, which is also known as the
Moore domain, and Gridi is the location of the grid where the latent agents are located.
The grid is the basic unit of space in the Omicron virus transmission and prevention and
control simulation model, and Gridi±2 denotes the 16 grid cells immediately adjacent to
the current grid cell.

Within each simulation time step, healthy agents in the Moore field where the latent
agents are located are defined as close contacts and at risk of infection. The probability
of infection is influenced by the time spent in this Moore field, the spatial distance from
the source of infection, the condition of the agent itself, and the environment where it is
located. The close contact agent b infection indicator is assumed to be In f ectb(T) during
the T time period, as shown in Equation (4):

In f ectb(T) =
t2

∑
t1

γ

(t1−t2) K

∑
K=1

Vb
Dε

(4)

where ε ≥ 0, K ≥ 1, and 0 < γ < 1; the time period is T = t2 − t1, where t1 is the time of
entry within the Moore domain, t2 is the time of exit from the Moore domain, and γ is the
decay rate of infection within time period T. The current close contact agents are assigned
different weights to control the decay rate of infection for the time spent within this space
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and according to the personal precautions taken (wearing masks, vaccinations, etc.), age of
the individual, and interventions implemented at the current location (checking trip codes,
health codes, vaccination records, etc.). K is the number of all latent agents contacted by
the close contact agent b at each moment. Vb is the value of the infection received by the
close contact agent b on a spatial scale with the current source of infection. D is the spatial
distance between the close contact agent and the latent agent, ε is an index of the spatial
distance D used to measure the extent to which the spatial distance affects Vb, and the effect
of spatial distance is not considered if ε = 0. In the event of a change in the status of a close
contact, such as being isolated or diagnosed, the probability of infection and the severity
of symptoms following infection are determined by the interval in which the infection
indicator is located, which then affects the probability of death and the probability of cure.

2.5. Rules of Conduct for the Admission of Patients to Hospital Agents

Depending on the number of beds, medical resources, and staff available, the hospital
agent will admit a certain number of confirmed agents and treat the admitted agents to
varying degrees depending on the current situation. The hospital agents in the model
are based on 11 hospitals at tertiary level and above in the Taiyuan City district with the
capacity to treat patients with novel coronavirus pneumonia, as shown in Table 2.

Table 2. Taiyuan tertiary care hospital and above.

Serial Hospital Name Number of Medical and Nursing Staff Number of Beds Municipal District

1 First hospital of Shanxi Medical University 3985 2419 Yingze

2 Second hospital of Shanxi Medical University 3800 2700 Xinghualing

3 Fourth People’s Hospital of Taiyuan 359 440 Wanbailin

4 The Third People’s Hospital of Shanxi province 616 850 Yingze

5 Shanxi Norman Bethune Hospital 2720 3533 Xiaodian

6 Armed Police Hospital 300 500 Xiaodian

7 Shanxi provincial People’s Hospital 2405 2000 Yingze

8 Taiyuan Seventh People’s Hospital 369 300 Xinghualing

9 Taigang General Hospital 2396 1800 Jiancaoping

10 Children’s Hospital of Shanxi Province 2943 1611 Xinghualing

11 Taiyuan Central Hospital 1500 1076 Xiaodian

Total 21,393 17,178

In this model, when an agent with a positive nucleic acid test is converted into a
confirmatory resident agent, a signal is sent to the hospital agent in the current municipal
district and the straight-line distance from each hospital agent is calculated, before prefer-
ably selecting the closest hospital for admission. Dijkstra’s algorithm is used to select the
shortest path from the location of the confirmed agent to the location of the hospital agent
by constructing an empty set M and set P covering all vertices on the shortest path. The
vertex with the lowest cost in the set P is selected within each simulation time step and
transferred to M, before iterating until P is Null, where the set M then represents the least
costly shortest path, as shown in Equation (5):

Aij =


W Nodes < i, j > are connected
0 Node < i, j > is the same
∞ Nodes < i, j > are not connected

(5)

where Aij is the shortest path matrix, W is the weight between two nodes, and < i, j >
covers all nodes in the set. The nearest hospital agent is checked to determine whether the
hospital has sufficient medical resources and effective beds. If the resources are sufficient
immediately on the day, then admission occurs. If the resources are not sufficient, it is
necessary to check whether other hospitals can provide delayed treatment within a certain
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time. The level of medical resources and average response time of the hospital agent on the
day determine the final response time as Responset in Equation (6):

Responset =


Scope[RadomNum(a, b)]
(EmptyBed > 0∩Vt ≥ Vmin)
∞
(EmptyBed < 0∩Vt < Vmin)

(6)

where Scope(x) is the rounding function for the relevant parameters calculated in conjunc-
tion with the actual admission of new coronavirus patients to Taiyuan Hospital, where
2–3 days are required to complete professional transport, control, nucleic acid testing, and
hospitalization; RadomNum(a, b) indicates the generation of a random number between
a and b; EmptyBed represents the number of active empty beds in the hospital; and Vt
represents the current doctor–patient ratio in the hospital calculated with Equation (7):

Vt =
AmountMedicalSta f f

AmountPatient
(7)

where the current number of health care workers with normal service capacity is denoted
by AmountMedicalSta f f and the number of people who have been admitted to the current
hospital agents with a confirmed diagnosis is denoted by AmountPatient. According to
the “Implementation Rules of the Tertiary General Hospital Accreditation Standards,”
each tertiary hospital is required to have an average of 0.6 medical and nursing staff per
confirmed bed for service, with an adjustable doctor–patient ratio of 0.4 when the patient’s
condition remains stable. Vt ≥ 0.6 indicates that the health care resources are sufficient
for the normal services of the hospital agent for the confirmed agent, and 0.4 < Vt < 0.6
indicates that the hospital agent services are barely maintained and the medical staff are
overworked. Vt ≤ 0.4 indicates that it is no longer possible to complete the admission
of a confirmed agent. According to Equations (8) and (9), each successful admission of
a confirmed agent is updated in real time based on the effectiveness of the health care
resources and available active beds:

EmptyBedt = EmptyBedt−1 − AmountPatient_t (8)

Powert = Powert−1 −Vt ∗ AmountPatient_t (9)

where EmptyBedt represents the number of active empty beds on day t, the initial value of
Powert is the effectiveness of the hospital agent’s health care staff, which changes over time,
and AmountPatient_t represents the number of confirmed agents admitted on day t. The time
required by the hospital agent to cure the confirmed agent is a composite measure with different
weights determined using the APH analytic hierarchy process based on the age of the agent,
preventive and control measures taken prior to exposure to the virus, rationing of medical
resources, and the timeliness of treatment, which affect the probability of minor illness, major
illness, death, or cure, as well as the time to treatment, as shown in Equation (10):

Curet =
n

∑
i=1

α1Normi (10)

where Curet represents the time required to cure, which varies according to the symptoms
and time, Normi denotes the indicators for the current agent, and α = {α1, α2, · · · · · · , αn}
denotes the weighting given to each indicator.

3. Implementation of a Multi-Agent-Based Model for the Spread and Control of
Omicron Strains

In this study, we examined the transmission and prevention and control of the Omi-
cron strain in six different municipal districts of Taiyuan, Shanxi Province to investigate the
effects of virus transmission and prevention and control under the complex interactions be-
tween changes in the status of residents, their behavioral decisions, the adjustment of inter-
vention policies by different organizations, and the allocation of medical resources in order
to provide decision support for urban virus prevention and control. The parameter settings
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for the control measures model in the example mainly included pharmacological interven-
tions and non-pharmacological interventions. The pharmacological interventions included
vaccine interventions and hospital treatment interventions, and the non-pharmacological
interventions included wearing masks, self-hygiene protection, closure of premises, restric-
tions on the movement of people, close contact tracing, and isolation. For each measure,
the timing of loading, scope of action, and target group were investigated, as well as the
time and proportion of diagnosis, proportion of agents in different states, and proportion of
diagnosed persons in different age groups according to the experimental results. In order
to ensure the consistency of the modeling results with reality, we used real data from six
municipal districts in Taiyuan, Shanxi Province to conduct the simulations, and the main
model parameters are shown in Table 3.

Table 3. Model parameters for transmission and control model of the Omicron strain.

Name of Parameter Source of Initial Value Description

Total population in Taiyuan Municipality Taiyuan City Statistical Yearbook 2020 [27] 300.2159 million people

Age composition of Taiyuan’s population Data from the 7th Census of Taiyuan in 2020 0–14 years: 15.55%, 15–59 years:
68.34%, 60 years and over: 16.11%

Vaccination rate Complete vaccination coverage in
China as of 24 June 2022 89.37%

Case fatality rate (CFR) Case fatality rate in China as of 24 June 2022 2.3%

Latency time Clinical characteristics of 40 patients infected with the
SARS-CoV-2 omicron variant in Korea [28] 3.5 days

Mean time to healing Report of the WHO–China Joint Mission on
Coronavirus Disease 2019 (COVID-19) [29]

Approximately 2 weeks for mild cases,
3–6 weeks for severe and critical cases

Hospital admission response time Average admission time to tertiary and
above hospitals in Taiyuan 2 to 3 days

Hospital beds Total beds in Taiyuan’s tertiary and above hospitals 17,178

Number of medical and nursing staff General medical staff of tertiary and
above hospitals in Taiyuan 2.1393

Mean number of nucleic acid
testsduring isolation

Prevention and control program for novel coronavirus
pneumonia (8th edition) [30] 4 times

Average number of effective reproduction (Re)
The effective reproductive number for the Omicron

variant of SARS-CoV-2 is several
times relative to Omicron [31].

3.4 (0.88~9.4)

The model was loosely integrated with Repast Simphony and ArcGIS using multi-
threading techniques, agent state transformation and isolation mechanisms, and Repast
prioritization for simulation. The runtime interface of the model is shown in Figure 3,
with the view catalogue in the first column on the left of the interface, and it is possible
to control the parameters in the corresponding view. The map section of the interface
shows the corresponding model spatial environment and the current operational status of
virus transmission and prevention. Different landmarks indicate the locations of different
spatial agents, where red landmarks indicate hospitals, blue landmarks indicate railway
stations, yellow landmarks indicate bus stations, purple landmarks indicate universities,
pink landmarks indicate business districts, dark blue landmarks indicate airports, etc. The
map shows a healthy agent as a moving green square, a close contact agent as a yellow
figure, a quarantined agent as a green house where they are forbidden to move, a latent
agent as a blue figure, and a confirmed agent as a red figure. The bottom half of the interface
contains statistical charts for the model’s run cycle by counting a series of data, such as the
number of resident agents in different states, number of resident agents in each different
age group, and the number of confirmed diagnoses under the influence of changes in
hospital medical resources, where they are presented in the form of line graphs [32].
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Figure 3. Model operation interface diagram.

Model Validation

To verify the accuracy of the model and parameters, the model was compared with the
existing simulation model of COVID-19 virus prevention and control in Taiyuan City [22].
Real data on the spread of the Omicron virus in Taiyuan City in April 2022 were used for
the fitting. Since the outbreak of the new coronavirus at the end of 2019, the real society
has mastered certain prevention and control measures, such as adhering to the general
strategy of “external prevention of importation and internal prevention of rebound” and
the general policy of “dynamic clearing”. The vaccination rate in this model is based on
the real vaccination situation in Taiyuan City [33], and the daily vaccination changes in the
model are based on the vaccination situation in Taiyuan City on that day. The results are
shown in Figure 4. Through 48 days of simulation, the cumulative number of confirmed
cases in this model was 89, the cumulative number of confirmed cases in the existing
model was 117, and the actual number was 83; the cumulative number of latent cases in
this model was 283, the cumulative number of latent cases in the existing model was 310,
and the actual number was 274; the cumulative number of cured cases in this model was
89, the cumulative number of cured cases in the existing model was 117, and the actual
number was 83. The cumulative number of quarantined cases in this model was 1199, the
cumulative number of quarantined cases in the existing model was 1245, and the actual
number was 1187; the error value of the cumulative number of different states in this model
is significantly reduced, and the growth trend better fits the actual data, which can better
fit the development trend of the epidemic in Taiyuan.

The existing models take a geographic space that includes counties and regions, and
take into account sparsely populated areas that have hardly caused the spread of the epidemic,
which affects the accuracy of the spread of the epidemic. In contrast, this model narrows the
geographic space to the densely populated municipal districts that are the main cause of the
spread of the epidemic, and takes into account factors such as hospitals, stations, shopping
areas, and universities that affect the gathering of people as well as the rate of movement. In
addition, on the basis of the existing model, the impact of nucleic acid testing, vaccination,
close contacts, timeliness of treatment, degree of treatment, distribution of medical resources,
analysis of mild and severe cases among confirmed cases on the spread of the epidemic is
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taken into account, and additional agents such as stations, shopping areas, and colleges will
be adjusted in real time according to the current situation of the epidemic in the environment,
and the rules of the model are also designed according to the transmission characteristics of
the variant strain of Omicron. Therefore, the fitting results of the present model are closer to
the real situation of Omicron than the existing models.

Figure 4. Model fitting results: (a) cumulative confirmatory fitting results; (b) cumulative latent
population fitting results; (c) cumulative number of cures fitting results; (d) cumulative isolation
number fitting results.

4. Analysis of Simulation Scenarios and Experimental Results
4.1. No-Intervention Scenario

In the no-intervention scenario, we simulated the incubation phase of Omicron virus
transmission without any intervention, with all resident agents moving freely and without
any protection, and without any intervention by the government or any organizational unit
at all levels. The model was initially set with vaccination and mask wearing rates of 0, the
personal mobility intention was set to the fastest rate of crowd mobility at 0.99, the impact
index was set to 0 due to the absence of reductions in the spatial distance of aggregation,
the mean time to death was 16.7 days [34], the hospital admission response time was
4 days, the number of beds meeting the management protocol for the management of
novel coronavirus pneumonia was 0 and the self-protection rate was 0. Figure 5 shows the
changes in the number of resident agents in different states in this scenario.

The number of latent and confirmed cases increased explosively in line with the
alarming rate of Omicron virus transmission. The number of confirmed and latent cases
began to rise gradually around day 11 due to the lack of interventions at all levels by the
joint prevention and control organization. In this scenario, the number of cured patients
was zero and deaths continued to occur on day 22 because the hospital agent was currently
unable to provide effective treatment and had to rely on the age and physical condition of
the latent and confirmed agents to cope with complications. The simulation results showed
that the number of latent and confirmed cases increased due to the lack of intervention by
the government and organizational units of the joint prevention and control at all levels,
lack of medical care to cure confirmed cases, lack of awareness among the population of the
danger of the rapid spread of the Omicron virus, lack of restrictions on people’s movements,
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inability to effectively isolate and treat residents already infected with the Omicron virus,
which increased the chance of infection, and the lack of significant suppression of the
spread of the Omicron virus based only on the resistance of the resident agent itself (only
the age of the individual was considered in this experiment).

Figure 5. No-intervention scenario.

4.2. Non-Pharmacological Intervention Scenarios
Self-Hygiene Prevention and Control

In this scenario, we simulated the absence of pharmacological interventions, where the
resident agents adopted self-protection measures based on policies issued by government
agents with awareness of the dangers of Omicron virus transmission. The main measures
comprised wearing masks and autonomous disinfection. The model parameters were based
on a no-intervention scenario, with a personal mobility intention of 0 (people reduced their
own movements), a self-protection rate of 80%, and spatial distance influence index of 0.5
(individual residents started to protect themselves). The changes in the numbers of various
types of resident agents in this scenario are shown in Figure 6.

Figure 6. Self-hygiene protection scenario.

The resident agents in this scenario adopted various types of self-protection, where
wearing a mask as a core self-protection measure reduced exposure transmission by
80% [35]. The rates of increases in confirmed agents and latent agents were slower com-
pared with the no-measures scenario. The number of cured and quarantined agents
remained at 0. The proportion of deaths was 2.2% among all confirmed cases, and the ratio
of minor to major illnesses among confirmed agents was significantly better than that of
the no-measures scenario. The ratio was significantly better than that of the no-measures
scenario, thereby suggesting that wearing masks and increased disinfection reduced the
risk of serious illness. This experiment showed that although self-protection measures
could reduce the chance of being infected to a certain extent, the lack of timely isolation and
effective medical treatment for agents carrying the virus made it difficult for these agents
to move freely and come into contact with different groups of people, thereby making it
difficult to control the rapid spread of the virus, and this situation was still not optimal for
the overall prevention and control of the epidemic.
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4.3. Drug Intervention Scenarios
4.3.1. Hospital Treatment

In this scenario, we simulated the spread of the Omicron virus under a certain level of
care. According to the “Guidelines for the Establishment and Management of Hospitals for
the Treatment of New Coronary Pneumonia,” the doctor to nurse ratio should be 1:2.5, and
the bed to nurse ratio should 1:1 for mild cases and 1:3 and 1:6 for severe cases. The hospital
agents provided a certain number of medical supplies and effective treatment beds for the
isolation and treatment of confirmed agents according to this criterion, but otherwise the
resident agents remained free to move around without any intervention by the government
and organizational units at all levels. The model was initialized with a personal mobility
intention of 0 (the fastest rate of population mobility where people reduced their own
movement), spatial distance impact index of 0.25 (confirmed individuals were isolated and
treated), mean cure time of 14 days for mild cases and 18 days for severe cases [29] (at the
highest level of medical care), increased hospital admission response time of two days, and
15% of the total number of beds and total number of health care workers were provided
at the medical carrying capacity of each hospital for novel coronavirus pneumonia. The
remaining parameters were the same as those in the previous scenario. The changes in the
numbers of resident agents in different states and the changes in confirmed diagnosed and
cured cases are shown in Figure 7.

Figure 7. Medical life-saving intervention scenario: (a) number of resident agents in different states;
(b) diagnosed and cured.

The spread of the virus was slowed to some extent because the hospital agents could
isolate and treat confirmed agents. As shown in Figure 7a, during the first three days of the
spread of the epidemic, the hospital agents mainly identified diseases and ruled out known
viruses. After day 2, isolation and medical observation of potential close contact agents
began, and the number of quarantined agents continued to increase and peaked at day 16.
However, close contacts were not all tracked and isolated due to the lack of government
control. Close contacts peaked one day earlier than those isolated and began to decrease
after 15 days due to changes in the status of close contacts over a period of time, such
as confirmed, continuing latent with the virus, or uninfected to healthy. The confirmed
agents continued to rise and peaked at 28 days, as shown in Figure 7b. The proportion
of severe cases was larger because there was no agent vaccination in this scenario, and
the government did not actively take effective measures such as mandatory tracking and
isolation, and the awareness of personal protection was limited, thereby resulting in a much
larger proportion of confirmed severe cases than mild cases. The number of confirmed
agents cured in a certain period of time was followed by medical isolation observation and
nucleic acid testing, and the discharge of cured cases began on day 23 of the simulation.
The number of new cures increased each day over time, but the number of confirmed
agents tended to decrease. The intersection of the numbers of confirmed and cured cases
occurred on day 39, thereby indicating a gradual improvement in the treatment of the
Omicron virus by hospital agents. The simulation results showed that the timely medical
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treatment of confirmed patients reduced their movement and transmission process, thereby
inhibiting the spread of the Omicron virus to a certain extent, and the overall transmission
trend improved. Thus, in the general epidemic prevention and control environment, all
municipalities had sufficient medical resources with the capacity to treat patients with novel
coronavirus pneumonia, and the spread of the Omicron virus was still in a manageable
stage with effective medical prevention and control.

4.3.2. Vaccine Interventions

In this scenario, we simulated the mass vaccination of resident agents with medical
treatment available. Based on the previous scenario, the vaccination rate was adjusted to
50%, 89.37% (the current actual vaccination rate in China), or 95% for comparison. We
found that the risk of Omicron virus transmission was lower when the vaccination rate
was higher, while the number of confirmed cases was lower, the proportion of mild cases
after infection was greater, and recovery was more rapid. As shown in Figure 8b, with a
vaccination rate of 95%, the number of latent cases decreased to zero after a short rise at just
11 days, whereas it started to decrease at 15 days with a vaccination rate of 89.37%. With a
vaccination rate of 50%, the number of latent cases fluctuated more because of the weak
immunity of the population, the complexity of virus transmission, and the tendency to
“rebound” from the outbreak. As shown in Figure 8c, when the vaccination rate was higher,
the level of immunity was greater in the population and the intensity of Omicron virus
transmission was weaker, and thus the number of close contacts decreased significantly.
Figure 8d shows that when the vaccination rate was higher, the proportion of mild cases was
greater after diagnosis, thereby indicating that the most significant variable that contributed
to the reduced risk of severe disease was the vaccination rate. Figure 8e shows that with a
vaccination rate of 50%, the first patient was cured at 22 days, which was earlier than under
the other two vaccination rates, possibly because patients were likely to be sick under a
low vaccination rate, show symptoms earlier, and be identified and isolated by health care
providers. With a vaccination rate of 89.37%, patients were cured after 26 days and the
proportion of cured patients increased more slowly compared with the vaccination rate of
50%, where the maximum was reached at 44 days. With a vaccination rate of 95%, patients
were cured after 24 days due to increased resistance and the later onset of the disease after
vaccination. The vaccine was highly effective at preventing novel coronavirus pneumonia-
related deaths according to Figure 8f. The deaths with low vaccination rates all occurred
in unvaccinated people aged over 65 years, thereby indicating that the vaccination rate
against novel coronavirus was lower in older people compared with the overall population.
Thus, older people were a high-risk group for death from disease, probably due to the
complex health status of older people, with a high probability of concomitant acute disease
or uncontrolled serious chronic disease if not vaccinated in time.

The results showed that in the absence of an effective drug, inactivated vaccines against
novel coronavirus pneumonia are the most effective and economical means of containing
the spread of the Omicron virus strain worldwide. Comparative experiments showed that
the speed and intensity of Omicron virus transmission was significantly reduced to some
extent due to the presence of a certain level of immunity in the population as a result of
natural infection and vaccination. The inactivated new coronavirus vaccination is designed
for individual protection and treatment but also, more importantly, to form an immune
barrier and achieve herd immunity.

4.4. Combination of Multiple Interventions

All of the prevention and control measures in the scenarios described above were
combined. The spatial distance impact index was set at 0.5, the vaccination rate was 89.37%
(the current actual vaccination rate in China), the individual mobility intention was set to
the slowest population mobility rate of –0.99, and the remaining parameters were consistent
with those in the drug intervention scenarios. The changes in the numbers of various types
of resident agents in this scenario are shown in Figure 9. All of the organizational units
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of the joint prevention and control at all levels started to focus on prevention and control
of the epidemic, so the tracking and isolation of close contacts increased significantly, and
contacts could be isolated as soon as possible after making contact. The majority of the
population was vaccinated with good immunity in the population, so the probability of
being infected by a contact was reduced and the number of latent agents also increased by
only three from the number of incoming ones at the beginning, who gradually developed
the disease and were then cured. As the number of days in the simulation increased, the
number of confirmed and quarantined agents decreased and reached zero along with an
increasing number of cured agents, all of which were cured by day 28, with zero deaths,
a significant increase in the rate of cure and follow-up isolation, a greater probability of
mild disease after diagnosis, and a significant slowdown in the rate of virus transmission.
The simulation results showed that due to the complex and diverse factors that affected the
spread of the virus, it was difficult to achieve comprehensive control using a single control
measure, and thus combining multiple control measures achieved effective control of the
spread of the epidemic.

Figure 8. Vaccine intervention scenario: (a) changes in the number of confirmed cases; (b) changes
in the number of potential infections; (c) changes in the number of close contacts; (d) proportion of
mild-to-severe cases; (e) changes in the cumulative number of cured agents; (f) cumulative death toll.

Figure 9. Multi-intervention combination scenario.
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5. Conclusions

In this study, we used multi-agent modeling theory to construct a social simulation
model of the spread and prevention and control of the Omicron strain. The model combined
spatial effects, randomness, contact patterns, and mixed heterogeneity in the virus transmis-
sion process. Humans were abstracted as agents to simulate the decision-making behavior
of micro-subjects. The complex response relationships between agents and environmental
layers were implemented as behavioral rules for agents. The results highlighted the impor-
tance of disease awareness for controlling the current epidemic. The model narrows down
the geographic space to the densely populated municipal areas that are the main cause of
the spread of the epidemic, and takes into account the factors that affect the gathering and
movement rate of people, such as hospitals, stations, shopping areas, and universities. The
model is based on the evolution of time and space and the interaction between different
intelligences to carry out periodic activities according to certain rules, and to adjust the
prevention and control measures in real time according to the current epidemic situation
in the environment. It also adds the influence of nucleic acid testing, vaccination, close
contacts, timeliness of treatment, degree of treatment, allocation of medical resources, and
analysis of mild and severe cases among confirmed cases on the spread of the epidemic,
which is logically more in line with objective facts. The rules of the model are also designed
based on the transmission and prevention and control characteristics of the variant strain
of Omicron, so the model fitting results are closer to the real situation of Omicron than the
existing models. The model is also applicable to other cities and regions, and universally
applicable to new coronavirus transmission analysis and prediction.

We used the model to simulate the spread of the Omicron virus in Taiyuan City under
different control measures using buildings as spatial granularity and days as the time scale,
as well as considering the actual natural environment, population type, and differences in
control intensity. The resident agents in different states in the Omicron virus transmission
system developed adaptive behaviors depending on the level of local healthcare resources
and interventions. A baseline scenario without interventions was constructed to assess the
effects of single pharmacological and non-pharmacological interventions, as well as multiple
interventions in combination. The simulation results showed that it is difficult to achieve
comprehensive control of the Omicron virus with a single control measure, and that the risk
of viral transmission can be effectively suppressed by combining multiple control measures.
The effectiveness of individual interventions in the urban population follows the order of:
vaccination > isolation in designated hospitals > self-health protection. The core interventions
are vaccination and hospital isolation treatment. Vaccination reduces the risk and severity of
infection and it is a very important public health measure that can be combined with other
public health measures to effectively prevent and control the spread of the Omicron virus.
Strengthening personal protection measures is a complementary intervention that can reduce
the rate of transmission via contact between residents to a certain extent, but the rapid spread
of the virus cannot be achieved using this measure alone.

The model is based on real data and the experimental results reflect the transmission
dynamics of the Omicron strain in different scenarios and conditions from multiple levels
and perspectives. Our results provide insights into the pattern of virus transmission and a
deeper understanding of how different population groups are affected by the epidemic,
thereby providing an important reference basis for future epidemic prevention research.
The model should also be combined with simulation experiments and epidemiological
theories to study the negative effects of different prevention and control measures on social
order and economic development. It is also necessary to further subdivide the population
and geographical areas to reduce the viral spread caused by the cross-domain movement
of the population. Comprehensive consideration of prevention and control effects requires
balancing the advantages and disadvantages to identify more accurate prevention and
control measures to provide more effective support for urban health decision-makers.
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