On a Surface Associated to the Catalan Triangle
Abstract
:1. Introduction: Catalan Numbers and Catalan Triangle
- (i)
- Triangulations of a convex polygon with vertices.
- (ii)
- Binary trees with n vertices.
- (iii)
- Plane trees with vertices.
- (iv)
- Bracketings of a string of x’s subject to a nonassociative binary operation.
- (v)
- Ballot sequences of length .
- (vi)
- Dyck paths of length .
2. The Surface Associated to the Catalan Triangle
3. Geometric Properties of the Surface Associated to the Catalan Triangle
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stanley, R. Catalan Numbers; Cambridge University Press: New York, NY, USA, 2015. [Google Scholar]
- Koshy, T. Catalan Numbers with Applications; Oxford University Press: New York, NY, USA, 2009. [Google Scholar]
- Aval, J.C. Multivariate Fuss-Catalan numbers. Discret. Math. 2008, 308, 4660–4669. [Google Scholar] [CrossRef] [Green Version]
- Bertrand, J. Solution d’un problème. Comptes Rendus de l’Académie des Sciences de Paris 1887, 105, 369. [Google Scholar]
- André, D. Solution directe du problème résolu par M. Bertrand. Comptes Rendus de l’Académie des Sciences de Paris 1887, 105, 436–437. [Google Scholar]
- Feller, W. An Introduction to Probability Theory and Its Applications, 3rd ed.; John Wiley & Sons: New York, NY, USA, 1968; Volume I. [Google Scholar]
- Sloane, N.J.A. The On-Line Encyclopedia of Integer Sequences (OEIS). Available online: https://oeis.org (accessed on 29 November 2022).
- Shapiro, L.W. A Catalan triangle. Discrete Math. 1976, 14, 83–90. [Google Scholar] [CrossRef] [Green Version]
- Dăuş, L.; Jianu, M.; Beiu, R.M.; Beiu, V. A tale of Catalan triangles—Counting lattice paths. In Proceedings of the 9th International Workshop on Soft Computing Applications—SOFA 2020, Arad, Romania, 27–29 November 2020. [Google Scholar]
- Miana, P.J.; Romero, N. Moments of combinatorial and Catalan numbers. J. Number Theory 2010, 130, 1876–1887. [Google Scholar] [CrossRef] [Green Version]
- Beiu, V.; Dăuş, L.; Jianu, M.; Mihai, A.; Mihai, I. On a surface associated with Pascal’s triangle. Symmetry 2022, 14, 411. [Google Scholar] [CrossRef]
- Jianu, M.; Dăuş, L.; Nagy, M.; Beiu, R.M. Approximating the level curves on Pascal’s surface. Int. J. Comput. Commun. Control 2022, 17, 4865. [Google Scholar] [CrossRef]
- Davis, P. Gamma function and related functions. In Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 10th ed.; Abramowitz, M., Stegun, I.A., Eds.; Dover: New York, NY, USA, 1972; pp. 258–259. [Google Scholar]
- do Carmo, M. Differential Geometry of Curves and Surfaces; Prentice-Hall: Englewood Cliffs, NJ, USA, 1976. [Google Scholar]
- Struik, D.J. Lectures on Classical Differential Geometry, 2nd ed.; Dover Publications: New York, NY, USA, 1961. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jianu, M.; Achimescu, S.; Dăuş, L.; Mierluş-Mazilu, I.; Mihai, A.; Tudor, D. On a Surface Associated to the Catalan Triangle. Axioms 2022, 11, 685. https://doi.org/10.3390/axioms11120685
Jianu M, Achimescu S, Dăuş L, Mierluş-Mazilu I, Mihai A, Tudor D. On a Surface Associated to the Catalan Triangle. Axioms. 2022; 11(12):685. https://doi.org/10.3390/axioms11120685
Chicago/Turabian StyleJianu, Marilena, Sever Achimescu, Leonard Dăuş, Ion Mierluş-Mazilu, Adela Mihai, and Daniel Tudor. 2022. "On a Surface Associated to the Catalan Triangle" Axioms 11, no. 12: 685. https://doi.org/10.3390/axioms11120685
APA StyleJianu, M., Achimescu, S., Dăuş, L., Mierluş-Mazilu, I., Mihai, A., & Tudor, D. (2022). On a Surface Associated to the Catalan Triangle. Axioms, 11(12), 685. https://doi.org/10.3390/axioms11120685