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Abstract: In 2010, Vukičević introduced an new graph invariant, the inverse sum indeg index of a
graph, which has been studied due to its wide range of applications. Let Bd

n be the class of bipartite
graphs of order n and diameter d. In this paper, we mainly characterize the bipartite graphs in Bd

n
with the maximal inverse sum indeg index. Bipartite graphs with the largest, second-largest, and
smallest inverse sum indeg indexes are also completely characterized.
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1. Introduction and Notation

We use [1] for terminology and notation not defined here and consider only simple
graphs. Let G = (V(G), E(G)) be a graph with n = |V(G)| vertices and m = |E(G)| edges.
For any vertex u ∈ V(G), we use δG(u) (or δ(u) when no confusion can arise) to denote
the degree of u in G, which equals to the number of edges incident to u. The distance
between two vertices x and y in G, denoted by d(x, y), is the number of edges in the shortest
path joining x and y. The distance between any pair of farthest vertices in G is called the
diameter of G, denoted by diam(G).

For X ⊂ V(G), we use G \ X to denote the graph obtained from G by deleting the
vertices in X and the edges incident with them. For any two non-adjacent vertices x and y
in G, let G + e be the graph formed from G by adding a new edge e = xy. The union of two
graphs G′ and G′′, denoted by G′ ∪ G′′, is the graph with the vertex set V(G′)∪V(G′′) and
edge set E(G′) ∪ E(G′′). The join of two graphs Ĝ and G̃, denoted by Ĝ + G̃, is the graph
with the vertex set V(Ĝ) ∪ V(G̃) and edge set E(Ĝ) ∪ E(G̃) ∪ {uv|u ∈ V(Ĝ), v ∈ V(G̃)}.
We use Kn to denote the complete graph of n vertices, and Km,n the complete bipartite
graph with m and n vertices in its two partition sets, respectively. Let Bd

n (resp. Bn) be
the set of n-vertex bipartite graphs with diameter d (resp. be the set of n-vertex bipartite
graphs). Note that the bipartite graph in Bd

n is isomorphic to K2 when d = 1, so we always
assume that d ≥ 2 in the subsequent investigation.

The topological index (sometimes call graph descriptor) is a single real number that
can be used to characterize some properties of the molecule graph. Topological indices
have been used for combinatorial library design, toxicology hazard assessments, isomer dis-
crimination, drug design, and quantitative structure versus property/activity relationships
(QSPR/QSAR). In 2010, Vukičević and Gašperov [2] showed that topological indices also
have very good predictive properties on the benchmark sets. In [3], Vukičević introduced
the inverse sum indeg index of graph G (we call it the ISI-index for short):

ISI(G) = ∑
uv∈E(G)

1
1

δ(u) +
1

δ(v)

= ∑
uv∈E(G)

δ(u)δ(v)
δ(u) + δ(v)

, (1)

which has been investigated due to its wide range of applications, especially in chemical
and mathematical properties. For example, Sedlar et al. in [4] determined extremal values
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of the ISI-index for general connected graphs, chemical graphs, and trees, respectively.
Two years later, Falahati-Nezhad et al. [5] showed several sharp bounds on this graph
invariant in terms of some well-known graph parameters. In 2018, An et al. [6] considered
the extremal problems for this graph descriptors for graphs with a given matching number,
independence number, and vertex-connectivity. Almost in the same year, Chen et al. [7]
derived several sharp bounds for this index in terms of graph parameters, such as vertex-
connectivity, edge-connectivity, chromatic number, and vertex bipartiteness. We encourage
the interested reader to consult [8–16] and references cited therein.

Motivated by the results of [17], in this paper we focus on characterizing structural
properties of G ∈ Bd

n in terms of the ISI-index. Bipartite graphs with the largest, second-
largest, and smallest ISI-indexes are also completely characterized, respectively.

2. Bipartite Graphs in Bd
n with Maximal ISI-Index

Let G be a graph in Bd
n, and there must exist a partition V0, V1, . . . , Vd of the vertex

set V(G) which satisfies the following two conditions: (i) |V0| = 1 and (ii) d(u, vi) = i for
each vertex vi ∈ Vi and u ∈ V0, where i ∈ {1, 2, . . . , d}. For simplicity, each Vi is called the
partition cell (P-cell for short), and li = |Vi| denotes the number of vertices in Vi.

Lemma 1 ([18]). Let G ∈ Bd
n be a graph with the above partition, then G[Vi] induces an empty

graph for each i ∈ {1, 2, . . . , d}, where G[Vi] is the subgraph induced by Vi.

Lemma 2 ([4]). Let G 6= Kn be a connected graph, then ISI(G + e) > ISI(G) for each e ∈ E(G),
where G denotes the complement of G.

Lemma 3. Let G ∈ Bd
n be a graph with the maximal ISI-index, then G[Vi−1 ∪ Vi] is a complete

bipartite graph for each i ∈ {1, 2, . . . , d} and |Vd| = 1 if d ≥ 3.

Proof. The first part follows directly from Lemma 2. It remains to verify the correctness
of the second part. Suppose that u ∈ Vd and v ∈ Vd−3 for d ≥ 3. If |Vd| ≥ 2, then
G + uv ∈ Bd

n and V0 ∪ V1 ∪ · · · ∪ Vd−3 ∪ (Vd−2 ∪ {u}) ∪ Vd−1 ∪ (Vd\{u}) is a partition
of G + uv. By Lemma 2, ISI(G + uv) > ISI(G), a contradiction. Hence, |Vd| = 1 for
d ≥ 3.

Lemma 4. Let G ∈ Bd
n be a graph with the maximal ISI-index, then there are at most two P-cells

Vi and Vj such that |Vi| ≥ 2, |Vj| ≥ 2 and |i− j| = 1.

Proof. We always assume that d ≥ 3 since the rest part is trivial. By contradiction, we
suppose that there are at least two P-cells Vi and Vj with |Vi| ≥ 2 and |Vj| ≥ 2. Thus, it is
sufficient to show that |i− j| = 1. It follows from Lemma 3 that each vertex in Vl has the
same degree, say δl , since G[Vl−1 ∪ Vl ] is a complete bipartite subgraph for l ∈ {1, 2, . . . , d}.
To complete the proof, we begin with several auxiliary claims.

Claim 1. Any pair of P-cells Vi, Vi+1, . . . , Vj with cardinality at least two are successive.

Proof of Claim 1. For simplicity, we will distinguish the following three cases.

Case 1. ∃i ∈ {1, 2, . . . , d} such that |Vi| ≥ 2, |Vi+1| = 1 and |Vi+2| = |Vj| ≥ 2.
Without loss of generality, we suppose that Vi+1 = {vi+1} and V0 = {v0}. Let G′

be a graph obtained from G by the following process: (i) deleting all edges incident to
vertex vi+1; (ii) joining vertex vi+1 to vertex v0; (iii) guaranteeing G′[Vi ∪ Vj] is a complete
bipartite graph. Simple calculations show that
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ISI(G′)− ISI(G) =

(
δi−1(δi + lj − 1)
δi + δi−1 + lj − 1

li−1li −
δi−1δi

δi−1 + δi
li−1li

)

+

(
(δj + li − 1)δi+3

δj + δi+3 + li − 1
ljli+3 −

δjδi+3

δj + δi+3
ljli+3

)

+

(
(1 + δ0)δ1

δ0 + δ1 + 1
l1 −

δ0δ1

δ0 + δ1
l1

)
+

1(δ0 + 1)
1 + δ0 + 1

+

(
(δi + lj − 1)(δj + li − 1)

δi + δj + li + lj − 2
lilj −

δi(li + lj)

δi + li + lj
li −

δj(li + lj)

δj + li + lj
lj

)
. (1a)

Note that (x+t)y
x+y+t −

xy
x+y = ty2

(x+y)(x+y+t) > 0 holds for any positive numbers x, y, z, then
we have 

δi−1(δi+lj−1)
δi+δi−1+lj−1 li−1li >

δi−1δi
δi−1+δi

li−1li

(δj+li−1)δi+3
δj+δi+3+li−1 ljli+3 >

δjδi+3
δj+δi+3

ljli+3

(1+δ0)δ1
δ0+δ1+1 l1 > δ0δ1

δ0+δ1
l1.

It remains to prove that the last term in (1a) is non-negative. Equivalently, we only
need to verify

(δi + lj − 1)(δj + li − 1)
δi + δj + li + lj − 2

lilj ≥
δi(li + lj)

δi + li + lj
li +

δj(li + lj)

δj + li + lj
lj. (2)

For convenience, we let lj − 1 = a, li − 1 = b and δi ≥ δj ≥ 2. Thus, the left side and
right side of inequality (2) can be, respectively, rewritten as

A (δi, δj) =
(δi + a)(δj + b)
δi + δj + a + b

(a + 1) +
(δi + a)(δj + b)
δi + δj + a + b

b(a + 1),

and

B(δi, δj) =
δj(a + b + 2)
δj + a + b + 2

(a + 1) +
δi(a + b + 2)
δi + a + b + 2

(b + 1).

What is left is to prove the difference of A (δi, δj) and B(δi, δj) is non-negative.
Subcase 1.1. δi ≤ b + 2.

It is routine to check that B(δi, δj) ≤ δi(a+b+2)
δi+a+b+2 (a + 1) + δi(a+b+2)

δi+a+b+2 (b + 1) .
= C (δi, δj)

since (x+a)y
x+y+a > xy

x+y . Hence, we shall prove that A (δi, δj) − C (δi, δj) ≥ 0. Note that
(δi+a)(δj+b)
δi+δj+a+b ≥

(δi+a)(2+b)
δi+a+b+2 , then we have

(δi + a)(δj + b)
δi + δj + a + b

− δi(a + b + 2)
δi + a + b + 2

≥ (δi + a)(2 + b)
δi + a + b + 2

− δi(a + b + 2)
δi + a + b + 2

=
a(b + 2− δi)

δi + a + b + 2
≥ 0,

and consequently, we get

A (δi, δj)−B(δi, δj) ≥ A (δi, δj)− C (δi, δj) ≥
δi(a + b + 2)
δi + a + b + 2

(
b(a + 1)− (b + 1)

)
≥ 0.

Hence, ISI(G′)− ISI(G) > 0, a contradiction.
Subcase 1.2. δi > b + 2.
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Note that δi > b + 2 and δj ≥ 2, then direct calculations yield that

A (δi, δj)−B(δi, δj) =

(
(δi + a)(δj + b)
δi + δj + a + b

(a + 1) +
(δi + a)(δj + b)
δi + δj + a + b

b(a + 1)

)

−
(

δj(a + b + 2)
δj + a + b + 2

(a + 1) +
δi(a + b + 2)
δi + a + b + 2

(b + 1)

)

>
b(a + b + 2)2

(δj + a + 2b + 2)(δj + a + b + 2)
(a + 1)

+
(δi + a)(2 + b)
δi + 2 + a + b

b(a + 1)− δi(a + b + 2)
δi + a + b + 2

(b + 1)

=
D(δi, δj)

(δj + a + 2b + 2)(δj + a + b + 2)(δi + 2 + a + b)
,

where D(δi, dj) =
[
(δi + a)(2 + b)(a + 1)b− (a + b + 2)(b + 1)δi

]
(δj + a + 2b + 2)(δj + a +

b + 2) + b(a + b + 2)2(a + 1)(δi + δj + a + b)(δi + a + b + 2). It is routine to check that
D(δi, dj) is a non-negative number for a 6= 1, b 6= 1 and a 6= 2, b 6= 1. The remains case
will be verified by elementary calculations, here we omit the details. Hence, we have
A (δi, δj)−B(δi, δj) ≥ 0. Consequently, ISI(G′)− ISI(G) > 0, again a contradiction.
Case 2. ∃i ∈ {1, 2, . . . , d} such that |Vi| ≥ 2, |Vi+1| = |Vi+2| = 1 and |Vi+3| ≥ 2.

Without loss of generality, we suppose that Vi+1 = {vi+1} and Vi+2 = {vi+2}. Let G′

be the graph obtained from G by the following process: (i) deleting all edges incident to
vertex vi+1 (resp. vi+2); (ii) joining vertex vi+1 (resp. vi+2) to vertex v0 (resp. vi+1); (iii)
guaranteeing G′[Vi ∪ Vi+3] is a complete bipartite subgraph. Simple calculations show that

ISI(G′)− ISI(G) =

(
δi−1(δi + li+3 − 1)
δi + δi−1 + li+3 − 1

li−1li −
δi−1δi

δi−1 + δi
li−1li

)
+

(
(δi+3 + li − 1)δi+4

δi+3 + δi+4 + li − 1
li+3li+4 −

δi+3δi+4

δi+3 + δi+4
li+3li+4

)
+

(
(1 + δ0)δ1

δ0 + δ1 + 1
l1 −

δ0δ1

δ0 + δ1
l1

)
+

1 · 2
1 + 2

+
2(δ0 + 1)
2 + δ0 + 1

+

(
(δi + li+3 − 1)(δi+3 + li − 1)

δi + δi+3 + li + li+3 − 2
lili+3 −

δi(li + 1)
δi + li + 1

li

)
−
(
(li + 1)(li+3 + 1)

li + li+3 + 2
+

δi+3(li+3 + 1)
δi+3 + li+3 + 1

li+3

)
. (2a)

Bearing in mind that (x+t)y
x+y+t >

xy
x+y , then we have

δi−1(δi+li+3−1)
δi+δi−1+li+3−1 li−1li >

δi−1δi
δi−1+δi

li−1li

(δi+3+li−1)δi+4
δi+3+di+4+li−1 li+3li+4 >

δi+3δi+4
δi+3+δi+4

li+3li+4

(1+δ0)δ1
δ0+δ1+1 l1 > δ0δ1

δ0+δ1
l1.

To complete the proof of Claim 1, it is sufficient to show the last two terms in (2a) are
non-negative. In other words, we only need to prove the following

(δi + li+3 − 1)(δi+3 + li − 1)
δi + δi+3 + li + li+3 − 2

lili+3 >
δi(li + 1)
δi + li + 1

li +
(li + 1)(li+3 + 1)

li + li+3 + 2
+

δi+3(li+3 + 1)
δi+3 + li+3 + 1

li+3. (3)
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Let li+3 − 1 = a, li − 1 = b and δi ≥ δi+3 ≥ 2, then inequality (3) is equivalent to
the following(

(δi + a)(δi+3 + b)
δi + δi+3 + a + b

(a + 1)− δi+3(a + 2)
δi+3 + a + 2

(a + 1)
)
+

(
(δi + a)(δi+3 + b)
δi + δi+3 + a + b

− δi(b + 2)
δi + b + 2

)
+

(
(δi + a)(δi+3 + b)
δi + δi+3 + a + b

(b− 1)− (b + 2)(a + 2)
a + b + 4

)
+

(
(δi + a)(δi+3 + b)
δi + δi+3 + a + b

ab− δi(b + 2)
δi + b + 2

b
)
> 0,

which always holds for b ≥ 2, as desired. If b = 1, a 6= 1 and b = 1, a = 1, it is routine to
check that the result is still correct. Hence, ISI(G′)− ISI(G) > 0, a contradiction.
Case 3. There exist i, j ∈ {1, 2, . . . , d} such that j− i > 3, |Vi| ≥ 2, |Vi+1| = |Vi+2| = . . . =
|Vj−1| = 1 and |Vj| ≥ 2.

Without loss of generality, we suppose that Vi+1 = {vi+1}, Vi+2 = {vi+2}, . . . , Vj−1 =
{vj−1}. Let G′ be the graph obtained from G by the following process: (i) moving the
{vi+1, vi+2, . . . , vj−1}-segment to the position ahead of vertex v0; (ii) joining vertex vj−1 to
vertex v0; (iii) guaranteeing G′[Vi ∪ Vj] is a complete bipartite subgraph. It is straightfor-
ward to check that

ISI(G′)− ISI(G) =

(
δi−1(δi + lj − 1)
δi + δi−1 + lj − 1

li−1li −
δi−1δi

δi−1 + δi
li−1li

)

+

(
(δj + li − 1)δj+1

δj + δj+1 + li − 1
ljlj+1 −

δjδj+1

δj + δj+1
ljlj+1

)

+

(
(1 + δ0)δ1

δ0 + δ1 + 1
l1 −

δ0δ1

δ0 + δ1
l1

)
+

(
1 · 2

1 + 2
+

2 · 2
2 + 2

+
2(δ0 + 1)
2 + δ0 + 1

)
+

(
(δi + lj − 1)(δj + li − 1)

δi + δj + li + lj − 2
lilj +

δi(li + 1)
δi + li + 1

li

)

+

(
2(li + 1)

li + 3
+

2(lj + 1)
lj + 3

+
δj(lj + 1)
δj + lj + 1

lj

)
> 0,

which is because 

δi−1(δi+lj−1)
δi+δi−1+lj−1 li−1li >

δi−1δi
δi−1+δi

li−1li

(δj+li−1)δj+1
δj+δj+1+li−1 ljlj+1 >

δj(δj+1)

δj+δj+1
ljlj+1

(1+δ0)δ1
δ0+δ1+1 l1 > δ0δ1

δ0+δ1
l1

and

(δi + lj − 1)(δj + li − 1)
δi + δj + li + lj − 2

lilj ≥
δi(li + 1)
δi + li + 1

li +
(li + 1)2

li + 3
+

2(lj + 1)
lj + 3

+
δj(lj + 1)
δj + lj + 1

lj. (4)

Next, we need to show that the inequality (4) holds. Let lj − 1 = a, li − 1 = b and
δi ≥ δj ≥ 2, then the left side of inequality (4) can be rewritten as

P(δi, δj) =
(δi + a)(δj + b)
δi + δj + a + b

a +
(δi + a)(δj + b)
δi + δj + a + b

ab

+
(δi + a)(δj + b)
δi + δj + a + b

(b− 1) +
(δi + a)(δj + b)
δi + δj + a + b

· 2,
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and the right side of inequality (4) can be given by

H (δi, δj) =
δi(b + 2)
δi + b + 2

(b + 1) +
2(b + 2)

b + 4
+

2(a + 2)
a + 4

+
δj(a + 2)
δj + a + 2

(a + 1),

which is less than or equal to

R(δi, δj) =
δi(b + 2)
δi + b + 2

b +
δj(a + 2)
δj + a + 2

a +
δi(b + 2)
δi + b + 2

· 2 +
δj(a + 2)
δj + a + 2

· 2.

To complete the verification of the correctness of inequality (4), we need consider
the following six possibilities illustrated in Table 1. If b ≥ 3, then we have P(δi, δj) −
H (δi, δj) ≥P(δi, δj)−R(δi, δj) ≥ 0, as desired. If b = 2, a ≥ 2, we have

(di+a)(dj+b)
di+dj+a+b ab >

di(b+2)
di+b+2 b +

dj(a+2)
dj+a+2 · 2, as desired. The left cases will be shown by direct computations. Here

we omit the details.

Table 1. Non-negativity of P(δi, δj)−H (δi, δj).

≥ 0 ≥ 0 ≥ 0 ≥ 0 ≥ 0 ≥ 0

b ≥ 3 a ≥ 2, b = 2 a ≥ 3, b = 1 a = 1, b = 2 a = 2, b = 1 a = 1, b = 1

Hence, ISI(G′)− ISI(G) > 0, which contradicts our initial hypothesis.
This completes the proof of Claim 1.

Claim 2. There are at most two P-cells Vi and Vj such that |Vi| ≥ 2 and |Vj| ≥ 2.

Proof of Claim 2. Without loss of generality, we assume that there are at least three such
P-cells, say Vi, Vi+1, . . . , Vj−1, Vj, which are successive and with cardinality at least two. We
choose a vertex u ∈ Vi (resp. u ∈ Vj) and let G′ (resp. G′′) be the graph obtained from G
by the following process: (i) deleting all edges incident to vertex u; (ii) joining vertex u to
each vertex in Vj−1 ∪ Vj+1 (resp. Vi−1 ∪ Vi+1) of G. It is routine to check that G′ ∈ Bd

n (resp.
G′′ ∈ Bd

n). Hence, we have
ISI(G)− ISI(G′) = H1(i)−H1(j), where

H1(i) =
(

2(li + 1)
li + 3

− 2li
li + 2

)
+

(
(li + 1)(li+1 + 1)

li + li+1 + 2
− li(li+1 + 1)

li + li+1 + 1

)
li

+

(
(li+1 + 1)(li + li+2)

li + li+1 + li+2 + 1
− (li+1 + 1)(li + li+2 − 1)

li + li+1 + li+2

)
lili+1

+

(
(li + li+2)(li+1 + li+3)

li + li+1 + li+2 + li+3
− (li + li+2 − 1)(li+1 + li+3)

li + li+1 + li+2 + li+3 − 1

)
li+1li+2

+

(
li(li+1 + 1)
li + li+1 + 1

+
(li+1 + 1)(li + li+2 − 1)

li + li+1 + li+2

)
li+1

and

H1(j) =

(
(lj−3 + lj−1)(lj−2 + lj + 1)
lj−3 + lj−2 + lj−1 + lj + 1

−
(lj−3 + lj−1)(lj−2 + lj)

lj−3 + lj−2 + lj−1 + lj

)
lj−2lj−1

+

(
(lj−2 + lj + 1)(lj−1 + 1)

lj−2 + lj−1 + lj + 2
−

(lj−2 + lj)(lj−1 + 1)
lj−2 + lj−1 + lj + 1

)
lj−1lj

+

(
(lj−1 + 1)(lj + 2)

lj−1 + lj + 3
−

(lj−1 + 1)(lj + 1)
lj−1 + lj + 2

)
lj −

(
2(lj + 2)

lj + 4
−

2(lj + 1)
lj + 3

)

+
(lj−1 + 1)(lj + 2)

lj−1 + lj + 3
−

(lj−2 + lj + 1)(lj−1 + 1)
lj−2 + lj−1 + lj + 2

lj−1.
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If ISI(G)− ISI(G′) < 0, then we get the required result. Hence, in what follows we
assume that ISI(G)− ISI(G′) ≥ 0. By direct calculations, we get ISI(G′′)− ISI(G′) =
H2(i)−H2(j), where

H2(i) =
(

2(li + 2)
li + 4

− 2li
li + 2

)
+

(
(li + 2)(li+1 + 1)

li + li+1 + 3
− li(li+1 + 1)

li + li+1 + 1

)
li

+

(
(li + 2)(li+1 + 1)

li + li+1 + 3
+

li(li+1 + 1)
li + li+1 + 1

)
+

(
(li+1 + 1)(li + li+2 + 1)

li + li+1 + li+2 + 2
− (li+1 + 1)(li + li+2 − 1)

li + li+1 + li+2

)
lili+1

+

(
(li+1 + 1)(li + li+2 + 1)

li + li+1 + li+2 + 2
− (li+1 + 1)(li + li+2 − 1)

li + li+1 + li+2

)
li+1

+

(
(li + li+2 + 1)(li+1 + li+3)

li + li+1 + li+2 + li+3 + 1
− (li + li+2 − 1)(li+1 + li+3)

li + li+1 + li+2 + li+3 − 1

)
li+1li+2

and

H2(j) =

(
(lj−3 + lj−1)(lj−2 + lj + 1)
lj−3 + lj−2 + lj−1 + lj + 1

−
(lj−3 + lj−1)(lj−2 + lj − 1)
lj−3 + lj−2 + lj−1 + lj − 1

)
lj−2lj−1

+

(
(lj−2 + lj + 1)(lj−1 + 1)

lj−2 + lj−1 + lj + 2
−

(lj−2 + lj − 1)(lj−1 + 1)
lj−2 + lj−1 + lj

)
lj−1lj

+

(
(lj−2 + lj + 1)(lj−1 + 1)

lj−2 + lj−1 + lj + 2
+

(lj−2 + lj − 1)(lj−1 + 1)
lj−2 + lj−1 + lj

)
lj−1

+

(
(lj−1 + 1)(lj + 2)

lj−1 + lj + 3
−

(lj−1 + 1)lj

lj−1 + lj + 1

)
lj

+

(
(lj−1 + 1)(lj + 2)

lj−1 + lj + 3
+

(lj−1 + 1)lj

lj−1 + lj + 1

)
−
(

2(lj + 2)
lj + 4

−
2lj

lj + 2

)
,

It is routine to check that ISI(G′′)− ISI(G′) > ISI(G)− ISI(G′) ≥ 0, which contra-
dicts our hypothesis. As desired, we get the proof of Claim 2.

This completes the proof of Lemma 4.

Let G ∈ Bd
n be a graph with maximal ISI-index and P-cells V0, V1, . . . , Vd. By Lemma 4,

we know |Va| ≥ 2 and |Va+1| ≥ 2, and |Vj| = 1 for all j ∈ {1, 2, . . . , d}\{a, a + 1}. By
Lemma 3, G[Vi−1 ∪ Vi] induces a complete bipartite subgraph for each i ∈ {1, 2, . . . , d}.
Thus, G ∈ Bd

n can be represented as
−−−−−−→
G[a, s, t, b] such that

s = la = |Va|

t = la+1 = |Va+1|

a + b = d− 1

s + t = n− d + 1.

Without loss of generality, we assume that a ≤ b for the graph
−−−−−−→
G[a, s, t, b] throughout

this paper.

Lemma 5. Let
−−−−−−→
G[a, s, t, b] ∈ Bd

n be a graph with the maximal ISI-index, then |s− t| ≤ 1.

Proof. We always assume that d ≥ 3 since the case is trivial when d ≤ 2. It follows from
Lemma 1 that a ≥ 1 and b ≥ 1. Without loss of generality, we assume that t > 2 such that
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|s− t| > 1, and consequently t− s ≥ 2. Note that s = |Va| and t = |Va+1|, it is routine to
check that δa = t + 1, δa+1 = s + 1 and δa−2, δa+3 ∈ {0, 1, 2}. For simplicity, in what follows
we let x = δa−2 and y = δa+3. Hence, |x− y| ≤ 2.

For any vertex u ∈ Va+1, we use G′ to denote the graph obtained from G by the
following process: (i) deleting all edges incident to vertex u; (ii) joining vertex u to each
vertex in (Va−1 ∪ Va+1)\{u}. It is routine to check that G′ ∈ Bd

n and

ISI(G′)− ISI(G) =

(
x(s + 2)
x + s + 2

− y(t + 1)
y + t + 1

)
+

(
ty

y + t
− x(s + 1)

x + s + 1

)
+

1
s + t + 2

(
2t2s− 2ts2 + 3t2 − s2 − 4ts− 3t− s

)
> 0,

which can be proved as follows. In fact

A (s, t) =
x(s + 2)
x + s + 2

− y(t + 1)
y + t + 1

=
1

(y + t + 1)(x + s + 2)
(xys + xst + xs + 2xy + 2xt + 2x)

− 1
(y + t + 1)(x + s + 2)

(xyt + yst + 2yt + ys + 2y)

and

B(s, t) =
ty

y + t
− x(s + 1)

x + s + 1

=
1

(y + t)(x + s + 1)
(xyt + yst + yt− xys− xst− xy− t)

>
1

(y + t + 1)(x + s + 2)
(xyt + yst + yt− xys− xst− xy− t).

Hence, we get

A (s, t) +B(s, t) >
1

(y + t + 1)(x + s + 2)
((x− y)s + 2(x− y) + (2x− 1)t)

>
1

(y + t + 1)(x + s + 2)
((x− y)s + 2(x− y) + (2x− 1)(s + 2))

>0.

Note that C (s, t) = 1
s+t+2

(
2t2s− 2ts2 + 3t2 − s2 − 4ts− 3t− s

)
> 0 for t > s ≥ 1.

Hence,

ISI(G′)− ISI(G) = A (s, t) +B(s, t) + C (s, t) > 0,

as desired, we get the required result.

Let x be a real number, we use bxc to denote the largest integer not greater than x and
dxe to represent the smallest integer not less than x. By the above lemmas and elementary
calculations, we have:

Theorem 1. Among all graphs in Bd
n,
−−−−−−−−−−−−−−−−−→
G[a, b n−d+1

2 c, d n−d+1
2 e, b] attains the maximal ISI-index.

Furthermore, a, b satisfy the following conditions illustrated in Table 2 with respect to the diameter d:
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Table 2. Diameter determined by the values of a and b.

d = 2 d = 3 d = 4 d = 5 d = 6 d ≥ 7

a = 0, b = 1 a = 1, b = 1 a = 1, b = 2 a = 2, b = 2 a = 2, b = 3 a ≥ 3, b ≥ 3

3. Ordering the Extremal Graphs according to Their Diameters

In this section, we shall explore the structural properties of graphs in Bn with the
largest, second-largest, and smallest ISI-indexes.

Theorem 2. Among all graphs in Bn (n ≥ 2), Kb n
2 c,d

n
2 e attains the largest ISI-index, and Pn

attains the smallest ISI-index.

Proof. It follows from Theorem 1 that
−−−−−−−−−−−−−−−−−→
G[a, b n−d+1

2 c, d n−d+1
2 e, b] has the maximal ISI-index.

Let F (d) = ISI(
−−−−−−−−−−−−−−−−−→
G[a, b n−d+1

2 c, d n−d+1
2 e, b]). To complete the proof, it suffices to show the

following claim.
Claim 3. F (d) is a decreasing function for d ∈ [2, n− 1].

To complete the proof, we distinguish the following two cases.
Case 1. d > 7.

Note that x = d n−d
2 e ≥ 1 for d ≤ n − 1, then we have δa−2, δa+3 ∈ {0, 1, 2}. If

δa−2 = δa+3 = 2, elementary calculations yields

F (d) =
2
(⌊

n−d+1
2

⌋
+ 1
)

2 +
(⌊

n−d+1
2

⌋
+ 1
) +

2
(⌈

n−d+1
2

⌉
+ 1
)

2 +
(⌈

n−d+1
2

⌉
+ 1
)

+

(⌊
n−d+1

2

⌋
+ 1
)(⌈

n−d+1
2

⌉
+ 1
)

(⌊
n−d+1

2

⌋
+ 1
)
+
(⌈

n−d+1
2

⌉
+ 1
)⌊n− d + 1

2

⌋

+

(⌊
n−d+1

2

⌋
+ 1
)(⌈

n−d+1
2

⌉
+ 1
)

(⌊
n−d+1

2

⌋
+ 1
)
+
(⌈

n−d+1
2

⌉
+ 1
)⌈n− d + 1

2

⌉

+

(⌊
n−d+1

2

⌋
+ 1
)(⌈

n−d+1
2

⌉
+ 1
)

(⌊
n−d+1

2

⌋
+ 1
)
+
(⌈

n−d+1
2

⌉
+ 1
)⌊n− d + 1

2

⌋⌈
n− d + 1

2

⌉

+
1 · 2

1 + 2
+

2 · 2
2 + 2

(d− 7).

The other cases could be dealt with in a similar way, here omit the details. In what
follows, we shall distinguish the following two cases.

If n− d is odd, then d n−d
2 e = d

n−d+1
2 e = b n−d+1

2 c = b n−d
2 c+ 1. It yields that

F (d) =
1
2

(⌈
n− d

2

⌉)3
+

3
2

(⌈
n− d

2

⌉)2
+

⌈
n− d

2

⌉
− 8⌈

n−d
2

⌉
+ 3

+ d− 5
3

and

F (d + 1) =
1
2

(⌈
n− d

2

⌉)3
+

3
4

(⌈
n− d

2

⌉)2
− 3

8

⌈
n− d

2

⌉
− 4⌈

n−d
2

⌉
+ 2
− 4⌈

n−d
2

⌉
+ 3

+
5

32
⌈

n−d
2

⌉
+ 16

+ d− 47
48

.
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After subtraction, we get

F (d + 1)−F (d) =− 3
4

(⌈
n− d

2

⌉)2
− 11

8

(⌈
n− d

2

⌉)

+

 4⌈
n−d

2

⌉
+ 3
− 4⌈

n−d
2

⌉
+ 2

+
5

32
(⌈

n−d
2

⌉)
+ 16

+
11
16

< 0.

The last inequality follows from the fact that d n−d
2 e ≥ 1.

If n− d is even, then d n−d
2 e = d

n−d+1
2 e − 1 = b n−d+1

2 c = b n−d
2 c. Hence,

F (d + 1)−F (d) =− 3
4

(⌈
n− d

2

⌉)2
− 13

8

(⌈
n− d

2

⌉)
− 5

16
⌈

n−d
2

⌉
+ 48

+

 4⌈
n−d

2

⌉
+ 4
− 4⌈

n−d
2

⌉
+ 3

− 251
48

< 0

since d n−d
2 e ≥ 1.

Hence, F (n− 1) < F (n− 2) < . . . < F (8) < F (7), as desired.
Next, we shall consider the case for 2 ≤ d ≤ 7.

Case 2. d ≤ 7.
We only deal with the case when n is odd, the rest part can be verified in a similar way.

By direct calculations, we have

F (2) =

(⌊
n−1

2

⌋
+ 1
)2(⌈ n−1

2

⌉)2(⌊
n−1

2

⌋
+ 1
)
+
⌈

n−1
2

⌉ =
1

16

(
n3 − 2n +

1
n

)
.

Note that b n−2
2 c =

n−3
2 and d n−2

2 e =
n−1

2 , hence

F (3) =

⌊ n−2
2
⌋(⌈ n−2

2
⌉
+ 1
)⌊ n−2

2
⌋
+
(⌈ n−2

2
⌉
+ 1
)⌊n− 2

2

⌋
+

(⌊ n−2
2
⌋
+ 1
)(⌈ n−2

2
⌉
+ 1
)(⌊ n−2

2
⌋
+ 1
)
+
(⌈ n−2

2
⌉
+ 1
)⌊n− 2

2

⌋⌈
n− 2

2

⌉
+

(⌊ n−2
2
⌋
+ 1
)⌈ n−2

2
⌉(⌊ n−2

2
⌋
+ 1
)
+
⌈ n−2

2
⌉⌈n− 2

2

⌉
=

1
16

(
n3 − 10n + 4 +

16
n− 1

− 3
n

)
.

Obviously, 1
16 (n

3− 10n− 2+ 16
n−1 −

3
n ) <

1
16

(
n3 − 2n + 1

n

)
, which implies that F (3) <

F (2). Bearing in mind the initial fact b n−3
2 c = d

n−3
2 e =

n−3
2 , we get

F (4) =

⌊ n−3
2
⌋(⌈ n−3

2
⌉
+ 1
)⌊ n−3

2
⌋
+
(⌈ n−3

2
⌉
+ 1
)⌊n− 3

2

⌋
+

(⌊ n−3
2
⌋
+ 1
)(⌈ n−3

2
⌉
+ 1
)(⌊ n−3

2
⌋
+ 1
)
+
(⌈ n−3

2
⌉
+ 1
)⌊n− 3

2

⌋⌈
n− 3

2

⌉
+

(⌊ n−3
2
⌋
+ 1
)⌈ n−3

2
⌉(⌊ n−3

2
⌋
+ 1
)
+
⌈ n−3

2
⌉⌈n− 3

2

⌉
+

⌈ n−3
2
⌉
· 1⌈ n−3

2
⌉
+ 1

=
1

16

(
n3 − 3n2 − 5n + 4 +

5
n− 2

+
n− 3

16n− 16
+

n− 1
16n + 16

)
.
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Hence, we have F (4) < F (3) after simple computations.
It is easily seen that b n−4

2 c =
n−5

2 and d n−4
2 e =

n−3
2 for any odd n, then we have

F (5) =

(⌊
n−4

2

⌋
+ 1
)(⌈

n−4
2

⌉
+ 1
)

(⌊
n−4

2

⌋
+ 1
)
+
(⌈

n−4
2

⌉
+ 1
)⌊n− 4

2

⌋

+

(⌊
n−4

2

⌋
+ 1
)(⌈

n−4
2

⌉
+ 1
)

(⌊
n−4

2

⌋
+ 1
)
+
(⌈

n−4
2

⌉
+ 1
)⌊n− 4

2

⌋⌈
n− 4

2

⌉

+

(⌊
n−4

2

⌋
+ 1
)(⌈

n−4
2

⌉
+ 1
)

(⌊
n−4

2

⌋
+ 1
)
+
(⌈

n−4
2

⌉
+ 1
)⌈n− 4

2

⌉

+

(⌈
n−4

2

⌉
+ 1
)
· 1(⌈

n−4
2

⌉
+ 1
)
+ 1

+

(⌊
n−4

2

⌋
+ 1
)
· 1(⌊

n−4
2

⌋
+ 1
)
+ 1

=
1

16

(
n3 − 6n2 + 6n + 4 +

5
n− 2

+
n− 3

16n− 16
+

n− 1
16n + 16

)
,

implying that F (5) < F (4) holds.
Since b n−5

2 c = d
n−5

2 e =
n−5

2 , then we have

F (6) =

(⌊ n−5
2
⌋
+ 1
)(⌈ n−5

2
⌉
+ 1
)(⌊ n−5

2
⌋
+ 1
)
+
(⌈ n−5

2
⌉
+ 1
)⌊n− 5

2

⌋
+

(⌊ n−5
2
⌋
+ 1
)(⌈ n−5

2
⌉
+ 1
)(⌊ n−5

2
⌋
+ 1
)
+
(⌈ n−5

2
⌉
+ 1
)⌊n− 5

2

⌋⌈
n− 5

2

⌉
+

(⌊ n−5
2
⌋
+ 1
)(⌈ n−5

2
⌉
+ 1
)(⌊ n−5

2
⌋
+ 1
)
+
(⌈ n−5

2
⌉
+ 1
)⌈n− 5

2

⌉
+

(⌈ n−5
2
⌉
+ 1
)
· 2(⌈ n−5

2
⌉
+ 1
)
+ 2

+

(⌊ n−5
2
⌋
+ 1
)
· 1(⌊ n−5

2
⌋
+ 1
)
+ 1

+
2 · 1

2 + 1

=
1

16

(
n3 − 9n2 + 23n− 148

3
+

n− 3
16n− 16

+
n− 3

8n + 8

)
.

It follows from simple calculations that F (6) < F (5).
We observe that b n−6

2 c =
n−7

2 and d n−6
2 e =

n−5
2 , hence

F (7) =

(⌊ n−6
2
⌋
+ 1
)(⌈ n−6

2
⌉
+ 1
)(⌊ n−6

2
⌋
+ 1
)
+
(⌈ n−6

2
⌉
+ 1
)⌊n− 6

2

⌋
+

(⌊ n−6
2
⌋
+ 1
)(⌈ n−6

2
⌉
+ 1
)(⌊ n−6

2
⌋
+ 1
)
+
(⌈ n−6

2
⌉
+ 1
)⌊n− 6

2

⌋⌈
n− 6

2

⌉
+

(⌊ n−6
2
⌋
+ 1
)(⌈ n−6

2
⌉
+ 1
)(⌊ n−6

2
⌋
+ 1
)
+
(⌈ n−6

2
⌉
+ 1
)⌈n− 6

2

⌉
+

(⌈ n−6
2
⌉
+ 1
)
· 2(⌈ n−6

2
⌉
+ 1
)
+ 2

+

(⌊ n−6
2
⌋
+ 1
)
· 2(⌊ n−2

2
⌋
+ 1
)
+ 2

+
2 · 2 · 1
2 + 1

=
1
16

(
n3 − 12n2 + 42n− 124

3
+

n− 3
8n + 8

+
n− 5

8n− 8

)
,

which will not exceed the value of F (6).
Hence, F (7) < F (6) < F (5) < F (4) < F (3) < F (2).
This completes the proof of Theorem 2.
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Theorem 3. Among all graphs in Bn (n ≥ 3), Kb n−2
2 c,d

n+2
2 e

attains the second-largest ISI-index
for even n, whereas Kb n

2 c,d
n
2 e\{e} attains the second-largest ISI-index for odd n.

Proof. Note that ISI(Ks,t) =
(st)2

s+t , then we have

ISI
(

Kb n−2
2 c,d n+2

2 e
)
=

(⌊ n−2
2
⌋⌈ n+2

2
⌉)2⌊ n−2

2
⌋
+
⌈ n+2

2
⌉

and

ISI
(

Kb n
2 c,d n

2 e\{e}
)
=
b n

2 c
(
d n

2 e − 1
)2

b n
2 c+

(
d n

2 e − 1
) + (

b n
2 c − 1

)2d n
2 e(

b n
2 c − 1

)
+ d n

2 e

+

⌈ n
2
⌉⌊ n

2
⌋⌈ n

2
⌉
+
⌊ n

2
⌋(⌈n

2

⌉
− 1
)(⌊n

2

⌋
− 1
)

.

If n is odd, then ISI
(

Kb n−2
2 c,d

n+2
2 e

)
= 1

16 (n
3 − 18n + 81

n ), and

ISI
(

Kb n
2 c,d n

2 e\{e}
)
=

1
16

(
n3 − 2n2 − 2n + 6− 3

n

)
+

1
16

(
2n2 − 12n + 18

)(
1 +

2
n− 1

)
>

1
16

(
n3 − 14n + 24− 3

n

)
.

Hence

ISI
(

Kb n
2 c,d n

2 e\{e}
)
> ISI

(
Kb n−2

2 c,d n+2
2 e
)

.

We could deal with the case when n is even, here omit the details.
This completes the proof of Theorem 3.
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