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Abstract: We modify the recently proposed forecasting model of high-dimensional covariance ma-
trices (HDCM) of asset returns using high-dimensional principal component analysis (PCA). It is
well-known that when the sample size is smaller than the dimension, eigenvalues estimated by
classical PCA have a bias. In particular, a very small number of eigenvalues are extremely large
and they are called spiked eigenvalues. High-dimensional PCA gives eigenvalues which correct
the biases of the spiked eigenvalues. This situation also happens in the financial field, especially
in situations where high-frequency and high-dimensional data are handled. The research aims to
estimate the HDCM of asset returns using high-dimensional PCA for the realized covariance matrix
using the Nikkei 225 data, it estimates 5- and 10-min intraday asset-returns intervals. We construct
time-series models for eigenvalues which are estimated by each PCA, and forecast HDCM. Our
simulation analysis shows that the high-dimensional PCA has better estimation performance than
classical PCA for the estimating integrated covariance matrix. In our empirical analysis, we show
that we will be able to improve the forecasting performance using the high-dimensional PCA and
make a portfolio with smaller variance.

Keywords: covariance forecasting; high-dimensional covariance; high-frequency data; principal
component analysis; time series

1. Introduction

Modeling and forecasting covariance matrices of asset returns have an essential role
in portfolio allocations and risk management. For estimating and forecasting covariance
matrix, a lot of papers are published on both low- and high-frequency data. Concerning the
low-frequency data, the multivariate GARCH models [1], for example, BEKK-GARCH [2]
and DCC-GARCH [3,4], are usually used to estimate and forecast the covariance matrix
as latent. On the other hand, the availability of high-frequency data recently enabled the
direct estimation of the covariance matrix, for example, the realized covariance matrix esti-
mator [5], and the multivariate realized kernel estimator [6]. Additionally, some forecasting
models such as the multivariate HAR [7], conditional autoregressive Wishart (CAW) [8],
and realized DCC [9] models, use these covariance estimators to forecast them. However,
when the dimensions increase, these covariance estimators and forecasting models have less
accurate performance and suffer from an increase in the number of estimated parameters
because of various reasons, such as the curse of dimensionality.

To solve these problems, the DCC-NL model which can overcome the curse of di-
mensionality using nonlinear shrinkage estimation is proposed [10]. To analyze the condi-
tional high-dimensional covariance matrix (HDCM), recent studies using some multivariate
GARCH models use the DCC-NL model instead of Tse and Tsui’s and Engle’s DCC-GARCH
models [11–14]. Then, to solve the curse of dimensionality, many studies assume that the
covariance matrix process or the price process follows a factor structure. Wang and Zou [15]
propose a covariance estimator assuming that the integrated covariance matrix is sparse.
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Considering a sparse covariance matrix allows only important elements to remain and also
reduces the number of elements to be estimated. In addition, Tao et al. [16] introduce a
covariance estimator which uses the matrix factor structure for an HDCM. We can obtain
not only a consistent estimator of an HDCM but also a forecasted value using the vector
autoregressive (VAR) model for a low-dimensional factor covariance matrix. Kim et al. [17]
propose a threshold covariance estimator to regularize some realized covariance measures
under the same assumption as [15]. Shen et al. [18] apply the method proposed by [16] to
a realized covariance matrix and consider the CAW model instead of the VAR model for
the factors. However, these studies assume sparsity in the integrated covariance matrix
itself, which represents the target to be estimated. If there are some common factors across
asset returns, the assumption that the integrated covariance is sparse becomes unrealistic
because there are correlations among all pairs of assets through the common factors [19–22].

Fan et al. [19] propose the principal orthogonal complement thresholding (POET)
method which assumes sparsity, not for the covariance matrix itself, but for the covariance
matrix of the residual process, and estimates the latent factor using principal component
analysis (PCA) to solve some problems. For high-frequency data, Fan et al. [20] assume
the observable factor structure inspired by [23], and propose the covariance estimator
under the assumption that the covariance matrix of the residual process is sparse. To
estimate the latent factor structure, Aït-Sahalia and Xiu [24] impose sparsity on the residual
covariance matrix and apply POET to high-frequency data using PCA to estimate an
HDCM. They show that even when the factor is latent, if the residual covariance matrix
is sufficiently sparse, the factor part can be estimated by PCA on the consistent estimator
of the integrated covariance matrix, like the realized covariance matrix. In addition, they
show that their estimator is a consistent estimator even if the interval of intraday return
is ∆ → 0 and the dimension is d → ∞. In addition, Dai et al. [25] also propose an
estimation method of the sparse residual covariance matrix using thresholding, and a high-
dimensional covariance estimator using the POET estimator. The difference between [24]
and [25] is the sparse structure. While Aït-Sahalia and Xiu [24] assume the block-diagonalize
structure instead of thresholding, Dai et al. [25] do not assume the block-diagonalize
structure but set a more general assumption, and use soft-, hard-, and adaptive-lasso
(AL) [26], and smoothly clipped absolute deviation (SCAD) [27] thresholding. For the
sparse estimation of the residual covariance matrix, Cai and Liu [28] propose the adaptive
and hard thresholding method, but this method cannot guarantee the positive definiteness
under the finite sample [29], and also has less performance than [25]. Brownlees et al. [21]
propose the realized network estimator using the graphical lasso to estimate the precision
matrix. Jian et al. [29] build time-series models for estimated eigenvalues based on the
estimator of [24], and forecast the HDCM. In addition, they propose the regularized method
to guarantee the positive definiteness.

The classical PCA, which is used by these models, creates a bias under d > M; d is
the dimension of a covariance matrix and M is the sample size [15,24,30,31]. Wang and
Fan [31] characterize the asymptotic distribution of empirical eigenvalues under the i.i.d
setting and d > M. They also propose the shrinkage POET (SPOET) method based on their
asymptotic distribution. The SPOET method corrects the biases of eigenvalues estimated
by classical PCA.

In this paper, we estimate the HDCM under the factor structure for the high-frequency
data, and create the forecasting models using its eigenvalues. It is well-known that the
realized covariance matrix is a consistent estimator of the integrated covariance matrix
when the number of intraday observations M goes to ∞. However, in the empirical situation,
we consider the microstructure noise, and often use the realized covariance matrix which is
estimated using 5- or 10-min interval intraday returns. In this case, since the Japanese stock
market opens from 9 a.m. to 3 p.m. with an hour break, the sample sizes are 60 and 30 per
day. Under such a situation, although we want to consider a large portfolio including 100 or
200 stocks, the matrix dimension is larger than the sample size, d > M. Therefore, we apply
spoet corresponding to d > M to the realized covariance matrix, rather than the POET
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using PCA as considered in [24,25]. Additionally, we construct the forecasting models
similar to [29], by deriving the eigenvalues of the realized covariance matrix estimated
using SPOET.

There are two contributions to the literature. First, this paper shows through a sim-
ulation study that SPOET considered in the i.i.d. setting has excellent performance for
estimating the integrated covariance matrix under the assumption of continuous Itô semi-
martingale. Second, our empirical analysis shows that the forecasting models using SPOET
are more accurate covariance matrix than the models using the POET. Hence, using our pro-
posed models gives us a more accurate covariance estimator under the high-dimensional
setting that results in bad performance and unreliable results. This point is the largest
difference between [29] and this paper. Although Jian et al. [29] do not consider the rela-
tionship between the dimension of the covariance matrix and the sample size of intraday,
we focus on the relationship and make these models forecast more accurately than their
models.

The paper is organized as follows: Section 2 explains the factor model, the sparse
estimations, and the principal component analysis to estimate the factor part. Section 3
introduces the forecasting model of estimated eigenvalues by PCA used in the empirical
analysis. Section 4 gives the result of the simulation study. Section 5 implements the
estimator on a large portfolio using individual stocks based on the Nikkei 225. Finally,
Section 6 concludes.

2. Factor Model and PCA
2.1. Factor Structure

We assume that the log-price Y follows a continuous-time factor model,

Yt = βXt + Zt, (1)

where Yt is a d-dimensional vector process, Xt is a r-dimensional latent common factor
process, Zt is the d-dimensional idiosyncratic component, and β is a d× r constant-factor
loading matrix. In addition, Xt and Zt are independent. In this paper, the number of factors
r is unknown. Here, we assume that Xt and Zt are continuous Itô semi-martingale, as
with [24,25] as follows:

Xt =
∫ t

0
hsds +

∫ t

0
ηsdWs, Zt =

∫ t

0
fsds +

∫ t

0
γsdBs.

Then, the integrated covariance matrices of Xt, Zt, and Yt are defined under Assump-
tions 1, 2, and 3, and the sparsity assumption of [25] as follows:

ΣXt =
∫ t

0
ηsη′sds, ΣZt =

∫ t

0
γsγ′sds,

ΣYt = βΣXt β
′ + ΣZt . (2)

Although Jian et al. [29] consider the factor model following Assumption 1, 2, 3, 4, and
5 of [24], we assume more general sparsity of [25] and we do not assume that idiosyncratic
component is block diagonal.

2.2. Sparsity

To estimate an HDCM, a certain condition of sparsity is necessary for dimension
reduction and factor model. However, the sparsity assumption of the covariance matrix
itself is inappropriate from the viewpoint of the factor model. To solve this problem, we
assume that the covariance matrix of the idiosyncratic component ΣZ is sparse, and then the
form of Equation (2) becomes a low-rank plus sparse structure. A low-rank plus sparsity
structure of the residual covariance matrix turns out to be a good match for asset high-
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frequency data [24] and guarantees a well-conditioned estimator as well as its precision
matrix [25].

We use four types of thresholding functions, hard-, soft-, adaptive lasso (AL) and
smoothly clipped absolute deviation (SCAD) threshold, for ΣZ as following:

sHard
λ (z) = z1(|z| > λ), sSoft

λ (z) = sign(z)(|z|−λ)+, sAL
λ (z) = sign(z)(|z|−λη+1|z|−η)+,

sSCAD
λ (z) =


sign(z)(|z| − λ)+, |z| ≤ 2λ;
(a−1)z−sign(z)aλ

a−2 , 2λ < |z| ≤ aλ;
z, aλ < |z|.

where we set a = 3.7 and η = 1 same as [32]. We adopt these thresholding functions and
estimate the residual covariance matrix as follows:

Σ̃S
Zt ,ij =

{
Σ̂Zt ,ij, i = j;
sλij(Σ̂Zt ,ij), i 6= j.

Dai et al. [25] denote that despite these estimations lead to the same convergence rate from
their analysis, the results of finite sample performance of the covariance matrix in their
simulation study and empirical analysis are quite different.

2.2.1. Thresholding Method

Following [25], the thresholding λij in sparse functions is estimated as follows:

λij = τ
√

Σ̂Zt ,iiΣ̂Zt ,jj,

where τ is a constant to be determined. Under the finite sample, we use a grid search to
guarantee positive semi-definite. We divide into K pieces in τ ∈ [0, 1] and gradually increase
τ until the final high-dimensional covariance matrix becomes positive semi-definite. As
τ becomes larger, the degree of sparsity of the residual covariance increases, and, finally,
the matrix becomes a diagonal matrix [25]. Thus, an estimated HDCM always becomes
positive semi-definite.

2.2.2. The Number of Factors

If the log-price is observed by latent common factors, we have to estimate the number
of factors. The consistent estimator of the number of latent factors is proposed by [24]
under the continuous-time setting without random matrix theory. We adopt their estimator,
which minimizes the penalized function using an estimator of the integrated covariance
matrix Σ̂t:

r̂t = arg min
1≤j≤rmax

(
λj(Σ̂Yt)

d
+ j× g(M, d)

)
− 1, (3)

where rmax is 20. In theory, the choice of rmax is not important. This is simply used to avoid
making economically meaningless choice of r in finite samples [24]. The function g(n, d) is
defined as follows:

g(M, d) = 0.02× λ̂t
min( d

2 , M
2 )

(Σ̂Yt)

(
log d

M

) 1
4
. (4)

2.3. PCA for High-Frequency Data

To estimate an HDCM, we show the PCA for the realized covariance matrix estimated
by high-frequency data following [29]. Here, yj,t is the j-th intraday log-return observed on
day t. The realized covariance matrix is defined as follows:
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Σ̂Yt =
M

∑
j=1

yj,ty′j,t.

We assume d > M; thus, the realized covariance matrix is estimated under this
assumption.

2.3.1. POET Method

The eigenvalues of the realized covariance matrix Σ̂Yt are λ̂t
1 > λ̂t

2 > · · · > λ̂t
d, and

ξ̂t
1, ξ̂t

2, . . . , ξ̂t
d denote the corresponding eigenvectors. If r̂ is the estimator of r, which is the

number of factors, Σ̂Yt has a spectral decomposition as follows:

Σ̂Yt =
r̂

∑
j=1

λ̂t
j ξ̂

t
j ξ̂

t′
j + Σ̂Zt , (5)

where Σ̂Zt is the covariance matrix of the residual process, which is calculated by
Σ̂Zt = ∑d

j=r̂+1 λ̂t
j ξ̂

t
j ξ̂

t′
j . Here, even if the common factor Xt is an unobservable process,

if ΣZ is sufficiently sparse, βΣXt β
′ in Equation (2) can be estimated using the eigenvalues

and eigenvectors of Σ̂Yt [24]. Therefore, we estimate the sparse residual covariance matrix,
and then estimate a high-dimensional covariance matrix Σ̂S

Yt
as follows:

Σ̂S
Yt

=
r̂

∑
j=1

λ̂t
j ξ̂

t
j ξ̂

t′
j + Σ̂S

Zt
, (6)

where Σ̂S
Zt

is the estimated sparse residual covariance matrix. This high-dimensional
covariance estimator consists of the POET for low-frequency data of [19] and the PCA
approach adopted in [24,25] for high-frequency data.

2.3.2. Shrinkage POET Method

The PCA which is used in Equation (5) is effective, when dimension d is fixed and
the sample size (the number of observations in a day) is sufficiently large. However, it
is well-known that in situations where d > M, the eigenvalues and eigenvectors of the
realized covariance matrix are not consistent estimators in the sense that they are quite
far from the true values [16]. To deal with this problem, we use shrinkage POET (SPOET),
proposed by [31], which corrects biases of empirical eigenvalues and estimates an HDCM
as follows:

Σ̃S
Yt

=
r

∑
j=1

λ̃t
j ξ̂

t
j ξ̂

t′
j + Σ̂S

Zt
,

where λ̃t
j = max{λ̂t

j − cd/M, 0}. In addition, as c is unknown, we have to estimate it. In
this paper, we follow [31] to estimate as follows:

ĉ = (tr(Σ̂t
Y)−

r

∑
j=1

λ̂j)/(d− r− dr/M). (7)

3. Forecasting Models

In this section, in order to forecast an HDCM, we introduce forecasting models based
on the PCA. We denote the eigenvalues as:

σt
f = [λt

1, . . . , λt
r]
′.

Since these eigenvalues are the variances of factors, we can consider models similar to
the time-series model of the realized variance of asset returns [29]. To model the eigenvalues,
we use the exponentially weighted moving average (EWMA), (Vector) HAR, and (Vector)
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AR models, the same as [29]. All models except the EWMA model can be easily estimated
using OLS.

3.1. EWMA Model

In this paper, we use the EWMA model developed by [33] as a benchmark model, as
follows:

σ
t+1|t
f = aσ

t|t−1
f + (1− a)σt,

where a is the decaying parameter that determines the weight of the observed value 1
period before the forecast, and we set a = 0.94 following the framework of a RiskMetrics
approach [33]. As this model is easy to implement to forecast volatility and covariance, a
lot of studies use it in practice.

3.2. VAR Model

We introduce the AR(1) and VAR models based on high-frequency factor model as:

λt
i = a0,i + a1,iλ

t−1
i + εt

i, i = 1, . . . , r, (8)

σt
f = A0 + A1σt−1

f + εt
f , (9)

where ak,i, Ak, k = 0, 1 are scalar parameters and parameter matrices, respectively. εt
i

denotes the innovation term.
Andersen et al. [34] pointed out that the logarithmic standard deviations are closer to

a normal distribution in general compared to the realized variance itself, and modeling and
forecasting log volatility guarantee that the fitted and forecasted volatility are non-negative
without any constrains. Therefore, we also apply the logarithmic eigenvalues to these
models.

3.3. V-HAR Model

In this subsection, we introduce the HAR model and V-HAR model which are pro-
posed by [7,35], respectively. These models are usually applied to forecasting both univari-
ate and multivariate realized volatility. The HAR model is advantaged for approximating
the long memory properties using daily, weekly and monthly volatility. Also, given the
multivariate framework, the impact of the short- and long-term volatility of another asset
can be included in a forecast of the volatility of one asset. To use these models, we calculate
the weekly and monthly eigenvalues as follows:

λt
i,W =

1
5

4

∑
j=0

λ
t−j
i , (10)

λt
i,M =

1
22

21

∑
j=0

λ
t−j
i . (11)

In addition, we define that σt
f .W = [λt

1,W , . . . , λt
r,W ]′ and σt

f .M = [λt
1,M, . . . , λt

r,M]′. We
construct the HAR and V-HAR models using daily, weekly, and monthly eigenvalues as
follows:

λt
i = a0,i + a1,iλ

t−1
i + a2,iλ

t−1
i,W + a3,iλ

t−1
i,M + εt

i, i = 1, . . . , r, (12)

σt
f = A0 + A1σt−1

f + A2σt−1
f ,W + A3σt−1

f ,M + εt
f . (13)

where ak,i, Ak, k = 0, . . . , 3 are scalar parameters and parameter matrices, respectively.
Similar to AR and VAR models, these models are transformed into logarithmic models.
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Using these models, we can obtain the forecasted HDCM, Ŝt+1, as follows:

Ŝt+1 =
r̂

∑
j=1

λ̌t+1
j ξ̂t

j ξ̂
t′
j + Σ̂S

Zt
, (14)

where λ̌t+1
j denotes the forecasted j-th eigenvalues at t + 1, ξ̂ j is the eigenvectors corre-

sponding to the forecasted eigenvalues, and Σ̂S
Zt

is the sparse residual covariance matrix at
t. Hence, in this model, we use the eigenvectors and sparse residual covariance matrix at t
and the forecasted eigenvalues at t + 1 to forecast an HDCM.

4. Simulation Study

SPOET outperforms POET and the sample covariance matrix for i.i.d. data using a
simulation study [31]. We now investigate the small sample performance of the POET and
SPOET for a large portfolio, and show that SPOET is more accurate than POET even when
applied to estimating the integrated covariance matrix in continuous Itô semi-martingale.

4.1. Simulation Design

In order to investigate the small sample performance, we performed the simulation
study in a simple way according to [36,37], which treats the observed realized covariance
matrix as the latent integrated covariance matrix. In this paper, we consider not the realized
covariance matrix, but the high-dimensional covariance matrix estimated using (S)POET as
the integrated covariance matrix. Regarding the observed realized covariance matrix, we
discuss this in the Data section of the empirical analysis Section 5.1, below. Their simulation
method can simulate empirically realistic sample paths of daily covariance matrices using
the observed data. We use a diurnal pattern because the generated returns do not allow
stochastic variation in covariances within a day. The intraday volatility pattern is modeled
by means based on a diurnal U-shape function, σd(u). Therefore, we generate the intraday
volatility pattern σd(u), the spot covariance matrix Σ(u), and intraday asset returns as
follows:

dP(u) = Σ(u)1/2dW(u), (15)

Σ(u) = σd(u)Σ, (16)

σd(u) = C + Ae−au + Be−b(1−u), (17)

where we set A = 0.75, B = 0.25, C = 0.88929198, and a = b = 10, respectively, follow-
ing [36,37]. In this simulation study, similar to our empirical analysis described below,
we consider 202, 100, and 50 dimensional covariance matrix of 1392 days. We generate
one-second prices for each day, and the realized covariance matrix is estimated by 10- and
5-min returns.

4.2. Simulation Result

We evaluate the performance of POET and SPOET by comparing the size of the esti-
mated eigenvalues and the norm for each estimator. Table 1 and Figure 1 show the results.

First, we confirm the size of estimated eigenvalues for each estimator. The average of
the first, second, and third eigenvalues of POET and SPOET for the 10- and 5-min interval
realized covariance matrix are shown in Table 1. This table shows the mean, maximum and
minimum values for each eigenvalue. All eigenvalues estimated by SPOET are closer to
the true values than those by POET for all dimensions and all eigenvalues.

Then, we compare the estimation performance of POET and SPOET using ||Ŝ− S||2,
||Ŝ− S||F, MSE (mean square error). Ŝ and S denote the estimation and the integrated
covariance matrix, respectively. Our result is reported in Figure 1; the x axis shows the
dimension and the interval, for example, 200(10) means the 202 dimensional covariance
estimated using 10-min interval intraday returns. Although the colors of the line show
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the thresholding types, we cannot see the difference between them. The biggest thing
to notice is that no matter under what loss functions, interval, or dimension, SPOET
always outperforms POET. Except for MSE, the errors become smaller as the return interval
becomes shorter and the dimension of the covariance matrix becomes smaller. These results
show that what is stated by [31], “It affirms the claim that shrinkage of spiked eigenvalues is
necessary to maintain good performance when the spikes are not sufficiently large” is also true for
the estimation of HDCM using price process.

Table 1. Simulation results of eigenvalues.

10-min 5-min

λ1 λ2 λ3 λ1 λ2 λ3

Stocks Mean

TRUE 194.543 62.640 33.081 194.543 62.640 33.081
200 POET 325.517 109.111 58.144 328.368 105.507 56.128

SPOET 313.308 96.902 45.935 322.158 99.297 49.918

TRUE 104.448 35.652 20.452 104.448 35.652 20.452
100 POET 181.294 63.451 36.127 174.270 60.168 35.083

SPOET 175.185 57.342 30.018 171.146 57.044 31.959

TRUE 49.150 18.694 11.180 49.150 18.694 11.180
50 POET 83.807 31.995 19.540 83.246 31.389 18.679

SPOET 81.243 29.431 16.977 81.916 30.059 17.349

Max

TRUE 7843.507 581.130 487.202 7843.507 581.130 487.202
200 POET 10,095.698 1050.907 806.341 15,710.724 985.235 727.615

SPOET 10,059.541 941.379 681.527 15,692.497 927.323 669.703

TRUE 3811.211 271.343 192.545 3811.211 271.343 192.545
100 POET 6609.435 608.361 299.445 4421.615 524.372 335.179

SPOET 6579.344 554.550 245.634 4412.434 506.948 310.397

TRUE 1662.291 209.630 117.863 1662.291 209.630 117.863
50 POET 2477.492 448.610 230.080 3922.754 382.988 169.577

SPOET 2469.275 420.733 202.203 3918.187 369.209 155.799

Min

TRUE 29.612 10.916 6.306 29.612 10.916 6.306
200 POET 47.262 18.211 13.739 38.446 14.410 10.803

SPOET 40.198 14.555 9.429 36.110 12.581 8.916

TRUE 13.115 6.480 4.319 13.115 6.480 4.319
100 POET 22.374 10.855 8.103 23.954 9.939 7.046

SPOET 19.595 8.971 6.208 22.705 8.972 6.046

TRUE 6.555 2.437 1.915 6.555 2.437 1.915
50 POET 11.404 5.572 3.550 12.459 4.673 3.687

SPOET 10.144 4.857 2.835 12.025 4.301 3.315
Notes: This table reports the size of eigenvalues which are first three of the integrated covariance, the POET
estimator, and SPOET estimator.
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Figure 1. Simulation results. Notes: the x axis shows the number of stocks and the time interval of
realized covariance matrix.

5. Empirical Analysis

First, we explain the data we used and its descriptive statistics. Then, the forecasting
models are evaluated by loss functions and a variance of portfolio, which is estimated by
forecasted covariance matrix.

5.1. Data

We use the high-frequency data of individual stocks included in the Nikkei 225, which
we bought from Nikkei NEEDS-TICK data. The sample period covers 1392 days, from
1 January 2015 to 31 December 2020. We adopt a maximum of 202 individual stocks that
have traded continuously during the sample period. In addition, we consider not only
202 stocks but also 100 and 50 stocks, and, for each dimension, we estimate the realized
covariance matrix using 10- and 5-min interval intraday returns. In order to estimate the
realized covariance matrix, we use MFE Toolbox (https://www.kevinsheppard.com/MFE_
Toolbox (accessed on 1 November 2022)), which was published by Prof. Kevin Sheppard.
However, only for the realized covariance matrix of 50 stocks, we did not consider the
matrix with 5-min intervals. This is because high-frequency intraday returns with 5-min
intervals have 60 observations in a day, which is not appropriate to the objective of this
study, i.e., the situation where the sample size is smaller than the dimension of the matrix.

Figure 2 shows the time series of first, second, and third eigenvalues estimated by
POET and their autocorrelation. Similar to [29], each eigenvalue series shows a variation
similar to volatility. In addition, since the autocorrelation is significant and positive, the
autoregressive models, like the AR and HAR models, are effective to model the eigenvalues.
The results of the estimated eigenvalues by SPOET can be observed as the same as POET;
therefore, we omit them here.

Table 2 presents the size of the first, second, and third eigenvalues of the 200 dimen-
sional realized covariance matrix estimated by POET and SPOET. We can find that when

https://www.kevinsheppard.com/MFE_Toolbox
https://www.kevinsheppard.com/MFE_Toolbox
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the number of factors is three, SPOET can estimate the shrinkage eigenvalues for mean,
max, and min.

Figure 2. Eigenvalues estimated by POET and sample autocorrelation functions.

Table 2. The eigenvalues estimated by POET and SPOET of 200 dimensional matrix.

10-min 5-min

λ1 λ2 λ3 λ1 λ2 λ3

Mean

POET 199.61 67.38 37.20 175.16 56.31 35.14
SPOET 191.78 59.55 29.37 170.06 51.21 30.04

Max

POET 7859.83 619.82 524.94 4930.99 1379.47 331.24
SPOET 7835.62 546.92 452.04 4909.13 1361.80 288.60

Min

POET 31.52 12.46 7.69 22.70 14.25 7.54
SPOET 28.49 10.13 5.36 20.65 12.24 5.90

5.2. Out-of-Sample

We evaluate all models using the rolling-window method during the out-of-sample
period. These models are reestimated everyday and set 500 days as the rolling window.
The process of evaluating the forecasting performance requires using some loss functions,
the Diebold–Mariano (DM) test proposed by [38] and the model confidence set (MCS)
developed by [39]. Then, based on the forecasted covariance matrix, we construct a
portfolio and calculate the variances of returns that are generated by each portfolio.

5.2.1. Loss Functions and MCS

In this paper, to evaluate the forecasting performance at time t, we use the Frobenius
distance and MSE which are known to be robust in the presence of noisy covariance matrix
proxies [40].

Frobenius: tr
[
(Ŝt − Σt)

′(Ŝt − Σt)
]
, (18)

MSE: vech(Σt − Ŝt)
′vech(Σt − Ŝt), (19)
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where Ŝt is the forecasted HDCM and Σt denotes an integrated covariance matrix at t. As a
proxy of an integrated covariance matrix, we use an HDCM based on an ex-post observed
realized covariance matrix. Then, the 80% MCS is calculated by the result of loss functions.
We also calculated the 90% and 70% MCSs, and their results selected the same models with
80% MCS, therefore, we describe the result of 80% MCS. The MCS is calculated by the
block bootstrap method with the length of the block beginning at two and the number of
bootstrap samples being 10,000.

Tables 3 and 4 show the number of factors for each dimension and the results of
loss functions and MCS using the realized covariance matrix estimated by 10- and 5-min
intraday returns. The number of factors is estimated by Equations (3) and (4). The results
use the soft thresholding method for the sparse estimation of the residual covariance matrix.
When other sparse estimations are used, the value of the loss changes, but the results
remain the same. Additionally, the MCS is used for the results of a total of 18 models using
POET and SPOET for each number of stocks.

Table 3. Average forecasting losses for 10-min interval intraday returns.

10 min 200 Stocks 100 Stocks 50 Stocks

Observations 30

Factors 3 4 6

Frobenius POET SPOET POET SPOET POET SPOET

AR 219.06 210.41 *** 117.65 114.12 *** 54.99 54.47 ***
VAR 202.31 195.70 *** 108.42 105.75 *** 50.79 50.65 **
HAR 204.99 196.76 *** 111.17 107.84 *** 52.45 52.01 ***
V-HAR 199.47 192.11 *** 108.09 105.41 *** 50.67 50.24 ***
AR(log) 192.98 184.47 *** 105.79 102.33 *** 49.61 49.14 ***
VAR(log) 189.82 181.66 *** 103.50 100.30 *** 48.62 48.26
HAR(log) 188.63 180.09 *** 103.21 99.75 *** 48.52 48.06 ***
V-HAR(log) 188.57 179.98 *** 102.81 99.41 *** 48.39 47.96
EWMA 212.02 203.34 *** 115.63 112.10 *** 54.73 54.18 ***

MSE

AR 5.1307 4.8785 1.4675 1.4156 0.3484 0.3446 *
VAR 4.8692 4.6519 1.3938 1.3534 0.3273 0.3262
HAR 4.5806 4.3417 * 1.3232 1.2742 * 0.3220 0.3185 *
V-HAR 4.3779 4.1552 ** 1.2834 1.2416 ** 0.3061 0.3028
AR(log) 5.3709 5.1806 1.5393 1.4987 0.3652 0.3629
VAR(log) 5.2869 5.1063 1.5049 1.4711 0.3629 0.3624
HAR(log) 4.8197 4.6170 1.3723 1.3304 0.3308 0.3284
V-HAR(log) 4.8930 4.6684 * 1.3854 1.3413 0.3391 0.3368
EWMA 6.0374 5.7767 1.6822 1.6272 0.4088 0.4034 *

Notes: The values of MSE are ×10−4. The selected models by 80% MCS is shown in bold. *, ** , and *** denote
significance at 10%, 5%, and 1% levels for DM test.

Table 3 shows the results of the Frobenius distance of all models. First, we compare
forecast values of POET and SPOET with the same time-series model using the DM test
which is the statistical hypothesis testing based on the difference of the loss to compare the
forecasting accuracy between the two models. Therefore, *, **, and *** in the table denote
that the value is a more accurate forecast than the competitor at 10%, 5%, and 1% significant
levels; for example, in the 200 dimension, since the forecast value 210.41 of the AR model
with SPOET has ***, it is more accurate than the forecast of the AR model with POET. In
Table 3, for 200 and 100 dimensions, all forecast values of SPOET have better performance
than POET for Frobenius loss. For 50 dimensions, almost all the models with SPOET are
significant at 1% and 5%. On the other hand, for MSE, although a few models are improved,
almost none of the models seem to improve. Therefore, overall, estimating an HDCM using
SPOET improces the accuracy of forecasting compared to using POET. Then, we select
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the best models in terms of forecasting performance. The VAR (log), HAR (log), V-HAR
(log) models driven by logarithmic eigenvalues are selected by MCS for all dimensions. In
addition, from the perspective of MSE, the models selected by MCS are HAR, and V-HAR
models of SPOET with 200 and 100 stocks, and the V-HAR model of SPOET with 50 stocks.
Table 4 shows almost the same result as Table 3.

These results say that it is possible for the eigenvalues estimated by POET, in other
words, the eigenvalues estimated by classical PCA, to be modeled and forecasted with
biases under the high dimension. On the other hand, since the biases of the eigenvalues
are corrected by SPOET, the forecasted values obtained using SPOET are more accurate
than those obtained using POET. In addition, we compare the AR model with the HAR
model, and the VAR model with the V-HAR model. Both the HAR model and the V-
HAR model show smaller losses; hence, approximating the long memory property for
eigenvalue-driven models is effective.

Table 4. Average forecasting losses for 5-min interval intraday returns.

5 min 200 Stocks 100 Stocks

Observations 60

Factors 3 4

Frobenius POET SPOET POET SPOET

AR 170.86 165.89 *** 94.80 93.33 ***
VAR 157.61 153.61 *** 87.50 86.38
HAR 158.93 154.26 *** 88.93 87.58 ***
V-HAR 156.93 152.52 *** 88.05 86.72 ***
AR(log) 153.33 148.61 *** 86.49 85.11
VAR(log) 150.30 145.84 *** 84.16 ** 82.94
HAR(log) 149.11 144.33 *** 84.01 82.62
V-HAR(log) 148.74 143.98 *** 83.56 82.12
EWMA 171.51 166.62 *** 95.52 94.05 ***

MSE

AR 3.2853 3.1792 1.0234 1.0062
VAR 3.0918 3.0000 0.9562 0.9441
HAR 2.9739 2.8748 0.9212 0.9056
V-HAR 2.8736 2.7764 * 0.8970 0.8818 **
AR(log) 3.7911 3.7246 1.1351 1.1243
VAR(log) 3.7055 3.6469 1.0873 1.0823
HAR(log) 3.3425 3.2647 1.0035 0.9913
V-HAR(log) 3.3448 3.2621 0.9946 0.9816
EWMA 4.5155 4.3992 1.2842 1.2645

Notes: The values of MSE are ×10−4. The selected models by 80% MCS is shown in bold. *, ** , and *** denote
significance at 10%, 5%, and 1% levels for DM test.

5.2.2. Portfolio Performance

In order to determine the best model among our proposed and benchmark models, we
compare their forecasting performance in an economic context. In this paper, we consider
that the model which generates a smaller variance portfolio than other models is better.
The portfolio is estimated by the minimum variance portfolio without short selling. The
weight of each stock including a portfolio can be calculated based on the results of the
following optimization problem:

min
ωt

ω′tŜtωt,

s.t.
N

∑
i=1

ωt,i = 1, 0 ≤ ωt,i ≤ 1,
(20)

where ωt denotes the vector of portfolio weight at t, and Ŝt denotes the high-dimensional
covariance matrix forecasted by each model.
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Figures 3 and 4 show the average portfolio variance estimated by POET, SPOET, and
each forecasting model. The x axis shows the types of models and the y axis shows the
portfolio variance. The color of each line denotes the thresholding method of the residual
covariance matrix, the red, blue, black, and green show the soft, hard, AL, and SCAD
thresholding, respectively. In addition, the results of POET are indicated by the solid lines
and those for SPOET are indicated by the dotted lines.

Figure 3. The variance of portfolios estimated by each model using 10-min interval intraday returns.

In Figure 3, the result of 10-min realized covariance matrix is shown. For the 200 di-
mensions, the pair of POET and hard thresholding have the best performance among
competing models. However, comparing POET and SPOET with the same sparse estima-
tion shows that the results with SPOET generate portfolios with smaller variance except
for hard thresholding. For the 100 dimensions, the pair of SPOET and hard are the best.
Additionally, for all models, the forecasting models with SPOET have better performance
than those with POET. Finally, for the 50 dimensions, we cannot find the differences be-
tween POET and SPOET, and the soft thresholding performs worse than other thresholding
methods.

Figure 4 shows the result of a 5-min realized covariance matrix. The differences in
performance between POET and SPOET become smaller than in the case of the 10-min
realized covariance matrix. This is perhaps because increasing the number of intraday
returns makes the classical PCA performance improve. However, for both dimensions, the
performances of SPOET are still better than POET.
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Figure 4. The variance of portfolios estimated by each model using 5-min interval intraday returns.

6. Conclusions

In this study, we constructed the HDCM forecasting models using high-dimensional
PCA. In particular, the previous studies show that to estimate the latent factors, POET
is used. However, it is known that when the dimension is greater than the sample size,
the eigenvalues estimated by classical PCA have biases. Therefore, in order to estimate
the eigenvalues more accurately, we adopted SPOET which corrects biases of empirical
eigenvalues. In addition, we combined eigenvalues and time-series models to forecast
eigenvalues and covariance matrix.

In the simulation study, we generated the asset returns based on the estimated HDCM
as the integrated covariance matrix and it shows that SPOET is also effective for the price
process. Especially, the empirical eigenvalues of SPOET were closer to the true values than
those of POET.

In the empirical analysis, we constructed some forecasting models of HDCM using
a number of individual stocks traded on Nikkei 225. Almost all our proposed models
which use SPOET show better performance than the other models which use POET. In
addition, in terms of economic performance, our models can generate a smaller variance
than benchmarks in most cases. This study applied SPOET discussed under the i.i.d. setting
to the continuous Itô semi-martingale setting for simulation study and empirical analysis.
Thus, theoretical results are needed in the future.
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