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Abstract: This paper is devoted to the geometric theory of a Schwarzschild spacetime, a basic objective
in applications of the classical general relativity theory. In a broader sense, a Schwarzschild spacetime is
a smooth manifold, endowed with an action of the special orthogonal group SO(3) and a Schwarzschild
metric, an SO(3)-invariant metric field, satisfying the Einstein equations. We prove the existence of and
find all Schwarzschild metrics on two topologically non-equivalent manifolds, R x (R3\ {(0,0,0)})
and S! x (R3\ {(0,0,0)}). The method includes a classification of SO(3)-invariant, time-translation
invariant and time-reflection invariant metrics on R x (R3\ {(0,0,0)}) and a winding mapping of
the real line R onto the circle S'. The resulting family of Schwarzschild metrics is parametrized by an
arbitrary function and two real parameters, the integration constants. For any Schwarzschild metric,
one of the parameters determines a submanifold, where the metric is not defined, the Schwarzschild
sphere. In particular, the family admits a global metric whose Schwarzschild sphere is empty. These
results transfer to S x (R3\ {(0,0,0)}) by the winding mapping. All our assertions are derived
independently of the signature of the Schwarzschild metric; the signature can be chosen as an

independent axiom.

Keywords: manifold topology; Einstein equations; spherical symmetry; Schwarzschild spacetime;
special orthogonal group; SO(3)-action; invariant metric

MSC: 83C05; 58E30; 58E40; 53C25

1. Introduction

In this paper, a Schwarzschild spacetime, or a spherically symmetric spacetime, is a smooth
4-dimensional manifold X endowed with a left action of the special orthogonal group SO(3)
and a non-singular, symmetric (0, 2)-tensor field g, satisfying the following two conditions:

(1) gis SO(3)-invariant.
(2) g solves the Einstein vacuum equations.

where ¢ is a Schwarzschild metric on X.

Standard topological properties are required: X is Hausdorff, second countable, and
connected. As g can be understood as an extremal of an integral variational functional, the
Hilbert variational functional, no a priori restrictions of the signature of g are imposed.

In this paper, we revisit and extend several constructions of classical general relativ-
ity theory, especially the theory of spherically symmetric spacetimes (Einstein 1915 [1],
Hilbert 1915 [2], Schwarzschild 1916 [3]). Since Schwarzschild, spherically symmetric mod-
els became a principal application of the theory, stimulating extensive research on the basis
of classical differential geometry on Riemannian spaces (see Hawking, Ellis 1973 [4] and,
for a more comprehensive contemporary discussion De Felice, Clarke 1990 [5], and Kriele
1999 [6]). Less is known, however, on the effort focused on a deeper understanding of what
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is going on from the topological point of view. For first steps in this direction, we refer to
Clarke 1987 [7], and Siegl 1990 [8], 1992 [9]; different approaches can be found in the book
Sachs, Wu 1977 [10], and the papers Szenthe 2000 [11], 2004 [12], and Tupper, Keane, Carot
2012 [13].

We do not consider in this paper physical aspects and physical motivation of the
theory.

Our main objective is the existence and uniqueness of the Schwarzschild metrics
on two topologically non-equivalent product manifolds, R x (R%\ {(0,0,0)}) and S! x
(R3\ {(0,0,0)}). We wish to give an independent and more complete exposition of basic
theorems and their proofs.

To study globally defined (0, 2)-tensor fields, we need smooth structures on R X
(R3\ {(0,0,0)}) and S x (R®\ {(0,0,0)}) explicitly, in terms of some smooth atlases. In
Section 2, a spherical atlas on R3\ {(0,0,0)} consisting of two charts is introduced; we
follow the choice of Krupka [14] and Tanaka, Krupka [15] with minor modifications only.
Section 3 includes basic information on the special orthogonal group SO(3). Clearly, SO(3)
acts as a transformation group on the second factor of R x (R%\ {(0,0,0)}); its elements
are the rotations. The translations and the reflection of the real line R induce the time
translations and the time reflection of R x (R®\ {(0,0,0)}). In Section 4, we derive chart
formulas for (0,2)-tensor fields on R x (R%\ {(0,0,0)}), invariant with respect to rotations,
time translations and the time reflection. Section 5 briefly summarizes the basic notation,
terminology and conventions related to the Einstein equations.

In Section 6, Einstein equations for a (0,2)-tensor field g on R x (R3\ {(0,0,0)}) are
considered. We search for solutions, invariant with respect to rotations, time translations,
and the time reflection. On the contrary to familiar approaches, no assumption on the
signature of g, and no arguments outside mathematics, are applied (cf. De Felice, Clarke [5],
Oas [16]). Our basic results are summarized in two theorems:

(a) First, a family of solutions, the Schwarzschild metrics, is obtained in terms of specific
charts, close to the spherical charts. The family is parametrized by a strictly mono-
tonic function g = ¢(r), where r is the radial spherical coordinate, and by two real
parameters, C and C’, appearing as integration constants. A notable fact is that the
family labelled by g, C and C’, represents all solutions of the Einstein equations on the
underlying chart neighborhood.

(b) Second, we show that the solutions defined in chart neighborhoods can be globalized;
in other words, for any fixed g, the integration constants C and C’ can be chosen in
such a way that the solutions on the chart neighborhoods coincide on their intersection.
Thus, as in the charts, we have a family of (global) solutions, parametrized by g, C,
and C'.

For any Schwarzschild metric, one of the parameters, C, determines a submanifold of
R x (R3\ {(0,0,0)}), where the metric is not defined, the Schwarzschild sphere. It should be
pointed out, however, that the family of solutions admits a metric whose Schwarzschild
sphere is empty.

Finally, in Section 7, we search for spherically symmetric solutions of the Einstein
equations on S' x (R3\ {(0,0,0)}). A specific method is implied. A winding mapping  of
the real line R onto the circle S! is introduced, inducing a surjection x of R x (R*\ {(0,0,0)})
onto S! x (R%\ {(0,0,0)}), and for any (0,2)-tensor fields on S' x (R®\ {(0,0,0)}), the
pull-back x*h on R x (R3\ {(0,0,0)}). The chart expression of h can be determined by
means of a standard atlas on the circle S! and the spherical atlas on R®\ {(0,0,0)}. Given a
Schwarzshild metric ¢ on R x (R3\ {(0,0,0)}), these construction allows us to consider
condition x*h = g as an equation for /. Our basic results can now be expressed parallelly
to Section 6:

(@) For any Schwarzschild metric ¢ on R x (R3\ {(0,0,0)}) there exists exactly one
Schwarzschild metric / on a chart neighborhood in S x (R®\ {(0,0,0)}) such that
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the pull-back x*h coincides with g, that is, x*h = g. Explicit expression of k in charts
is given.

(b) For any Schwarzschild metric ¢ on R x (R3\ {(0,0,0)}), there exists exactly one
Schwarzschild metric i on S* x (R®\ {(0,0,0)}) such that x*h = g.

2. Spherical Atlas

In this Section, we define an atlas on the open subset X = R x (R3\ {(0,0,0)}) in
the Euclidean space R*. This atlas consists of two charts employing spherical charts on
R3\ {(0,0,0)}. First, we describe spherical charts on R*\ {(0,0,0)}. For this purpose, we
use real-valued function arccos, which is defined as the inverse of the function cos with
domain of definition (0, 77).

Let us denote by U, uv open subsets of R3 determined as

U=R3{(xy,z) €R3x>0,y=0}
U =~R>{(x,y,z) € R} x<0,z=0},
V = (0,00) x (0,277) x (0, 77),

andby A:V 3 (r,¢,9) — (x,y,z) € U the mapping, defined by equations
x=rcosgsind, y=rsingsind, z=rcosdv.
Since the determinant of the Jacobi matrix of A is —r?sin ¢, the map A is a local

diffeomorphism. The inverse diffeomorphism ¥ = A=}, ¥ : U 3 (x,y,2z) — (r,9,98) €V,
is given by equations

r=\/x2+y>+22,

B >0
arccos , =0,
Va2 +y? /
Q= x
27T — arccos ———, Yy <0,
x% +y?
z
¥ = arccos

V22422
Analogously, denoting by A : V 3 (7,¢,8) — (x,y,z) € U the mapping, defined
by equations
x=—Fcos@sind, y=—Fcos®, z=—Fsin@sind,

its inverse ¥ = K_l, Y:U> (x,y,z)— (7,¢,0) € V,is given by

—x
arccos ————, z <0,
_ VxZ 422
¢ = x
27 — arccos ———, z >0,
Va2 + 22
8 = arccos Y

V222

Lemma 1. Theset {(U,¥), (U, ¥)} represents a smooth atlas on R\ {(0,0,0)}.



Axioms 2022, 11, 693

40f16

Proof. The union U U U covers R%\ {(0,0,0)}. The coordinate transformation ¥ o ¥~ :
Y(UNU) - Y (UNU), where ¥(UNU) =FUNU) = V\ ((0,00) x (7t/2, 371/2) x
{mt/2}), is a diffeomorphism as a composition of two diffeomorphisms, given by equations

—cos @sin?

\/1—sin? psin? ¢

r=r, cosg= cos® = —sin¢sin . (1)

O

This atlas is called the spherical atlas on R3\ {(0,0,0)}; the charts (U, ¥), (U, ¥) are
called the first and the second spherical charts on R®\ {(0,0,0)}.

Remark 1. The charts (U, ¥), (U, ¥) on R*\ {(0,0,0)} are related through the rotation v of R®,
in canonical coordinates expressed by the equations

XoV=—X Yov=—z zOoV=—V.

More exactly, U = v(U), and ¥ = ¥ ov. Because v is an involution, U = v(U), and
Y = ¥ ovalso hold.

It is well-known that the manifold R3 \ {(0,0,0)} is diffeomorphic with the manifold
(0,00) x S2. The two-dimensional submanifold S? of R3 is defined by setting r = 1. If
we denote

W=UNS* ¢=(40) ¢=09ln 0=>0s,
W:Uﬂsz, @:((ﬁ,g), 4_):4_)|52, é:l§|52/

the pairs (W, ) and (W, ¥) are charts on S? defining an atlas on S?; we will call them
the first and the second charts on S%. Coordinate transformation g o ¢! : (WNW) —
(W N W) between the charts can be obtained from (1), and reads

—cos¢sind
\/1 — sin? ¢ sin? @

Let us denote by s the canonical coordinate on (0,00), and consider the product
(0,00) x S? with the product smooth manifold structure. The coordinate expressions
(r,¢,8) = (s,¢,0) of the mapping U — (0,00) x W, and (7, §,8) — (s, $, ) of the mapping

cosf = —sin¢sin6.

cos ¢ =

U — (0,00) x W, are identities on the domain V = (0,00) x (0,27) x (0,7), so © :
R3\ {(0,0,0)} — (0,00) x S? is a diffeomorphism.

Now consider X = R x R%\ {(0,0,0)} with the atlas formed by two charts (R x U, ®),
(Rx U, ®), where ® = (t,¥) = (t,7,¢,9),® = (t,Y) = (t,7,$,8), and t is the canonical
coordinate on R.

In this paper, we call this atlas the spherical atlas on X; the charts (R x U, ®), (R x U, )
are called the first and second spherical charts on X.

3. The Special Orthogonal Group

The special orthogonal group SO(3) of R3 consists of orthogonal matrices with determi-
nant +1 representing rotations of R% around a point (0,0,0). Such rotations are generated by
the set of rotations around the axis x, y, z of the canonical frame in R3. Ina positive-oriented
frame, the equations of rotations about the x-axis, the y-axis and the z-axis are

x

X, J=ycosPy—zsinBy, Z=ysinpPy+zcosp,

X=uxcosPy+zsinfy, J=y, ZzZ= —xsinfPy+zcospPy,

X =xcosfB3—ysinf3, ¥ =xsinfz+ycosPs, Z=z,
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respectively, where 1, B2 and B3 are the corresponding rotation parameters—angles (mea-
sured counter-clockwise from the point of view of positive orientation of the corresponding
axis). The matrices of these rotations are

1 0 0 cosBy 0 sinpy cosf3 —sinfz 0
0 cospy —sinfy |, 0 1 0 , sinff3 cosBz 0 |.
0 sinfB; cospB —sinfBy, 0 cospBy 0 0 1

The generators of rotations around the coordinate axes z, x, and y are expressed in
canonical coordinates by

0 0 ] 0 ) %)
(j—x@—ya, C—ya—z@, /\—za—xa.

For these vector fields, [, (] = —A, [{,A] = —¢, [A,&] = —(. In the first spherical
coordinates,

¢ = E)i' = —cosqoco’rt?i

) . 2] 0
; 59 —sing=g, A = —singcot 19% + cos P35 2)

and in the second spherical coordinates,

¢= singbcotl?i

_0 0 B
a(pfcosq)ﬁ, §—Cosgocotl98€0+smgoal9 A= —. (©)]

4. Invariance: SO(3), Time Translations, Time Reflection

Consider a (0, 2)-tensor field g on an n-dimensional manifold X. If such tensor field is
everywhere non-degenerate and symmetric, it is called a metric tensor on X, or a metric of X.

A (0,2)-tensor field ¢ on a manifold X is said to be invariant with respect to a diffeo-
morphism « : X — X, if its pullback a* g satisfies

a'g=g.

In such a case, we also say that « is an invariance transformation of g.

This definition can be naturally transformed to vector fields by means of the local
one-parameter groups of diffeomorphisms. It is also applicable to an action of a Lie group
on a manifold X, where vector fields on X become the generators of the corresponding
group action on X.

Let ¢ be a vector field on X. We say that ¢ is the generator of invariance transformations
of a metric field g if one-parameter group of ¢ consists of the invariance transformations of
g. This condition for ¢ is equivalent to the Killing equation

98 =0, )
where dz denotes the Lie derivative by a vector field ¢. If g and ¢ are expressed in a chart
(U, 9), ¢ = (x'), on X, by

. . .9
g =gijdx' ®dx, = f,"@,
then

_ ( 98k ' g/
0zg = (axp(;‘p—l— Sit5 ok T 8ki5 T dxk @ dx'.

If a tensor field g on X is required to be invariant with respect to the one-parameter
group of transformations, generated by given ¢, Equation (4) can be understood as a
condition for g.
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Now we apply (4) to find a tensor field g invariant with respect to the standard action
of the special orthogonal group SO(3) on R3\ {(0,0,0)},

SO(3) x (R*\ {(0,0,0)}) 3 (A,x) — A-x € R®\ {(0,0,0)}. (5)

Consider a (0,2)-tensor field ¢ on the manifold R*\ {(0,0,0)}. In the first spherical
chart,
8§ = &rdr @dr + grpdr @ dg + gredr @ db

+8orde @ dr + gpede @ de + g,9d @ db
+80rd0 ® dr + g9od¥ @ d + gged?d ® db.

We wish to find the solution g;r, $rg, &r9/ S9g/ Sot, 806 of the Killing equations

aérg =0, aég =0, BAg =0, (6)
where
d ] . d . 9 0
C—%, C——cosqocotﬁ%—sm(p@, /\——smgocotﬂ%—kcosq)@.

Theorem 1. If (0,2)-tensor field g on R®\ {(0,0,0)} is invariant with respect to the action (5) of
SO(3), then in the first spherical coordinates, it is of the form

g = P(r)dr @ dr 4+ Q(r)(sin® 8dg @ dp + dd @ d9), @)
where P and Q are functions, depending on r only.

Proof. The result follows from the solution of the Killing Equation (6); see also [14]. O

An analogous result can be obtained in the second spherical chart on R\ {(0,0,0)}.
We now formally describe the globalization of our local result to the whole manifold
R3\ {(0,0,0)}, considering with atlas {(U, ¥), (U, ¥)}.

Theorem 2. Let

qu = P(r)dr @ dr + Q(r)(sin® 9dp ® dgp + dd ® do)
be an SO(3)-invariant (0, 2)-tensor field on U, and let

g = P(F)dr @ d7 + Q(F)(sin? 3d¢ ® d¢ + dd ® dd)

be an SO(3)-invariant (0,2)-tensor field on U. Then gy = gy on U NU if and only if

P(7(x)) = P(r(x)), Q(F(x)) = Q(r(x)) ®)

forall x e UNU.

Proof. Since on the intersection U N U,
dr@dr=dF @ dF, sin’dde @de +dd® dd = sin® ddp @ dp + dd ® db,
the assertion is obvious. [

Condition (8) means that the function P can be naturally extended to the set U U
U; when no misunderstanding may possibly arise, we denote the extended function by
the same symbol, P. A similar convention is applied to Q. This construction leads to
globally defined functions P, Q on R®\ {(0,0,0)}. Thus Theorem 2 constitutes a one-to-one
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correspondence between SO(3)-invariant (0, 2)-tensor fields on R%\ {(0,0,0)} and the pairs
of functions (P, Q), defined on R*\ {(0,0,0)}.
Conversely, any two functions P : R®\ {(0,0,0)} — Rand Q : R®\ {(0,0,0)} — R
define an SO(3)-invariant (0, 2)-tensor field on R\ {(0,0,0)} by Theorem 2.
Analogously, if condition (8) is satisfied, then the formula

qulx), xel
g(x) = =
gg(x), xel
defines a SO(3)-invariant (0, 2)-tensor field on R\ {(0,0,0)}.

Now our aim is to determine all (0,2)-tensor fields ¢ on X = R x R*\ {(0,0,0)}
invariant with respect to the left action of the group SO(3) on X defined by

SOB) x X3 (A, (t,x)— (t,A-x) € X, 9)

induced by canonical left action (5) of SO(3) on R3\ {(0,0,0)}. We consider the atlas
on X formed by the first and the second spherical charts, (R x U, ®), and (R x U, D),
respectively (Section 2).

Theorem 3. If (0,2)-tensor field g on X is invariant with respect to the action (9) of SO(3), then
in the first spherical coordinates, it is of the form

¢ =J(t,r)dt @dt+ K(t,r)(dt @ dr + dr @ dt)
+P(t,r)dr @ dr + Q(t,r)(sin® ddp @ de + dd © db),

where |, K, P and Q are arbitrary functions of t and r on R x U.
Proof. Consider a (0,2)-tensor field ¢ on the manifold X. In the first spherical chart on X,

g = gudt @ dt + gy dt @ dr + grpdt @ d + gpedt @ dY
+grdr @ dt + grrdr @ dr + grpdr @ d + gredr @ dd
+8ptdp @ dt + gordp @ dr + gppdp @ dg + gpsde ® dv
+8o1dd @ dt + g, d0 ® dr + ggpdd @ dep + gged?d ® dV.
The solution
8ttr 8trr topr 8t9r 8rrr ros rdr ppr b, 99
of the Killing equations dz;¢ = 0, d;¢ = 0, d,g = 0 for vector fields ¢, {, A given by (2), is

gt =J(t,7), gr =K(t,7), 8tp =0, g6 =0,
grr = P(t,1), 89 =0, 89 =0,
Sop = Q(t,7)sin? B, g9 =0, gop = Q(£,7).
O

The similar result we analogously obtain can analogously be obtained in the second
spherical chart on X for vector fields ¢, {, A given by (3).
The following is an analogue of Theorem 2.

Theorem 4. Let

grxy = J(t,r)dt @ dt + K(t,r)(dt @ dr + dr @ dt)
+P(t,r)dr @ dr 4+ Q(t,r)(sin® ddp @ de + dd ® db),
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be an SO(3)-invariant (0, 2)-tensor field on U, and let
Srxq = J(tP)dt @ dt + K(t,7)(dt ® dF + dF @ dt)
+P(t,7)d7 @ dF + Q(t,7)(sin? 8dp @ dp + dB ® dB)

be an SO(3)-invariant (0,2)-tensor field on R x U. Then grxu = §rxg 07 (R x U) N (R x U)
if and only if

on (R x U)N (R xU).

Proof. The assertion follows from the transformation equations between the first and the
second spherical charts, and is analogous to the proof of Theorem 2. [

By the time translation in X = R x (R3\ {(0,0,0)}) we mean any transformation of
the form

R x (R x (R®\ {(0,0,0)})) 3 (&, (£,x)) — T(t,x) = (t+&x) € Rx (R3\ {(0,0,0)}).  (10)

Clearly, time translations define a left action of the additive group of real numbers R
on X. The generator of the translations is the vector field

d

TZE.

The time reflection in X is a transformation o of X,
R x (R*\ {(0,0,0)}) > (t,x) = o(t,x) = (—t,x) € R x (R¥\ {(0,0,0)}).  (11)

We wish to determine all (0, 2)-tensor fields g on X invariant with respect to the action
(9), the time translations (10), and the time reflection (11).

Theorem 5. Each (0,2)-tensor field ¢ on X invariant with respect to the action (9) of SO(3),
with respect to the translations (10), and to the transformation (11), is in the first spherical chart
expressed by

g = J(r)dt @ dt + P(r)dr @ dr + Q(r)(sin® 8dg ® dg + dd ® d9),
where |, P, and Q are arbitrary functions on R x U, of the variable r.

Proof. In the first spherical chart, a (0,2)-tensor field g on X invariant with respect to the
action (9) is given by (7),
¢ =J(t,r)dt @dt+ K(t,r)(dt @ dr + dr @ dt)
+P(t,r)dr @ dr + Q(t,7)(sin® ddp @ d + dd ® db),
where |, K, P, Q are arbitrary functions on R x U, depending on t and r only. Equation

d-g = 0 implies that J, K, P, Q do not depend on f. Finally, invariance of ¢ with respect to
the transformation (11) yields K = 0. [

The same consideration can be made in the second spherical chart, and we obtain the
following result.
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Theorem 6. Let
grxu = J(r)dt @ dt + P(r)dr @ dr + Q(r)(sin® 8dg @ dg + dd ® d9)

be an (0,2)-tensor field on R x U, invariant with respect to the action (9), the time translations
(10), and the time reflection (11), and let

Srg = J(F)dt @ dt + P(7)dF @ d7 + Q(7) (sin® 8dp © dg + dd @ dD)
be an (0,2)-tensor field on R x U, invariant with respect to the action (9), the time translations
(10), and the time reflection (11). Then grxu = ggxyg o" (R x U) N (R x U) if and only if
J(F)=](r), P(r)=P(r), Q(F) =Q(r)
on (RxU)N(RxU).

Remark 2. Theorem 6 does not imply that the tensor field g is reqular, or of a certain signature.
Such assumptions should be applied independently.

5. Einstein Equations

We shall briefly recall basic definitions and conventions. Let X be a smooth manifold
of dimension n. By a metric on X, we mean a symmetric, regular (0, 2)-tensor field g on X.
Note that in this definition, the signature of g is not specified. Let us have a metric g on an
n-dimensional manifold X, expressed in a chart (U, ¢), ¢ = (x'), on X by

9= gijdxi ® dxl.

The symmetry requirement is in this chart expression represented by the condition
gij = g;ji for all i, j; regularity means that det(g;;) # 0 everywhere. The functions

ok Lo 98u, 98t 98i
ox/  oxt  oxl )’

[/ 2
where g are functions defined by Sjk g = 5]1», are the Christoffel symbols, the components of

the Levi-Civita connection associated with the metric g, in a chart (U, ¢). The curvature tensor
of the Levi—Civita connection is a (1, 3)-tensor field on X, expressed by

d ) )
I k
Riij g @ dx" @ dx' @ dx/,

where l
1
_arjk_arik I tm _ vl pm
7o oxt 9xd el et

The Ricci tensor is a (0, 2)-tensor field on X, expressed by

I
Ry

Ri]‘dxi & dx] ’
where the components R;; are defined by a (1, 3)-contraction of the curvature tensor,

_ pk

Contracting the (1, 1)-tensor field R;: =g Rjnj, we obtain a function R on X, the scalar
curvature of g, or the Ricci scalar. In coordinates,
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Extremals of the Hilbert variational functional, in which the scalar curvature stands for
the Lagrangian, are determined by the Einstein equations:

1
Ri]' — iRgij =0.

The Einstein equations represent a system of second-order partial differential equations
for the components g;; of a metric g; the problem is to find solutions of the Einstein equations
defined on X.

6. The Schwarzschild Solution: R x (R3\ {(0,0,0)})
Let us consider invariant metric g, in the chart (R x U, ®),on X = R x R3\ {(0,0,0)},

g = J(r)dt @ dt + P(r)dr @ dr + Q(r)(sin® 8dg @ d + dd ® d9), (12)

as introduced by Theorem 5. From (12), we can determine the left sides of the Einstein
equations explicitly. Non-trivial equations yield

1 1
Rtt_ERgttZO/ Rrr—iRgrrZO/

1 1
R(P(P_ERgG"(P:O’ R1919_§Rg1919:0-

Since
1 e 1
OZR(P(P—Equ;q;:SInﬂ R@ﬁ—ERg,gﬁ ’

only three equations of the system are independent. Writing these equations for the class of
metrics (12), we obtain the following system:

] (1P'Q Q)2
PQ(Z P + -Q +P> = 0,
J 1(Q)? _
Q(2 : P> — 0, (13)
" g ]P/Q/ J'P'Q (])Q Q)]

where’ denotes the derivative with respect to r. (13) represents the system of three ordinary
differential equations for unknown functions J, P, Q of the variable r.

Since, from the regularity condition, the functions J, P, Q are non-zero at every point
of their domain, the system (13) is equivalent to the system

Po2\g) ot 7Y

I Q P 14
702 (Q) g = ° 49

I Y L N R QN
70 %G ]+PQ+IP+(I>+<Q) =0

P/ Q/ < Ql > Q// P

Remark 3. The system (14) is equivalent to the Einstein equations on the considered coordinate
neighborhood. It should be pointed out, however, that the system (14) was derived without any as-
sumption on the signature of an unknown metric. A standard approach following Schwarzschild [3]
is based on a priori fixing of the signature—the Lorentz type signature (see [5,16]).
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From the first equation of (14), for the function Q(r) of the variable r, we have that
Q'(r) # 0 for every r from the domain; otherwise, we obtain P = 0, which is in contradic-
tion to the assumption P # 0. According to the inverse function theorem, for any r, there
exist connected neighborhoods Uy of r, and Vj of Q(r) such that there exists a smooth map
QO 1:Vy — Uy, ie., Qisinvertible on the corresponding domain.

Due to the assumption Q(r) # 0, for every r and smoothness of Q, we have that
Q(r) > 0, 0r Q(r) < 0 for every r. First, let us suppose Q(r) > 0 for every r. It enables us
to denote g(r) = \/Q(r), and to replace the coordinates (t,7, ¢, 9¢), on R x U, by (t,4q, ¢, ).
Setting

=100 o) =P (L)
J\q) = P = i)
a metric g (12) can be rewritten in the form
g = j(q)dt ® dt + p(q)dq ® dq + g*(sin” 0dg ® de + dd ® do). (15)

If Q(r) < 0 for all r, then we denote g = /—Q, and proceed as above.

Now, we give an assertion on the solution of the Einstein equations on the open
set R x U C R x (R*\ (0,0,0)) for the metrics determined by (15). The unknown ¢ is
expressed in the form (15).

Theorem 7. (Schwarzschild solution) For any constants C,C’, where C' # 0, formulas
. , C c\ !
jlg) =C 1—5 , plg) = 1_5 , (16)

define a solution of the Einstein equations. The domain of definition of this solution is an open set of
R x U defined by q # C.

Proof. Consider the metric g on R x U expressed by (15). Then, non-zero metric compo-
nents of g on R x U are

it =7(q), &r=p0), Zpp=9"si"Y, gos =7,

which implies
N SN L e 1
2/

§ i(q)’ § § 7?sin? ¢’ § q

and ¢’ = 0 for each pair of mutually different indices i, k. Let us denote j, " and p’, p the
first and the second derivatives by g of the functions j, p, respectively.

The system (14) for unknown functions j(q), p(g) of one variable g, representing the
Einstein equations, is then rewritten in the form

1
q
1/i 1
—<]-+q(1—19)> = 0 (17)

2 f / 11 ) 21\ 2
Ly 2<].—p>+2],—].p—(].2) = o0
4p\q\j p J Jp )

A direct integration of the first equation of (17)

/

p 1
L =Z2(1-yp),
p q( p)
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gives

p(q) = (1 - i) B (18)

for any real constant C. Note that p is not defined on S, where S a subset of R x U defined
by g = C. Then (R x U) \ S is a submanifold of R x U, consisting of two connected
components determined by 0 < g < C, and g > C, respectively.

Substituting (18) to the second equation of (17), we obtain

r__¢
q]’ q—C

C
0-e(o-5)
j(q) p
where C' is a non-zero constant.
The solution (j(g), p(q)) fulfils the third equation of (17). This ends the proof. [

Its solution is

Remark 4. Due to the invertibility of q(r) as mentioned above, we are able to express the solution
in the first spherical chart.

The same assertion can be proved for the chart (R x U, ®). We obtain the solution

— —\ —1
w1 C sy [1_C
J(q)—C<1 ‘7>, p(q) (1 q> ,

on (R x U) \ S for constants C,C , where C # 0,and S = {x € R x U | §(x) = 0}. Now
we are in a position to globalize our results to the whole manifold R x (R3\ {(0,0,0}).

Theorem 8. Let

C c\ !
SRxUD) = c (1 — q)dt@dt+ <1 — q) dq ® dq + g*(sin? 0de @ dg + dd ® d9) (19)

be the solution of the Einstein equations in the chart (R x U, ®), and let
c c\ "
gmxu¢):cf<r—q)dh@db%(k—q) dj @ dj + §*(sin® ¥d¢ @ d§ + dd @ dd) (20)

be the solution of the Einstein equations in the chart (R x U, ®). If

!

c=C, (C=C, (21)

then,
(@) SUS is a submanifold of R x (R3\ {(0,0,0}), given by equationsq = C, § = C
(b) Formula

5 ) R x U
o) _{ grRxu®) (), x €RX )

8rxT®) (¥), X ERX U,
defines a metric on the complement of SU S in R x (R3\ {(0,0,0}).
Proof. Conditions (21) imply that on the intersection (R x U) N (R x U) the set S N S is defined
by equation g = 7. Also, expressions (19) and (20) satisfy assumptions of Theorem 6. [

We call the submanifold S U S the Schwarzschild sphere of the Schwarzschild radius
g = C = C = 3. For simplicity, we denote the Schwarzschild sphere just by S, and the
Schwarzschild radius just by C.
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Remark 5. We can take in Theorem 8 for q the radial coordinate r. Note that in this case,
Theorem 8 admits the value C < 0. However, condition r = C has no sense, which means
that the Schwarzschild sphere S is empty. In other words, the corresponding solution g is defined
globally on R x (R3\ {(0,0,0}).

For any fixed g, Theorem 8 defines a metric g on R x (R®\ {(0,0,0}). We obtain a
family parametrized by the constants C and C’. Any element of this family is called a
Schwarzschild metric. The manifold R x (R3\ {(0,0,0}) endowed with a Schwarzschild
metric g is a Schwarzschild spacetime.

Remark 6. Considering q = r, C' = —1, and C # 0, we obtain the classical Schwarzschild
metric, as known from the literature (e.g., [5]).

7. Extension: Spherical Symmetry on S x (R3\ {(0,0,0)})

In this section, we consider the canonical product manifold structure on the topo-
logical space S! x (R3\ {(0,0,0)}). On the second factor R%\ {(0,0,0)}, we use the atlas
introduced in Section 2. It will be convenient to consider S! with the atlas defined by
parallel projections along coordinate axes. Next, we introduce a winding mapping g from
R to S!, assigning to a point + € R the point (cost,sint) belonging to S! C R2. Indeed,
Ko can be canonically extended to the projection mapping x from R x (R3\ {(0,0,0)}) to
S x (R3\ {(0,0,0)}). Our objective will be to consider the pull-back of metric fields & by
«; we shall search for & such that ¢ = x*h is the Schwarzschild metric.

Consider the circle S' C R? defined by S' = {(x,y) € R? | x> +y* = 1}, and its

subsets
U ={(x,y) €St |x>0}, U ={(x,y)es|x<0}

uy ={(x,y)es'|y>0}, U; ={(xy)eS" |y<0}
Define mappings ¢ : U — (=1,1), ¢y : U] — (-L,1), ¢ : U — (-1,1),
¢, Uy — (=1,1), by
i () =y, ¢y (xny) =y, o3 (xy)=x ¢ (xy) =x

Then the set A = {(U;", ¢7), (U;, ¢7), (U5, 95 ), (U;, 95 )} is a smooth atlas on St
Indeed, the union L11+ uu; U U2+ U U, covers st

o (U NUS) = 93 (U NUY) = 97 (Up NUY) = 95 (U NU;) = (0,1),
gp (U NUy ) =@y (U NUy ) = ¢f (U NUy ) = 3 (U NUY) = (-1,0),

and the coordinate transformations

o3 o (@)@l (U NU) = 93 (U NUY), s VI-B,
o o (@) L@l (U NUF) — of (U NUY), e VI- £,
o3 o (p1) L or (U NUY) — of (U NUS), tes —VI—£,
o7 o () L of (Uy NUy) — o7 (Up NU), t VI—E,
9y 0 (o)™ o (U NU) = 9y (U NU), t —VI=F,
g7 o (9y) gy (U NUy) — ¢y (Uy NUL ), t —/1— £,
9y o (¢7) L@ (U NUy) — 95 (UF NUy), tes VI- P,
of o (9y) Loy (U NUy) = of (UF NUy), te —VI—£,
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are obviously smooth mappings on the corresponding domains. The circle S will be
always considered with the smooth structure defined by the atlas A.
Setting
Vi = (k= 3)m, (k+ 3)m), Wi = (kr, (k+ 1)),

we obtain a family of open intervals in R, indexed by the integers k € Z. The sets Vi, Wi
cover R. Obviously, V; NV, = W; N Wy = O for each pair of different indices 7, k. The
intersection V; N Wy, is non-empty if and only if i = k, or i = k 4 1. The following assertion
introduces a mapping xo : R — S as a periodic mapping with the period 27.

Lemma 2. There exists a smooth mapping xo : R — S whose coordinate expressions satisfy

(¢f oko)|y, =sinly, (@3 oKo)|w, = cos|w,, keven,

(p1 oxo)lv, =sinly, (¢, oxo)lw, = cos|w,, kodd.
Proof. Straightforward. O
The mapping xg : R — S! induces the mapping
K Rx R\ {(0,0,00} = S' xR*\ {(0,0,0)},  x(t,x) = (xo(t), x).

In what follows, we denote for simplicity

a=97, B=9;, Y=¢1, I=¢;.
Next, consider the spherical charts (U, ¥), ¥ = (r,¢,9), and (U, ¥Y), ¥ = (7, ,9),
on R*\ {(0,0,0)} (Section 2). The manifold Y = S' x R®\ {(0,0,0)} can be covered by
eight sets

Wy =U xU, Wy,=U xU Wy=U; xU, Wy=U, xU,

_ o o I _ (23)
Wy =Uf xU, Wo=U;jxU, Wi=U xU, W,=U; xU.

The corresponding coordinates on the sets of (23) are

(@Y%), (BY¥), (nY), (%),

(@ ¥), (BY), (1Y), 0Y),

where the coordinates r, 7 can be replaced, in the sense of Section 6, by g, J, respectively.

Our aim is to find a metric h on Y = S x R*\ {(0,0,0)} corresponding through the
mapping x with the Schwarzschild metric g (22), on X. We construct & by means of charts.
However, the chart expressions of & in different charts of our atlas turn out to be quite
analogous. For this reason, we restrict the formulation of the following theorem to a fixed
chartonY.

Theorem 9. Let ¢ be a Schwarzschild metric (22) on R x R*\ {(0,0,0)}. There exists a unique
metric h on W such that ¢ = x*h. In the coordinates (a,q, ¢, 9)), h is expressed by

-1
h:C’(l—?)l_lazdwadaJr (1—3) dg®dq + ¢*sin’ dde @ dg + ¢* dd ® do.

This expression is defined on an open subset of Wy, determined by q # C, and satisfies the
Einstein equations.
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Proof. The coordinate expression of & is obtained by comparing the pull-back by « of a
(0,2)-tensor field £, in the coordinate chart (W, (a,4, ¢,9)), on Y, expressed by
h = hypda @ da + hygda @ dq + hypdt @ dQ + hypdt @ d
+hgadq @ da + hgqdq @ dq + hgedg @ de + hgedq ® d
theade @ da + hegde @ dg+ hpedp @ de + hpsde @ do
+hgadd @ da + hggd® @ dq + hyydV @ de + hged?d @ d,
and the expression of the Schwarzshild metric g (19) in the coordinate chart (R x U, ®).

Then, computing the Christoffel symbols from the components of &, we obtain that the
components of corresponding Ricci tensor vanish. O

For globalization, we need coordinate expressions of k in all charts of our atlas on Y
(23). According to Theorem 9, we obtain

c’<1—%)1 s da @ da + <1 ) dq®dq + q*sin® 9de @ dg + ¢* dd ® d9, on W,

C/<1—%>1 +(1 ) dq@dq+¢*sin® dde @ do + ¢> d9 @ d, on W,
c/(1—%)1 = + (1 ) dq®dq+¢*sin® 0de @ do + ¢> d9 @ do, on W;
C c\ !
C'(lfﬁ)l 52 d(5®d§+(1 7 dq®dq + q*sin® 0 de ® dg + ¢* d9 ® d9, on W,
) (24)
C’<17%>1 dﬂ(@dﬂ(+(1 % dj ® dj + §*sin®> ddp @ dp + §> dd ® dd, on W
C c\ ! _ o
CI<1_E>1 +(1 E) dj@dj+ ¢ sin®* 8dg @ dp + §> dd ® dd, on W,
c(1-€ 1-< 1d ®dq+ 0dp@dp+3°dd®dd, on W,
qu qﬂiqqsmfpqu on W3
c\ 1 c\ ! - o
c/<1—5)17(52 ds ® dé + (1—3) dj @ dj+ > sin’ 8dp @ d + §> dd @ db, on Wy.

Theorem 10. Let g be a Schwarzschild metric (22) determined by q,C, C’, defined on the open
subset of X = R x R3\ {(0,0,0)}, where q # C. Then, h (24) is the metric on an open subset of
Y = S' x R®\ {(0,0,0)}, determined by q # C. h satisfies the Einstein equations.

Proof. Since the constants C,C’ # 0 are the same in all charts the corresponding compo-
nents of 1 transform as the components of a metric according to

‘ 9xk 9x!
0= 9% oxl

=

On each of the charts on Y, computing the Christoffel symbols from the components
of the metric i1, we obtain that the components of corresponding Ricci tensor vanish, which
means that the metric / fulfils the Einstein equationson Y. O

Remark 7. The product manifold Y = S' x R3\ {(0,0,0)} has the structure of a fibered manifold
over S'; its base S' is compact. An analogous assertion is not true for the fibered manifold
X =R xR3\ {(0,0,0)} over R.
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