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Abstract: This paper is devoted to the geometric theory of a Schwarzschild spacetime, a basic objective
in applications of the classical general relativity theory. In a broader sense, a Schwarzschild spacetime is
a smooth manifold, endowed with an action of the special orthogonal group SO(3) and a Schwarzschild
metric, an SO(3)-invariant metric field, satisfying the Einstein equations. We prove the existence of and
find all Schwarzschild metrics on two topologically non-equivalent manifolds, R× (R3 \ {(0, 0, 0)})
and S1 × (R3 \ {(0, 0, 0)}). The method includes a classification of SO(3)-invariant, time-translation
invariant and time-reflection invariant metrics on R× (R3 \ {(0, 0, 0)}) and a winding mapping of
the real line R onto the circle S1. The resulting family of Schwarzschild metrics is parametrized by an
arbitrary function and two real parameters, the integration constants. For any Schwarzschild metric,
one of the parameters determines a submanifold, where the metric is not defined, the Schwarzschild
sphere. In particular, the family admits a global metric whose Schwarzschild sphere is empty. These
results transfer to S1 × (R3 \ {(0, 0, 0)}) by the winding mapping. All our assertions are derived
independently of the signature of the Schwarzschild metric; the signature can be chosen as an
independent axiom.

Keywords: manifold topology; Einstein equations; spherical symmetry; Schwarzschild spacetime;
special orthogonal group; SO(3)-action; invariant metric

MSC: 83C05; 58E30; 58E40; 53C25

1. Introduction

In this paper, a Schwarzschild spacetime, or a spherically symmetric spacetime, is a smooth
4-dimensional manifold X endowed with a left action of the special orthogonal group SO(3)
and a non-singular, symmetric (0, 2)-tensor field g, satisfying the following two conditions:

(1) g is SO(3)-invariant.
(2) g solves the Einstein vacuum equations.

where g is a Schwarzschild metric on X.
Standard topological properties are required: X is Hausdorff, second countable, and

connected. As g can be understood as an extremal of an integral variational functional, the
Hilbert variational functional, no a priori restrictions of the signature of g are imposed.

In this paper, we revisit and extend several constructions of classical general relativ-
ity theory, especially the theory of spherically symmetric spacetimes (Einstein 1915 [1],
Hilbert 1915 [2], Schwarzschild 1916 [3]). Since Schwarzschild, spherically symmetric mod-
els became a principal application of the theory, stimulating extensive research on the basis
of classical differential geometry on Riemannian spaces (see Hawking, Ellis 1973 [4] and,
for a more comprehensive contemporary discussion De Felice, Clarke 1990 [5], and Kriele
1999 [6]). Less is known, however, on the effort focused on a deeper understanding of what
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is going on from the topological point of view. For first steps in this direction, we refer to
Clarke 1987 [7], and Siegl 1990 [8], 1992 [9]; different approaches can be found in the book
Sachs, Wu 1977 [10], and the papers Szenthe 2000 [11], 2004 [12], and Tupper, Keane, Carot
2012 [13].

We do not consider in this paper physical aspects and physical motivation of the
theory.

Our main objective is the existence and uniqueness of the Schwarzschild metrics
on two topologically non-equivalent product manifolds, R× (R3 \ {(0, 0, 0)}) and S1 ×
(R3 \ {(0, 0, 0)}). We wish to give an independent and more complete exposition of basic
theorems and their proofs.

To study globally defined (0, 2)-tensor fields, we need smooth structures on R ×
(R3 \ {(0, 0, 0)}) and S1 × (R3 \ {(0, 0, 0)}) explicitly, in terms of some smooth atlases. In
Section 2, a spherical atlas on R3 \ {(0, 0, 0)} consisting of two charts is introduced; we
follow the choice of Krupka [14] and Tanaka, Krupka [15] with minor modifications only.
Section 3 includes basic information on the special orthogonal group SO(3). Clearly, SO(3)
acts as a transformation group on the second factor of R× (R3 \ {(0, 0, 0)}); its elements
are the rotations. The translations and the reflection of the real line R induce the time
translations and the time reflection of R× (R3 \ {(0, 0, 0)}). In Section 4, we derive chart
formulas for (0, 2)-tensor fields on R× (R3 \ {(0, 0, 0)}), invariant with respect to rotations,
time translations and the time reflection. Section 5 briefly summarizes the basic notation,
terminology and conventions related to the Einstein equations.

In Section 6, Einstein equations for a (0, 2)-tensor field g on R× (R3 \ {(0, 0, 0)}) are
considered. We search for solutions, invariant with respect to rotations, time translations,
and the time reflection. On the contrary to familiar approaches, no assumption on the
signature of g, and no arguments outside mathematics, are applied (cf. De Felice, Clarke [5],
Oas [16]). Our basic results are summarized in two theorems:

(a) First, a family of solutions, the Schwarzschild metrics, is obtained in terms of specific
charts, close to the spherical charts. The family is parametrized by a strictly mono-
tonic function q = q(r), where r is the radial spherical coordinate, and by two real
parameters, C and C′, appearing as integration constants. A notable fact is that the
family labelled by q, C and C′, represents all solutions of the Einstein equations on the
underlying chart neighborhood.

(b) Second, we show that the solutions defined in chart neighborhoods can be globalized;
in other words, for any fixed q, the integration constants C and C′ can be chosen in
such a way that the solutions on the chart neighborhoods coincide on their intersection.
Thus, as in the charts, we have a family of (global) solutions, parametrized by q, C,
and C′.

For any Schwarzschild metric, one of the parameters, C, determines a submanifold of
R× (R3 \ {(0, 0, 0)}), where the metric is not defined, the Schwarzschild sphere. It should be
pointed out, however, that the family of solutions admits a metric whose Schwarzschild
sphere is empty.

Finally, in Section 7, we search for spherically symmetric solutions of the Einstein
equations on S1× (R3 \ {(0, 0, 0)}). A specific method is implied. A winding mapping κ0 of
the real line R onto the circle S1 is introduced, inducing a surjection κ of R× (R3 \ {(0, 0, 0)})
onto S1 × (R3 \ {(0, 0, 0)}), and for any (0, 2)-tensor fields on S1 × (R3 \ {(0, 0, 0)}), the
pull-back κ∗h on R× (R3 \ {(0, 0, 0)}). The chart expression of h can be determined by
means of a standard atlas on the circle S1 and the spherical atlas on R3 \ {(0, 0, 0)}. Given a
Schwarzshild metric g on R× (R3 \ {(0, 0, 0)}), these construction allows us to consider
condition κ∗h = g as an equation for h. Our basic results can now be expressed parallelly
to Section 6:

(a) For any Schwarzschild metric g on R × (R3 \ {(0, 0, 0)}) there exists exactly one
Schwarzschild metric h on a chart neighborhood in S1 × (R3 \ {(0, 0, 0)}) such that



Axioms 2022, 11, 693 3 of 16

the pull-back κ∗h coincides with g, that is, κ∗h = g. Explicit expression of h in charts
is given.

(b) For any Schwarzschild metric g on R × (R3 \ {(0, 0, 0)}), there exists exactly one
Schwarzschild metric h on S1 × (R3 \ {(0, 0, 0)}) such that κ∗h = g.

2. Spherical Atlas

In this Section, we define an atlas on the open subset X = R× (R3 \ {(0, 0, 0)}) in
the Euclidean space R4. This atlas consists of two charts employing spherical charts on
R3 \ {(0, 0, 0)}. First, we describe spherical charts on R3 \ {(0, 0, 0)}. For this purpose, we
use real-valued function arccos, which is defined as the inverse of the function cos with
domain of definition 〈0, π〉.

Let us denote by U, U, V open subsets of R3 determined as

U = R3\{(x, y, z) ∈ R3| x ≥ 0, y = 0},

U = R3\{(x, y, z) ∈ R3| x ≤ 0, z = 0},

V = (0, ∞)× (0, 2π)× (0, π),

and by Λ : V 3 (r, ϕ, ϑ)→ (x, y, z) ∈ U the mapping, defined by equations

x = r cos ϕ sin ϑ, y = r sin ϕ sin ϑ, z = r cos ϑ.

Since the determinant of the Jacobi matrix of Λ is −r2 sin ϑ, the map Λ is a local
diffeomorphism. The inverse diffeomorphism Ψ = Λ−1, Ψ : U 3 (x, y, z)→ (r, ϕ, ϑ) ∈ V,
is given by equations

r =
√

x2 + y2 + z2,

ϕ =


arccos

x√
x2 + y2

, y ≥ 0,

2π − arccos
x√

x2 + y2
, y < 0,

ϑ = arccos
z√

x2 + y2 + z2
.

Analogously, denoting by Λ : V 3 (r̄, ϕ̄, ϑ̄) → (x, y, z) ∈ U the mapping, defined
by equations

x = −r̄ cos ϕ̄ sin ϑ̄, y = −r̄ cos ϑ̄, z = −r̄ sin ϕ̄ sin ϑ̄,

its inverse Ψ = Λ−1, Ψ : U 3 (x, y, z)→ (r̄, ϕ̄, ϑ̄) ∈ V, is given by

r̄ =
√

x2 + y2 + z2

ϕ̄ =


arccos

−x√
x2 + z2

, z ≤ 0,

2π − arccos
−x√

x2 + z2
, z > 0,

ϑ̄ = arccos
−y√

x2 + y2 + z2
.

Lemma 1. The set {(U, Ψ), (U, Ψ)} represents a smooth atlas on R3 \ {(0, 0, 0)}.
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Proof. The union U ∪U covers R3 \ {(0, 0, 0)}. The coordinate transformation Ψ ◦Ψ−1 :
Ψ(U ∩U) → Ψ(U ∩U), where Ψ(U ∩U) = Ψ(U ∩U) = V \ ((0, ∞)× (π/2, 3π/2)×
{π/2}), is a diffeomorphism as a composition of two diffeomorphisms, given by equations

r̄ = r, cos ϕ̄ =
− cos ϕ sin ϑ√
1− sin2 ϕ sin2 ϑ

, cos ϑ̄ = − sin ϕ sin ϑ. (1)

This atlas is called the spherical atlas on R3 \ {(0, 0, 0)}; the charts (U, Ψ), (U, Ψ) are
called the first and the second spherical charts on R3 \ {(0, 0, 0)}.

Remark 1. The charts (U, Ψ), (U, Ψ) on R3 \ {(0, 0, 0)} are related through the rotation ν of R3,
in canonical coordinates expressed by the equations

x ◦ ν = −x y ◦ ν = −z z ◦ ν = −y.

More exactly, U = ν(U), and Ψ = Ψ ◦ ν. Because ν is an involution, U = ν(U), and
Ψ = Ψ ◦ ν also hold.

It is well-known that the manifold R3 \ {(0, 0, 0)} is diffeomorphic with the manifold
(0, ∞) × S2. The two-dimensional submanifold S2 of R3 is defined by setting r = 1. If
we denote

W = U ∩ S2, ψ = (φ, θ), φ = ϕ|S2 , θ = ϑ|S2 ,

W = U ∩ S2, ψ = (φ̄, θ̄), φ̄ = ϕ̄|S2 , θ̄ = ϑ̄|S2 ,

the pairs (W, ψ) and (W, ψ) are charts on S2 defining an atlas on S2; we will call them
the first and the second charts on S2. Coordinate transformation ψ ◦ ψ−1 : ψ(W ∩W) →
ψ(W ∩W) between the charts can be obtained from (1), and reads

cos φ̄ =
− cos φ sin θ√
1− sin2 φ sin2 θ

, cos θ̄ = − sin φ sin θ.

Let us denote by s the canonical coordinate on (0, ∞), and consider the product
(0, ∞) × S2 with the product smooth manifold structure. The coordinate expressions
(r, ϕ, ϑ)→ (s, φ, θ) of the mapping U → (0, ∞)×W, and (r̄, ϕ̄, ϑ̄)→ (s, φ̄, θ̄) of the mapping
U → (0, ∞) ×W, are identities on the domain V = (0, ∞) × (0, 2π) × (0, π), so Θ :
R3 \ {(0, 0, 0)} → (0, ∞)× S2 is a diffeomorphism.

Now consider X = R×R3 \ {(0, 0, 0)}with the atlas formed by two charts (R×U, Φ),
(R×U, Φ), where Φ = (t, Ψ) = (t, r, ϕ, ϑ), Φ = (t, Ψ) = (t, r̄, ϕ̄, ϑ̄), and t is the canonical
coordinate on R.

In this paper, we call this atlas the spherical atlas on X; the charts (R×U, Φ), (R×U, Φ)
are called the first and second spherical charts on X.

3. The Special Orthogonal Group

The special orthogonal group SO(3) of R3 consists of orthogonal matrices with determi-
nant +1 representing rotations of R3 around a point (0, 0, 0). Such rotations are generated by
the set of rotations around the axis x, y, z of the canonical frame in R3. In a positive-oriented
frame, the equations of rotations about the x-axis, the y-axis and the z-axis are

x̄ = x, ȳ = y cos β1 − z sin β1, z̄ = y sin β1 + z cos β1,

x̄ = x cos β2 + z sin β2, ȳ = y, z̄ = −x sin β2 + z cos β2,

x̄ = x cos β3 − y sin β3, ȳ = x sin β3 + y cos β3, z̄ = z,
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respectively, where β1, β2 and β3 are the corresponding rotation parameters—angles (mea-
sured counter-clockwise from the point of view of positive orientation of the corresponding
axis). The matrices of these rotations are 1 0 0

0 cos β1 − sin β1
0 sin β1 cos β1

,

 cos β2 0 sin β2
0 1 0

− sin β2 0 cos β2

,

 cos β3 − sin β3 0
sin β3 cos β3 0

0 0 1

.

The generators of rotations around the coordinate axes z, x, and y are expressed in
canonical coordinates by

ξ = x
∂

∂y
− y

∂

∂x
, ζ = y

∂

∂z
− z

∂

∂y
, λ = z

∂

∂x
− x

∂

∂z
.

For these vector fields, [ξ, ζ] = −λ, [ζ, λ] = −ξ, [λ, ξ] = −ζ. In the first spherical
coordinates,

ξ =
∂

∂ϕ
, ζ = − cos ϕ cot ϑ

∂

∂ϕ
− sin ϕ

∂

∂ϑ
, λ = − sin ϕ cot ϑ

∂

∂ϕ
+ cos ϕ

∂

∂ϑ
, (2)

and in the second spherical coordinates,

ξ = sin ϕ̄ cot ϑ̄
∂

∂ϕ̄
− cos ϕ̄

∂

∂ϑ̄
, ζ = cos ϕ̄ cot ϑ̄

∂

∂ϕ̄
+ sin ϕ̄

∂

∂ϑ̄
, λ = − ∂

∂ϕ̄
. (3)

4. Invariance: SO(3), Time Translations, Time Reflection

Consider a (0, 2)-tensor field g on an n-dimensional manifold X. If such tensor field is
everywhere non-degenerate and symmetric, it is called a metric tensor on X, or a metric of X.

A (0, 2)-tensor field g on a manifold X is said to be invariant with respect to a diffeo-
morphism α : X → X, if its pullback α∗g satisfies

α∗g = g.

In such a case, we also say that α is an invariance transformation of g.
This definition can be naturally transformed to vector fields by means of the local

one-parameter groups of diffeomorphisms. It is also applicable to an action of a Lie group
on a manifold X, where vector fields on X become the generators of the corresponding
group action on X.

Let ξ be a vector field on X. We say that ξ is the generator of invariance transformations
of a metric field g if one-parameter group of ξ consists of the invariance transformations of
g. This condition for ξ is equivalent to the Killing equation

∂ξ g = 0, (4)

where ∂ξ denotes the Lie derivative by a vector field ξ. If g and ξ are expressed in a chart
(U, ϕ), ϕ = (xi), on X, by

g = gijdxi ⊗ dxj, ξ = ξ i ∂

∂xi ,

then

∂ξ g =

(
∂gkl
∂xp ξ p + gil

∂ξ i

∂xk + gkj
∂ξ j

∂xl

)
dxk ⊗ dxl .

If a tensor field g on X is required to be invariant with respect to the one-parameter
group of transformations, generated by given ξ, Equation (4) can be understood as a
condition for g.



Axioms 2022, 11, 693 6 of 16

Now we apply (4) to find a tensor field g invariant with respect to the standard action
of the special orthogonal group SO(3) on R3 \ {(0, 0, 0)},

SO(3)× (R3 \ {(0, 0, 0)}) 3 (A, x) 7→ A · x ∈ R3 \ {(0, 0, 0)}. (5)

Consider a (0, 2)-tensor field g on the manifold R3 \ {(0, 0, 0)}. In the first spherical
chart,

g = grrdr⊗ dr + grϕdr⊗ dϕ + grϑdr⊗ dϑ

+gϕrdϕ⊗ dr + gϕϕdϕ⊗ dϕ + gϕϑdϕ⊗ dϑ

+gϑrdϑ⊗ dr + gϑϕdϑ⊗ dϕ + gϑϑdϑ⊗ dϑ.

We wish to find the solution grr, grϕ, grϑ, gϕϕ, gϕϑ, gϑϑ of the Killing equations

∂ξ g = 0, ∂ζ g = 0, ∂λg = 0, (6)

where

ξ =
∂

∂ϕ
, ζ = − cos ϕ cot ϑ

∂

∂ϕ
− sin ϕ

∂

∂ϑ
, λ = − sin ϕ cot ϑ

∂

∂ϕ
+ cos ϕ

∂

∂ϑ
.

Theorem 1. If (0, 2)-tensor field g on R3 \ {(0, 0, 0)} is invariant with respect to the action (5) of
SO(3), then in the first spherical coordinates, it is of the form

g = P(r)dr⊗ dr + Q(r)(sin2 ϑdϕ⊗ dϕ + dϑ⊗ dϑ), (7)

where P and Q are functions, depending on r only.

Proof. The result follows from the solution of the Killing Equation (6); see also [14].

An analogous result can be obtained in the second spherical chart on R3 \ {(0, 0, 0)}.
We now formally describe the globalization of our local result to the whole manifold
R3 \ {(0, 0, 0)}, considering with atlas {(U, Ψ), (U, Ψ)}.

Theorem 2. Let

gU = P(r)dr⊗ dr + Q(r)(sin2 ϑdϕ⊗ dϕ + dϑ⊗ dϑ)

be an SO(3)-invariant (0, 2)-tensor field on U, and let

gU = P(r̄)dr̄⊗ dr̄ + Q(r̄)(sin2 ϑ̄dϕ̄⊗ dϕ̄ + dϑ̄⊗ dϑ̄)

be an SO(3)-invariant (0, 2)-tensor field on U. Then gU = gU on U ∩U if and only if

P(r̄(x)) = P(r(x)), Q(r̄(x)) = Q(r(x)) (8)

for all x ∈ U ∩U.

Proof. Since on the intersection U ∩U,

dr⊗ dr = dr̄⊗ dr̄, sin2 ϑdϕ⊗ dϕ + dϑ⊗ dϑ = sin2 ϑ̄dϕ̄⊗ dϕ̄ + dϑ̄⊗ dϑ̄,

the assertion is obvious.

Condition (8) means that the function P can be naturally extended to the set U ∪
U; when no misunderstanding may possibly arise, we denote the extended function by
the same symbol, P. A similar convention is applied to Q. This construction leads to
globally defined functions P, Q on R3 \ {(0, 0, 0)}. Thus Theorem 2 constitutes a one-to-one
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correspondence between SO(3)-invariant (0, 2)-tensor fields on R3 \ {(0, 0, 0)} and the pairs
of functions (P, Q), defined on R3 \ {(0, 0, 0)}.

Conversely, any two functions P : R3 \ {(0, 0, 0)} → R and Q : R3 \ {(0, 0, 0)} → R
define an SO(3)-invariant (0, 2)-tensor field on R3 \ {(0, 0, 0)} by Theorem 2.

Analogously, if condition (8) is satisfied, then the formula

g(x) =

{
gU(x), x ∈ U

gU(x), x ∈ U

defines a SO(3)-invariant (0, 2)-tensor field on R3 \ {(0, 0, 0)}.

Now our aim is to determine all (0, 2)-tensor fields g on X = R × R3 \ {(0, 0, 0)}
invariant with respect to the left action of the group SO(3) on X defined by

SO(3)× X 3 (A, (t, x)) 7→ (t, A · x) ∈ X, (9)

induced by canonical left action (5) of SO(3) on R3 \ {(0, 0, 0)}. We consider the atlas
on X formed by the first and the second spherical charts, (R × U, Φ), and (R × U, Φ),
respectively (Section 2).

Theorem 3. If (0, 2)-tensor field g on X is invariant with respect to the action (9) of SO(3), then
in the first spherical coordinates, it is of the form

g = J(t, r)dt⊗ dt + K(t, r)(dt⊗ dr + dr⊗ dt)

+P(t, r)dr⊗ dr + Q(t, r)(sin2 ϑdϕ⊗ dϕ + dϑ⊗ dϑ),

where J, K, P and Q are arbitrary functions of t and r on R×U.

Proof. Consider a (0, 2)-tensor field g on the manifold X. In the first spherical chart on X,

g = gttdt⊗ dt + gtrdt⊗ dr + gtϕdt⊗ dϕ + gtϑdt⊗ dϑ

+grtdr⊗ dt + grrdr⊗ dr + grϕdr⊗ dϕ + grϑdr⊗ dϑ

+gϕtdϕ⊗ dt + gϕrdϕ⊗ dr + gϕϕdϕ⊗ dϕ + gϕϑdϕ⊗ dϑ

+gϑtdϑ⊗ dt + gϑrdϑ⊗ dr + gϑϕdϑ⊗ dϕ + gϑϑdϑ⊗ dϑ.

The solution
gtt, gtr, gtϕ, gtϑ, grr, grϕ, grϑ, gϕϕ, gϕϑ, gϑϑ

of the Killing equations ∂ξ g = 0, ∂ζ g = 0, ∂λg = 0 for vector fields ξ, ζ, λ given by (2), is

gtt = J(t, r), gtr = K(t, r), gtϕ = 0, gtϑ = 0,

grr = P(t, r), grϕ = 0, grϑ = 0,

gϕϕ = Q(t, r) sin2 ϑ, gϕϑ = 0, gϑϑ = Q(t, r).

The similar result we analogously obtain can analogously be obtained in the second
spherical chart on X for vector fields ξ, ζ, λ given by (3).

The following is an analogue of Theorem 2.

Theorem 4. Let

gR×U = J(t, r)dt⊗ dt + K(t, r)(dt⊗ dr + dr⊗ dt)

+P(t, r)dr⊗ dr + Q(t, r)(sin2 ϑdϕ⊗ dϕ + dϑ⊗ dϑ),



Axioms 2022, 11, 693 8 of 16

be an SO(3)-invariant (0, 2)-tensor field on U, and let

gR×U = J(t, r̄)dt⊗ dt + K(t, r̄)(dt⊗ dr̄ + dr̄⊗ dt)

+P(t, r̄)dr̄⊗ dr̄ + Q(t, r̄)(sin2 ϑ̄dϕ̄⊗ dϕ̄ + dϑ̄⊗ dϑ̄)

be an SO(3)-invariant (0, 2)-tensor field on R×U. Then gR×U = gR×U on (R×U) ∩ (R×U)
if and only if

J(t, r̄) = J(t, r), K(t, r̄) = K(t, r),

P(t, r̄) = P(t, r), Q(t, r̄) = Q(t, r),

on (R×U) ∩ (R×U).

Proof. The assertion follows from the transformation equations between the first and the
second spherical charts, and is analogous to the proof of Theorem 2.

By the time translation in X = R× (R3 \ {(0, 0, 0)}) we mean any transformation of
the form

R× (R× (R3 \ {(0, 0, 0)})) 3 (ε, (t, x))→ τε(t, x) = (t + ε, x) ∈ R× (R3 \ {(0, 0, 0)}). (10)

Clearly, time translations define a left action of the additive group of real numbers R
on X. The generator of the translations is the vector field

τ =
∂

∂t
.

The time reflection in X is a transformation σ of X,

R× (R3 \ {(0, 0, 0)}) 3 (t, x)→ σ(t, x) = (−t, x) ∈ R× (R3 \ {(0, 0, 0)}). (11)

We wish to determine all (0, 2)-tensor fields g on X invariant with respect to the action
(9), the time translations (10), and the time reflection (11).

Theorem 5. Each (0, 2)-tensor field g on X invariant with respect to the action (9) of SO(3),
with respect to the translations (10), and to the transformation (11), is in the first spherical chart
expressed by

g = J(r)dt⊗ dt + P(r)dr⊗ dr + Q(r)(sin2 ϑdϕ⊗ dϕ + dϑ⊗ dϑ),

where J, P, and Q are arbitrary functions on R×U, of the variable r.

Proof. In the first spherical chart, a (0, 2)-tensor field g on X invariant with respect to the
action (9) is given by (7),

g = J(t, r)dt⊗ dt + K(t, r)(dt⊗ dr + dr⊗ dt)

+P(t, r)dr⊗ dr + Q(t, r)(sin2 ϑdϕ⊗ dϕ + dϑ⊗ dϑ),

where J, K, P, Q are arbitrary functions on R×U, depending on t and r only. Equation
∂τ g = 0 implies that J, K, P, Q do not depend on t. Finally, invariance of g with respect to
the transformation (11) yields K = 0.

The same consideration can be made in the second spherical chart, and we obtain the
following result.
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Theorem 6. Let

gR×U = J(r)dt⊗ dt + P(r)dr⊗ dr + Q(r)(sin2 ϑdϕ⊗ dϕ + dϑ⊗ dϑ)

be an (0, 2)-tensor field on R×U, invariant with respect to the action (9), the time translations
(10), and the time reflection (11), and let

gR×U = J(r̄)dt⊗ dt + P(r̄)dr̄⊗ dr̄ + Q(r̄)(sin2 ϑ̄dϕ̄⊗ dϕ̄ + dϑ̄⊗ dϑ̄)

be an (0, 2)-tensor field on R×U, invariant with respect to the action (9), the time translations
(10), and the time reflection (11). Then gR×U = gR×U on (R×U) ∩ (R×U) if and only if

J(r̄) = J(r), P(r̄) = P(r), Q(r̄) = Q(r),

on (R×U) ∩ (R×U).

Remark 2. Theorem 6 does not imply that the tensor field g is regular, or of a certain signature.
Such assumptions should be applied independently.

5. Einstein Equations

We shall briefly recall basic definitions and conventions. Let X be a smooth manifold
of dimension n. By a metric on X, we mean a symmetric, regular (0, 2)-tensor field g on X.
Note that in this definition, the signature of g is not specified. Let us have a metric g on an
n-dimensional manifold X, expressed in a chart (U, ϕ), ϕ = (xi), on X by

g = gijdxi ⊗ dxj.

The symmetry requirement is in this chart expression represented by the condition
gij = gji for all i, j; regularity means that det(gij) 6= 0 everywhere. The functions

Γk
ij =

1
2

gkl
(

∂gil

∂xj +
∂gjl

∂xi −
∂gij

∂xl

)
,

where gkl are functions defined by gjkgkl = δl
j , are the Christoffel symbols, the components of

the Levi–Civita connection associated with the metric g, in a chart (U, ϕ). The curvature tensor
of the Levi–Civita connection is a (1, 3)-tensor field on X, expressed by

Rl
kij

∂

∂xl ⊗ dxk ⊗ dxi ⊗ dxj,

where

Rl
kij =

∂Γl
jk

∂xi −
∂Γl

ik
∂xj + Γl

imΓm
jk − Γl

jmΓm
ik .

The Ricci tensor is a (0, 2)-tensor field on X, expressed by

Rijdxi ⊗ dxj,

where the components Rij are defined by a (1, 3)-contraction of the curvature tensor,

Rij = Rk
ijk.

Contracting the (1, 1)-tensor field Ri
j = gimRmj, we obtain a function R on X, the scalar

curvature of g, or the Ricci scalar. In coordinates,

R = gijRij.



Axioms 2022, 11, 693 10 of 16

Extremals of the Hilbert variational functional, in which the scalar curvature stands for
the Lagrangian, are determined by the Einstein equations:

Rij −
1
2

R gij = 0.

The Einstein equations represent a system of second-order partial differential equations
for the components gij of a metric g; the problem is to find solutions of the Einstein equations
defined on X.

6. The Schwarzschild Solution: R× (R3 \ {(0, 0, 0)})
Let us consider invariant metric g, in the chart (R×U, Φ), on X = R×R3 \ {(0, 0, 0)},

g = J(r)dt⊗ dt + P(r)dr⊗ dr + Q(r)(sin2 ϑdϕ⊗ dϕ + dϑ⊗ dϑ), (12)

as introduced by Theorem 5. From (12), we can determine the left sides of the Einstein
equations explicitly. Non-trivial equations yield

Rtt −
1
2

R gtt = 0, Rrr −
1
2

R grr = 0,

Rϕϕ −
1
2

R gϕϕ = 0, Rϑϑ −
1
2

R gϑϑ = 0.

Since

0 = Rϕϕ −
1
2

R gϕϕ = sin2 ϑ

(
Rϑϑ −

1
2

R gϑϑ

)
,

only three equations of the system are independent. Writing these equations for the class of
metrics (12), we obtain the following system:

J
PQ

(
1
2

P′Q′

P
+

1
4
(Q′)2

Q
−Q′′ + P

)
= 0,

1
Q

(
1
2

J′Q′

J
+

1
4
(Q′)2

Q
− P

)
= 0,

1
4JP

(
−J′Q′ − 2JQ′′ − 2J′′Q +

JP′Q′

P
+

J′P′Q
P

+
(J′)2Q

J
+

(Q′)2 J
Q

)
= 0,

(13)

where ′ denotes the derivative with respect to r. (13) represents the system of three ordinary
differential equations for unknown functions J, P, Q of the variable r.

Since, from the regularity condition, the functions J, P, Q are non-zero at every point
of their domain, the system (13) is equivalent to the system

P′

P
Q′

Q
+

1
2

(
Q′

Q

)2

− 2
Q′′

Q
+ 2

P
Q

= 0,

J′

J
Q′

Q
+

1
2

(
Q′

Q

)2

− 2
P
Q

= 0,

− J′

J
Q′

Q
− 2

Q′′

Q
− 2

J′′

J
+

P′

P
Q′

Q
+

J′

J
P′

P
+

(
J′

J

)2

+

(
Q′

Q

)2

= 0.

(14)

Remark 3. The system (14) is equivalent to the Einstein equations on the considered coordinate
neighborhood. It should be pointed out, however, that the system (14) was derived without any as-
sumption on the signature of an unknown metric. A standard approach following Schwarzschild [3]
is based on a priori fixing of the signature—the Lorentz type signature (see [5,16]).
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From the first equation of (14), for the function Q(r) of the variable r, we have that
Q′(r) 6= 0 for every r from the domain; otherwise, we obtain P = 0, which is in contradic-
tion to the assumption P 6= 0. According to the inverse function theorem, for any r, there
exist connected neighborhoods U0 of r, and V0 of Q(r) such that there exists a smooth map
Q−1 : V0 → U0, i.e., Q is invertible on the corresponding domain.

Due to the assumption Q(r) 6= 0, for every r and smoothness of Q, we have that
Q(r) > 0, or Q(r) < 0 for every r. First, let us suppose Q(r) > 0 for every r. It enables us
to denote q(r) =

√
Q(r), and to replace the coordinates (t, r, ϕ, ϑ), on R×U, by (t, q, ϕ, ϑ).

Setting

j(q) = J(r), p(q) = P(r)
(

dr
dq

)2
,

a metric g (12) can be rewritten in the form

g = j(q)dt⊗ dt + p(q)dq⊗ dq + q2(sin2 ϑdϕ⊗ dϕ + dϑ⊗ dϑ). (15)

If Q(r) < 0 for all r, then we denote q =
√
−Q, and proceed as above.

Now, we give an assertion on the solution of the Einstein equations on the open
set R ×U ⊂ R × (R3 \ (0, 0, 0)) for the metrics determined by (15). The unknown g is
expressed in the form (15).

Theorem 7. (Schwarzschild solution) For any constants C, C′, where C′ 6= 0, formulas

j(q) = C′
(

1− C
q

)
, p(q) =

(
1− C

q

)−1
, (16)

define a solution of the Einstein equations. The domain of definition of this solution is an open set of
R×U defined by q 6= C.

Proof. Consider the metric g on R×U expressed by (15). Then, non-zero metric compo-
nents of g on R×U are

gtt = j(q), grr = p(q), gϕϕ = q2 sin2 ϑ, gϑϑ = q2,

which implies

gtt =
1

j(q)
, grr =

1
p(q)

, gϕϕ =
1

q2 sin2 ϑ
, gϑϑ =

1
q2 ,

and gik = 0 for each pair of mutually different indices i, k. Let us denote j′, j′′ and p′, p′′ the
first and the second derivatives by q of the functions j, p, respectively.

The system (14) for unknown functions j(q), p(q) of one variable q, representing the
Einstein equations, is then rewritten in the form

j
qp

(
p′

p
− 1

q
(1− p)

)
= 0,

−1
q

(
j′

j
+

1
q
(1− p)

)
= 0,

−1
4

q2

p

(
2
q

(
j′

j
− p′

p

)
+ 2

j′′

j
− j′p′

jp
− (j′)2

j2

)
= 0.

(17)

A direct integration of the first equation of (17)

p′

p
=

1
q
(1− p),
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gives

p(q) =
(

1− C
q

)−1
(18)

for any real constant C. Note that p is not defined on S, where S a subset of R×U defined
by q = C. Then (R × U) \ S is a submanifold of R × U, consisting of two connected
components determined by 0 < q < C, and q > C, respectively.

Substituting (18) to the second equation of (17), we obtain

q
j′

j
=

C
q− C

.

Its solution is

j(q) = C′
(

1− C
q

)
,

where C′ is a non-zero constant.
The solution (j(q), p(q)) fulfils the third equation of (17). This ends the proof.

Remark 4. Due to the invertibility of q(r) as mentioned above, we are able to express the solution
in the first spherical chart.

The same assertion can be proved for the chart (R×U, Φ). We obtain the solution

j̄(q̄) = C′
(

1− C
q̄

)
, p̄(q̄) =

(
1− C

q̄

)−1

,

on (R×U) \ S for constants C, C′, where C′ 6= 0, and S = {x ∈ R×U | q̄(x) = 0}. Now
we are in a position to globalize our results to the whole manifold R× (R3 \ {(0, 0, 0}).

Theorem 8. Let

g(R×U,Φ) = C′
(

1− C
q

)
dt⊗ dt +

(
1− C

q

)−1
dq⊗ dq + q2(sin2 ϑdϕ⊗ dϕ + dϑ⊗ dϑ) (19)

be the solution of the Einstein equations in the chart (R×U, Φ), and let

g(R×U,Φ) = C′
(

1− C
q

)
dt⊗ dt +

(
1− C

q

)−1

dq̄⊗ dq̄ + q̄2(sin2 ϑ̄dϕ̄⊗ dϕ̄ + dϑ̄⊗ dϑ̄) (20)

be the solution of the Einstein equations in the chart (R×U, Φ). If

C = C, C′ = C′, (21)

then,
(a) S ∪ S is a submanifold of R× (R3 \ {(0, 0, 0}), given by equations q = C, q̄ = C
(b) Formula

g(x) =

{
g(R×U,Φ)(x), x ∈ R×U

g(R×U,Φ)(x), x ∈ R×U,
(22)

defines a metric on the complement of S ∪ S in R× (R3 \ {(0, 0, 0}).

Proof. Conditions (21) imply that on the intersection (R×U)∩ (R×U) the set S∩ S is defined
by equation q = q̄. Also, expressions (19) and (20) satisfy assumptions of Theorem 6.

We call the submanifold S ∪ S the Schwarzschild sphere of the Schwarzschild radius
q = C = C = q̄. For simplicity, we denote the Schwarzschild sphere just by S, and the
Schwarzschild radius just by C.
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Remark 5. We can take in Theorem 8 for q the radial coordinate r. Note that in this case,
Theorem 8 admits the value C ≤ 0. However, condition r = C has no sense, which means
that the Schwarzschild sphere S is empty. In other words, the corresponding solution g is defined
globally on R× (R3 \ {(0, 0, 0}).

For any fixed q, Theorem 8 defines a metric g on R× (R3 \ {(0, 0, 0}). We obtain a
family parametrized by the constants C and C′. Any element of this family is called a
Schwarzschild metric. The manifold R× (R3 \ {(0, 0, 0}) endowed with a Schwarzschild
metric g is a Schwarzschild spacetime.

Remark 6. Considering q = r, C′ = −1, and C 6= 0, we obtain the classical Schwarzschild
metric, as known from the literature (e.g., [5]).

7. Extension: Spherical Symmetry on S1× (R3 \ {(0, 0, 0)})
In this section, we consider the canonical product manifold structure on the topo-

logical space S1 × (R3 \ {(0, 0, 0)}). On the second factor R3 \ {(0, 0, 0)}, we use the atlas
introduced in Section 2. It will be convenient to consider S1 with the atlas defined by
parallel projections along coordinate axes. Next, we introduce a winding mapping κ0 from
R to S1, assigning to a point t ∈ R the point (cos t, sin t) belonging to S1 ⊂ R2. Indeed,
κ0 can be canonically extended to the projection mapping κ from R× (R3 \ {(0, 0, 0)}) to
S1 × (R3 \ {(0, 0, 0)}). Our objective will be to consider the pull-back of metric fields h by
κ; we shall search for h such that g = κ∗h is the Schwarzschild metric.

Consider the circle S1 ⊂ R2 defined by S1 = {(x, y) ∈ R2 | x2 + y2 = 1}, and its
subsets

U+
1 = {(x, y) ∈ S1 | x > 0}, U−1 = {(x, y) ∈ S1 | x < 0},

U+
2 = {(x, y) ∈ S1 | y > 0}, U−2 = {(x, y) ∈ S1 | y < 0}.

Define mappings ϕ+
1 : U+

1 → (−1, 1), ϕ−1 : U−1 → (−1, 1), ϕ+
2 : U+

2 → (−1, 1),
ϕ−2 : U−2 → (−1, 1), by

ϕ+
1 (x, y) = y, ϕ−1 (x, y) = y, ϕ+

2 (x, y) = x, ϕ−2 (x, y) = x.

Then the set A = {(U+
1 , ϕ+

1 ), (U
−
1 , ϕ−1 ), (U

+
2 , ϕ+

2 ), (U
−
2 , ϕ−2 )} is a smooth atlas on S1.

Indeed, the union U+
1 ∪U−1 ∪U+

2 ∪U−2 covers S1,

ϕ+
1 (U

+
1 ∩U+

2 ) = ϕ+
2 (U

+
1 ∩U+

2 ) = ϕ−1 (U
−
1 ∩U+

2 ) = ϕ−2 (U
+
1 ∩U−2 ) = (0, 1),

ϕ−1 (U
−
1 ∩U−2 ) = ϕ−2 (U

−
1 ∩U−2 ) = ϕ+

1 (U
+
1 ∩U−2 ) = ϕ+

2 (U
−
1 ∩U+

2 ) = (−1, 0),

and the coordinate transformations

ϕ+
2 ◦ (ϕ+

1 )
−1 : ϕ+

1 (U
+
1 ∩U+

2 )→ ϕ+
2 (U

+
1 ∩U+

2 ), t 7→
√

1− t2,

ϕ+
1 ◦ (ϕ+

2 )
−1 : ϕ+

2 (U
+
1 ∩U+

2 )→ ϕ+
1 (U

+
1 ∩U+

2 ), t 7→
√

1− t2,

ϕ+
2 ◦ (ϕ−1 )

−1 : ϕ−1 (U
−
1 ∩U+

2 )→ ϕ+
2 (U

−
1 ∩U+

2 ), t 7→ −
√

1− t2,

ϕ−1 ◦ (ϕ+
2 )
−1 : ϕ+

2 (U
−
1 ∩U+

2 )→ ϕ−1 (U
−
1 ∩U+

2 ), t 7→
√

1− t2,

ϕ−2 ◦ (ϕ−1 )
−1 : ϕ−1 (U

−
1 ∩U−2 )→ ϕ−2 (U

−
1 ∩U−2 ), t 7→ −

√
1− t2,

ϕ−1 ◦ (ϕ−2 )
−1 : ϕ−2 (U

−
1 ∩U−2 )→ ϕ−1 (U

−
1 ∩U−2 ), t 7→ −

√
1− t2,

ϕ−2 ◦ (ϕ+
1 )
−1 : ϕ+

1 (U
+
1 ∩U−2 )→ ϕ−2 (U

+
1 ∩U−2 ), t 7→

√
1− t2,

ϕ+
1 ◦ (ϕ−2 )

−1 : ϕ−2 (U
+
1 ∩U−2 )→ ϕ+

1 (U
+
1 ∩U−2 ), t 7→ −

√
1− t2,
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are obviously smooth mappings on the corresponding domains. The circle S1 will be
always considered with the smooth structure defined by the atlas A.

Setting
Vk = ((k− 1

2 )π, (k + 1
2 )π), Wk = (kπ, (k + 1)π),

we obtain a family of open intervals in R, indexed by the integers k ∈ Z. The sets Vk, Wk
cover R. Obviously, Vi ∩ Vk = Wi ∩Wk = ∅ for each pair of different indices i, k. The
intersection Vi ∩Wk is non-empty if and only if i = k, or i = k + 1. The following assertion
introduces a mapping κ0 : R→ S1 as a periodic mapping with the period 2π.

Lemma 2. There exists a smooth mapping κ0 : R→ S1 whose coordinate expressions satisfy

(ϕ+
1 ◦ κ0)|Vk = sin |Vk , (ϕ+

2 ◦ κ0)|Wk = cos |Wk , k even,

(ϕ−1 ◦ κ0)|Vk = sin |Vk , (ϕ−2 ◦ κ0)|Wk = cos |Wk , k odd.

Proof. Straightforward.

The mapping κ0 : R→ S1 induces the mapping

κ : R×R3 \ {(0, 0, 0)} → S1 ×R3 \ {(0, 0, 0)}, κ(t, x) = (κ0(t), x).

In what follows, we denote for simplicity

α = ϕ+
1 , β = ϕ+

2 , γ = ϕ−1 , δ = ϕ−2 .

Next, consider the spherical charts (U, Ψ), Ψ = (r, ϕ, ϑ), and (U, Ψ), Ψ = (r̄, ϕ̄, ϑ̄),
on R3 \ {(0, 0, 0)} (Section 2). The manifold Y = S1 × R3 \ {(0, 0, 0)} can be covered by
eight sets

W1 = U+
1 ×U, W2 = U+

2 ×U, W3 = U−1 ×U, W4 = U−2 ×U,

W1 = U+
1 ×U, W2 = U+

2 ×U, W3 = U−1 ×U, W4 = U−2 ×U.
(23)

The corresponding coordinates on the sets of (23) are

(α, Ψ), (β, Ψ), (γ, Ψ), (δ, Ψ),

(α, Ψ), (β, Ψ), (γ, Ψ), (δ, Ψ),

where the coordinates r, r̄ can be replaced, in the sense of Section 6, by q, q̄, respectively.
Our aim is to find a metric h on Y = S1 ×R3 \ {(0, 0, 0)} corresponding through the

mapping κ with the Schwarzschild metric g (22), on X. We construct h by means of charts.
However, the chart expressions of h in different charts of our atlas turn out to be quite
analogous. For this reason, we restrict the formulation of the following theorem to a fixed
chart on Y.

Theorem 9. Let g be a Schwarzschild metric (22) on R×R3 \ {(0, 0, 0)}. There exists a unique
metric h on W1 such that g = κ∗h. In the coordinates (α, q, ϕ, ϑ)), h is expressed by

h = C′
(

1− C
q

)
1

1− α2 dα⊗ dα +

(
1− C

q

)−1
dq⊗ dq + q2 sin2 ϑ dϕ⊗ dϕ + q2 dϑ⊗ dϑ.

This expression is defined on an open subset of W1, determined by q 6= C, and satisfies the
Einstein equations.
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Proof. The coordinate expression of h is obtained by comparing the pull-back by κ of a
(0, 2)-tensor field h, in the coordinate chart (W1, (α, q, ϕ, ϑ)), on Y, expressed by

h = hααdα⊗ dα + hαqdα⊗ dq + hαϕdt⊗ dϕ + hαϑdt⊗ dϑ

+hqαdq⊗ dα + hqqdq⊗ dq + hqϕdq⊗ dϕ + hqϑdq⊗ dϑ

+hϕαdϕ⊗ dα + hϕqdϕ⊗ dq + hϕϕdϕ⊗ dϕ + hϕϑdϕ⊗ dϑ

+hϑαdϑ⊗ dα + hϑqdϑ⊗ dq + hϑϕdϑ⊗ dϕ + hϑϑdϑ⊗ dϑ,

and the expression of the Schwarzshild metric g (19) in the coordinate chart (R×U, Φ).
Then, computing the Christoffel symbols from the components of h, we obtain that the
components of corresponding Ricci tensor vanish.

For globalization, we need coordinate expressions of h in all charts of our atlas on Y
(23). According to Theorem 9, we obtain

C′
(

1− C
q

)
1

1− α2 dα⊗ dα +

(
1− C

q

)−1
dq⊗ dq + q2 sin2 ϑ dϕ⊗ dϕ + q2 dϑ⊗ dϑ, on W1

C′
(

1− C
q

)
1

1− β2 dβ⊗ dβ +

(
1− C

q

)−1
dq⊗ dq + q2 sin2 ϑ dϕ⊗ dϕ + q2 dϑ⊗ dϑ, on W2

C′
(

1− C
q

)
1

1− γ2 dγ⊗ dγ +

(
1− C

q

)−1
dq⊗ dq + q2 sin2 ϑ dϕ⊗ dϕ + q2 dϑ⊗ dϑ, on W3

C′
(

1− C
q

)
1

1− δ2 dδ⊗ dδ +

(
1− C

q

)−1
dq⊗ dq + q2 sin2 ϑ dϕ⊗ dϕ + q2 dϑ⊗ dϑ, on W4

C′
(

1− C
q̄

)
1

1− α2 dα⊗ dα +

(
1− C

q̄

)−1
dq̄⊗ dq̄ + q̄2 sin2 ϑ̄ dϕ̄⊗ dϕ̄ + q̄2 dϑ̄⊗ dϑ̄, on W1

C′
(

1− C
q̄

)
1

1− β2 dβ⊗ dβ +

(
1− C

q̄

)−1
dq̄⊗ dq̄ + q̄2 sin2 ϑ̄ dϕ̄⊗ dϕ̄ + q̄2 dϑ̄⊗ dϑ̄, on W2

C′
(

1− C
q̄

)
1

1− γ2 dγ⊗ dγ +

(
1− C

q̄

)−1
dq̄⊗ dq̄ + q̄2 sin2 ϑ̄ dϕ̄⊗ dϕ̄ + q̄2 dϑ̄⊗ dϑ̄, on W3

C′
(

1− C
q̄

)
1

1− δ2 dδ⊗ dδ +

(
1− C

q̄

)−1
dq̄⊗ dq̄ + q̄2 sin2 ϑ̄ dϕ̄⊗ dϕ̄ + q̄2 dϑ̄⊗ dϑ̄, on W4.

(24)

Theorem 10. Let g be a Schwarzschild metric (22) determined by q, C, C′, defined on the open
subset of X = R×R3 \ {(0, 0, 0)}, where q 6= C. Then, h (24) is the metric on an open subset of
Y = S1 ×R3 \ {(0, 0, 0)}, determined by q 6= C. h satisfies the Einstein equations.

Proof. Since the constants C, C′ 6= 0 are the same in all charts the corresponding compo-
nents of h transform as the components of a metric according to

h̄ij =
∂xk

∂x̄i
∂xl

∂x̄j hkl .

On each of the charts on Y, computing the Christoffel symbols from the components
of the metric h, we obtain that the components of corresponding Ricci tensor vanish, which
means that the metric h fulfils the Einstein equations on Y.

Remark 7. The product manifold Y = S1 ×R3 \ {(0, 0, 0)} has the structure of a fibered manifold
over S1; its base S1 is compact. An analogous assertion is not true for the fibered manifold
X = R× R3 \ {(0, 0, 0)} over R.
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