Bayesian Statistical Method Enhance the Decision-Making for Imperfect Preventive Maintenance with a Hybrid Competing Failure Mode
Abstract
:1. Introduction
2. Preventive Maintenance for Deteriorating Systems with a Hybrid Deterioration
2.1. Hybrid Competing Failure Mode
- (1)
- The system’s deterioration behaves as a non-homogeneous Poisson process (NHPP).
- (2)
- The system’s deterioration is composed of maintainable and non-maintainable failure modes.
- (3)
- A PM cannot restore the whole system to a brand-new state; instead, it can restore the whole system to some state as better-than-now.
- (4)
- Any breakdowns occurring within the interval between two PM actions cause a minimal repair.
2.2. Estimation of a System’s Failures under Preventive Maintenances
2.3. Evaluation of Repair and Maintenance Costs of a Facility
2.4. Optimal Preventive Maintenance Schedule with Consideration of Multiple PM Alternatives
3. Bayesian Decision Process by Using Domain Experts’ Judgment and Collected Information
3.1. Analysis by the Natural Conjugate Probability Distribution
3.2. The Bayesian Decision Process
3.3. Computerized Information System Design
4. Application and Sensitivity Analyses
4.1. Application of Prior and Posterior Analyses
4.2. Sensitivity Analyses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Park, D.H.; Jung, G.M.; Yum, J.K. Cost minimization for periodic maintenance policy of a system subject to slow degradation. Reliab. Eng. Syst. Saf. 2000, 68, 105–112. [Google Scholar] [CrossRef]
- Yeh, R.H.; Lo, H.C. Optimal preventive-maintenance warranty policy for repairable products. Eur. J. Oper. Res. 2001, 134, 59–69. [Google Scholar] [CrossRef]
- Jung, G.M.; Park, D.H. Optimal maintenance policies during the post-warranty period. Reliab. Eng. Syst. Saf. 2003, 82, 173–185. [Google Scholar] [CrossRef]
- Seo, J.H.; Bai, D.S. An optimal maintenance policy for a system under periodic overhaul. Math. Comput. Model. 2004, 39, 373–380. [Google Scholar] [CrossRef]
- Yeh, R.H.; Chang, W.L. Optimal threshold value of failure-rate for Leased products with preventive maintenance actions. Math. Comput. Model. 2007, 46, 730–737. [Google Scholar] [CrossRef]
- Das, A.N.; Sarmah, A.N. Preventive replacement models: An overview and their application in process industries. Eur. J. Ind. Eng. 2010, 4, 280–307. [Google Scholar] [CrossRef]
- Yeh, R.H.; Kao, K.C.; Chang, W.L. Preventive-maintenance policy for leased products under various maintenance costs. Expert Syst. Appl. 2011, 38, 3558–3562. [Google Scholar] [CrossRef]
- Bouguera, S.; Chelbi, A.; Rezg, N. A decision model for adopting an extended warranty under different maintenance policies. Int. J. Prod. Econ. 2012, 135, 840–849. [Google Scholar] [CrossRef]
- Chang, W.L.; Lin, J.H. Optimal maintenance policy and length of extended warranty within the life cycle of products. Comput. Math. Appl. 2012, 63, 144–150. [Google Scholar] [CrossRef] [Green Version]
- Beaurepaire, P.; Valdebenito, M.A.; Schuëller, G.I.; Jensen, H.A. Reliability-based optimization of maintenance scheduling of mechanical components under fatigue. Comput. Methods Appl. Mech. Eng. 2012, 221–222, 24–40. [Google Scholar] [CrossRef]
- Schutz, J.; Rezg, N. Maintenance strategy for leased equipment. Comput. Ind. Eng. 2013, 66, 593–600. [Google Scholar] [CrossRef]
- Kim, B.S.; Ozturkoglu, Y. Scheduling a single machine with multiple preventive maintenance activities and position-based deteriorations using genetic algorithms. J. Adv. Manuf. Technol. 2013, 67, 1127–1137. [Google Scholar] [CrossRef]
- Khojandi, A.; Maillart, L.M.; Prokopyev, O.A. Optimal planning of life-depleting maintenance activities. IIE Trans. 2014, 46, 636–652. [Google Scholar] [CrossRef]
- Yuan, X.; Lu, Z. Efficient approach for reliability-based optimization based on weighted importance sampling approach. Reliab. Eng. Syst. Saf. 2014, 132, 107–114. [Google Scholar] [CrossRef]
- Lu, B.; Zhou, X.; Li, Y. Joint modeling of preventive maintenance and quality improvement for deteriorating single-machine manufacturing systems. Comput. Ind. Eng. 2016, 91, 188–196. [Google Scholar] [CrossRef]
- Wang, K.; Djurdjanovic, D. Joint Optimization of Preventive Maintenance, Spare Parts Inventory and Transportation Options for Systems of Geographically Distributed Assets. Machines 2018, 6, 55. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Kou, G.; Xiao, H.; Peng, Y.; Alsaadi, F.E. Sequential imperfect preventive maintenance model with failure intensity reduction with an application to urban buses. Reliab. Eng. Syst. Saf. 2020, 198, 106871. [Google Scholar] [CrossRef]
- García, F.J.Á.; Salgado, D.R. Analysis of the Influence of Component Type and Operating Condition on the Selection of Preventive Maintenance Strategy in Multistage Industrial Machines: A Case Study. Machines 2022, 10, 385. [Google Scholar] [CrossRef]
- Diatte, K.; O’Halloran, B.; Van Bossuyt, D.L. The Integration of Reliability, Availability, and Maintainability into Model-Based Systems Engineering. Systems 2022, 10, 101. [Google Scholar] [CrossRef]
- Paulsen, J.; Cooke, R.; Nyman, R. Comparative evaluation of maintenance performance using subsurvival functions. Reliab. Eng. Syst. Saf. 1997, 58, 157–163. [Google Scholar] [CrossRef]
- Cooke, R.; Paulsen, J. Concepts for measuring maintenance performance and methods for analysing competing failure models. Reliab. Eng. Syst. Saf. 1997, 55, 135–141. [Google Scholar] [CrossRef]
- Fang, C.C.; Hsu, C.C.; Liu, J.H. The Decision-Making for the Optimization of Finance Lease with Facilities’ Two-Dimensional Deterioration. Systems 2022, 10, 210. [Google Scholar] [CrossRef]
- Salinas-Torres, V.H.; Pereira, C.A.B.; Tiwari, R.C. Bayesian nonparametric estimation in a series system or a competing risk model. J. Nonparametr. Stat. 2002, 14, 449–458. [Google Scholar] [CrossRef]
- Yousef, M.M.; Hassan, A.S.; Alshanbari, H.M.; El-Bagoury, A.H.; Almetwally, E.M. Bayesian and Non-Bayesian Analysis of Exponentiated Exponential Stress–Strength Model Based on Generalized Progressive Hybrid Censoring Process. Axioms 2022, 11, 455. [Google Scholar] [CrossRef]
- Wang, J.; Miao, Y. Optimal preventive maintenance policy of the balanced system under the semi-Markov model. Reliab. Eng. Syst. Saf. 2021, 213, 107690. [Google Scholar] [CrossRef]
- Alotaibi, R.; Nassar, M.; Ghosh, I.; Rezk, H. Elshahhat, A. Inferences of a Mixture Bivariate Alpha Power Exponential Model with Engineering Application. Axioms 2022, 11, 459. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, L.; Jin, G.; Pan, Z. Reliability Assessment of Heavily Censored Data Based on E-Bayesian Estimation. Mathematics 2022, 10, 4216. [Google Scholar] [CrossRef]
- Yousef, M.M.; Hassan, A.S.; Al-Nefaie, A.H.; Almetwally, E.M. Bayesian Estimation Using MCMC Method of System Reliability for Inverted Topp–Leone Distribution Based on Ranked Set Sampling. Mathematics 2022, 10, 3122. [Google Scholar] [CrossRef]
- Zequeira, R.I.; Berenguer, C. Periodic imperfect preventive maintenance with two categories of competing failure modes. Reliab. Eng. Syst. Saf. 2006, 91, 460–468. [Google Scholar] [CrossRef]
- El-Ferik, S.; Ben-Daya, M. Age-based hybrid model for imperfect preventive maintenance. IIE Trans. 2007, 38, 365–385. [Google Scholar] [CrossRef]
- Kahrobaee, S.; Asgarpoor, S. A hybrid analytical-simulation approach for maintenance optimization of deteriorating equipment: Case study of wind turbines. Electr. Power Syst. Res. 2013, 104, 80–86. [Google Scholar] [CrossRef]
- Rafiee, K.; Feng, Q.; Coit, D.W. Condition-based maintenance for repairable deteriorating systems subject to a generalized mixed shock model. IEEE Trans. Reliab. 2015, 64, 1164–1174. [Google Scholar] [CrossRef]
- Zhou, X.; Wu, C.; Li, Y.; Xi, L. A preventive maintenance model for leased equipment subject to internal degradation and external shock damage. Reliab. Eng. Syst. Saf. 2016, 154, 1–7. [Google Scholar] [CrossRef]
- Yang, L.; Zhao, Y.; Peng, R.; Ma, X. Hybrid preventive maintenance of competing failures under random environment. Reliab. Eng. Syst. Saf. 2018, 174, 130–140. [Google Scholar] [CrossRef]
- Cao, Y. Modeling the effects of dependence between competing failure processes on the condition-based preventive maintenance policy. Appl. Math. Model. 2021, 99, 400–417. [Google Scholar] [CrossRef]
- Liu, J.; Zhuang, X.; Pang, H. Reliability and hybrid maintenance modeling for competing failure systems with multistage periods. Probabilistic Eng. Mech. 2022, 68, 103254. [Google Scholar] [CrossRef]
- Basílio, M.P.; Pereira, V.; Costa, H.G.; Santos, M.; Ghosh, A. A Systematic Review of the Applications of Multi-Criteria Decision Aid Methods (1977–2022). Electronics 2022, 11, 1720. [Google Scholar] [CrossRef]
- Huang, Y.-S.; Bier, V.M. A Natural Conjugate Prior for the Nonhomogeneous Poisson Process with a Power Law Intensity Function. Commun. Stat.-Simul. Comput. 1998, 27, 525–551. [Google Scholar] [CrossRef]
: the lifetime of a equipment or facility. |
: the age of a equipment or facility. |
: the time interval between two PMs. |
: the effective age of a equipment or facility before the time point of the kth PM. |
: the effective age of a equipment or facility after the time point of the kth PM. |
: the scale factor of the intensity function of non-maintainable failure mode. |
: the shape factor of the intensity function of non-maintainable failure mode. |
: the scale factor of the intensity function of maintainable failure mode |
: the shape factor of the intensity function of maintainable failure mode. |
: the prior probability distribution of the power-law intensity function. |
: the posterior probability distribution of the power-law intensity function. |
: the age reduction factor, where . |
: the intensity function of non-maintainable failure mode of the system deterioration. |
: the intensity function of maintainable failure mode of the system deterioration. |
: the intensity function of the hybrid mode of the system deterioration. |
: the number of PM action during the whole system lifetime. |
: the expected number of performing minimal repairs of the system. |
: the average cost to perform a minimal repair. |
: the cost to perform the kth PM. |
: the cost of the overall replacement of a equipment or facility. |
: the probability density function of the time for performing a minimal repair. |
: the penalty cost if the actual repair time over the time threshold |
: the time threshold for performing a minimal repair. |
: the base cost for a PM action, which is influenced by the degree of PM. |
: the increasing rate of PM base cost |
Parameters for the two categories deterioration, which were judged by experts | |
Interval between two PM actions | |
PM’s Base cost of the five candidate PM alternatives | |
Age reduction factors of the five candidate PM alternatives | |
Periodically increasing rates of PM cost of the five candidate PM alternatives | |
Replacement cost | |
Expected cost of performinga minimal repair | = $250 |
Penalty cost if the repair time exceed the time limit | |
Expected value and standard deviation of performing a minimal repair | |
The limit of tolerable waiting time for performing a minimal repair |
0.5 | 0 | 0 | 0 | 261 | 261 | 261 | 219 | 219 | 219 | 40,000 | 40,480 | 40,480 | 40,480 |
1 | 867 | 880 | 983 | 295 | 291 | 287 | 247 | 244 | 240 | 20,000 | 21,409 | 21,415 | 21,510 |
1.5 | 1207 | 1227 | 1380 | 325 | 317 | 308 | 272 | 266 | 258 | 13,333 | 15,138 | 15,142 | 15,280 |
2 | 1416 | 1440 | 1630 | 353 | 340 | 328 | 296 | 285 | 275 | 10,000 | 12,064 | 12,066 | 12,233 |
2.5 | 1572 | 1600 | 1822 | 379 | 363 | 346 | 318 | 304 | 290 | 8000 | 10,269 | 10,267 | 10,458 |
3 | 1702 | 1733 | 1984 | 404 | 384 | 364 | 339 | 322 | 305 | 6667 | 9111 | 9106 | 9319 |
3.5 | 1816 | 1851 | 2129 | 429 | 405 | 380 | 359 | 339 | 319 | 5714 | 8318 | 8310 | 8543 |
4 | 1922 | 1960 | 2264 | 452 | 425 | 397 | 379 | 356 | 332 | 5000 | 7753 | 7741 | 7993 |
4.5 | 2021 | 2062 | 2392 | 476 | 444 | 412 | 399 | 372 | 346 | 4444 | 7340 | 7323 | 7594 |
5 | 2115 | 2160 | 2515 | 499 | 463 | 428 | 418 | 389 | 358 | 4000 | 7032 | 7012 | 7301 |
5.5 | 2207 | 2255 | 2634 | 522 | 482 | 443 | 437 | 404 | 371 | 3636 | 6802 | 6777 | 7084 |
6 | 2296 | 2347 | 2751 | 544 | 501 | 457 | 456 | 420 | 383 | 3333 | 6630 | 6601 | 6925 |
6.5 | 2383 | 2437 | 2865 | 567 | 519 | 472 | 475 | 435 | 395 | 3077 | 6502 | 6468 | 6809 |
7 | 2468 | 2526 | 2978 | 589 | 537 | 486 | 494 | 450 | 407 | 2857 | 6408 | 6371 | 6729 |
7.5 | 2553 | 2613 | 3090 | 611 | 555 | 500 | 512 | 466 | 419 | 2667 | 6343 | 6301 | 6676 |
8 | 2637 | 2700 | 3201 | 633 | 573 | 514 | 531 | 480 | 431 | 2500 | 6300 | 6254 | 6646 |
8.5 | 2719 | 2786 | 3311 | 655 | 591 | 528 | 549 | 495 | 442 | 2353 | 6276 | 6225 | 6634 |
9 | 2802 | 2871 | 3420 | 677 | 608 | 541 | 567 | 512 | 454 | 2222 | 6268 | 6214 | 6637 |
9.5 * | 2883 | 2956 | 3529 | 699 | 626 | 555 | 586 | 525 | 465 | 2105 | 6273 | 6212 * | 6654 |
10 | 2964 | 3040 | 3637 | 720 | 643 | 568 | 604 | 539 | 476 | 2000 | 6289 | 6223 | 6681 |
10.5 | 3045 | 3124 | 3744 | 742 | 661 | 581 | 622 | 554 | 487 | 1905 | 6314 | 6243 | 6718 |
11 | 3126 | 3207 | 3851 | 764 | 678 | 595 | 640 | 568 | 499 | 1818 | 6348 | 6272 | 6763 |
11.5 | 3206 | 3290 | 3958 | 786 | 695 | 608 | 659 | 583 | 510 | 1739 | 6389 | 6308 | 6815 |
12 | 3286 | 3373 | 4065 | 807 | 712 | 621 | 677 | 597 | 520 | 1667 | 6436 | 6350 | 6873 |
12.5 | 3365 | 3456 | 4171 | 829 | 730 | 634 | 695 | 612 | 531 | 1600 | 6489 | 6397 | 6936 |
13 | 3445 | 3538 | 4277 | 851 | 747 | 647 | 713 | 626 | 542 | 1538 | 6547 | 6449 | 7005 |
13.5 | 3524 | 3621 | 4383 | 872 | 764 | 660 | 731 | 640 | 553 | 1481 | 6609 | 6506 | 7077 |
14 | 3603 | 3703 | 4489 | 894 | 781 | 672 | 750 | 655 | 564 | 1429 | 6676 | 6567 | 7154 |
14.5 | 3682 | 3785 | 4595 | 916 | 798 | 685 | 768 | 669 | 574 | 1379 | 6745 | 6631 | 7233 |
15 | 3761 | 3867 | 4700 | 938 | 815 | 698 | 786 | 683 | 585 | 1333 | 6818 | 6698 | 7316 |
Prior | Posterior | Prior | Posterior | |||||
0.5 | 0 | 261 | 252 | 219 | 212 | 40,000 | 40,480 | 40,464 |
1 | 880 | 291 | 287 | 244 | 240 | 20,000 | 21,415 | 21,407 |
1.5 | 1227 | 317 | 313 | 266 | 262 | 13,333 | 15,142 | 15,135 |
2 | 1440 | 340 | 334 | 285 | 280 | 10,000 | 12,066 | 12,055 |
2.5 | 1600 | 363 | 354 | 304 | 297 | 8000 | 10,267 | 10,251 |
3 | 1733 | 384 | 372 | 322 | 312 | 6667 | 9106 | 9083 |
3.5 | 1851 | 405 | 388 | 339 | 325 | 5714 | 8310 | 8279 |
4 | 1960 | 425 | 404 | 356 | 339 | 5000 | 7741 | 7702 |
4.5 | 2062 | 444 | 419 | 372 | 351 | 4444 | 7323 | 7276 |
5 | 2160 | 463 | 433 | 389 | 363 | 4000 | 7012 | 6956 |
5.5 | 2255 | 482 | 446 | 404 | 374 | 3636 | 6777 | 6712 |
6 | 2347 | 501 | 460 | 420 | 385 | 3333 | 6601 | 6525 |
6.5 | 2437 | 519 | 472 | 435 | 396 | 3077 | 6468 | 6382 |
7 | 2526 | 537 | 485 | 450 | 406 | 2857 | 6371 | 6274 |
7.5 | 2613 | 555 | 497 | 466 | 416 | 2667 | 6301 | 6193 |
8 | 2700 | 573 | 508 | 480 | 426 | 2500 | 6254 | 6134 |
8.5 | 2786 | 591 | 520 | 495 | 436 | 2353 | 6225 | 6094 |
9 | 2871 | 608 | 531 | 512 | 445 | 2222 | 6214 | 6069 |
9.5 * | 2956 | 626 | 542 | 525 | 454 | 2105 | 6212 * | 6057 |
10 ** | 3040 | 643 | 553 | 539 | 463 | 2000 | 6223 | 6056 ** |
10.5 | 3124 | 661 | 563 | 554 | 472 | 1905 | 6243 | 6064 |
11 | 3207 | 678 | 574 | 568 | 481 | 1818 | 6272 | 6080 |
11.5 | 3290 | 695 | 584 | 583 | 489 | 1739 | 6308 | 6103 |
12 | 3373 | 712 | 594 | 597 | 498 | 1667 | 6350 | 6132 |
12.5 | 3456 | 730 | 604 | 612 | 506 | 1600 | 6397 | 6166 |
13 | 3538 | 747 | 614 | 626 | 514 | 1538 | 6449 | 6205 |
13.5 | 3621 | 764 | 623 | 640 | 522 | 1481 | 6506 | 6248 |
14 | 3703 | 781 | 633 | 655 | 530 | 1429 | 6567 | 6295 |
14.5 | 3785 | 798 | 642 | 669 | 538 | 1379 | 6631 | 6345 |
15 | 3867 | 815 | 651 | 683 | 546 | 1333 | 6698 | 6398 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, C.-C.; Hsu, C.-C.; Liu, J.-H. Bayesian Statistical Method Enhance the Decision-Making for Imperfect Preventive Maintenance with a Hybrid Competing Failure Mode. Axioms 2022, 11, 734. https://doi.org/10.3390/axioms11120734
Fang C-C, Hsu C-C, Liu J-H. Bayesian Statistical Method Enhance the Decision-Making for Imperfect Preventive Maintenance with a Hybrid Competing Failure Mode. Axioms. 2022; 11(12):734. https://doi.org/10.3390/axioms11120734
Chicago/Turabian StyleFang, Chih-Chiang, Chin-Chia Hsu, and Je-Hung Liu. 2022. "Bayesian Statistical Method Enhance the Decision-Making for Imperfect Preventive Maintenance with a Hybrid Competing Failure Mode" Axioms 11, no. 12: 734. https://doi.org/10.3390/axioms11120734
APA StyleFang, C. -C., Hsu, C. -C., & Liu, J. -H. (2022). Bayesian Statistical Method Enhance the Decision-Making for Imperfect Preventive Maintenance with a Hybrid Competing Failure Mode. Axioms, 11(12), 734. https://doi.org/10.3390/axioms11120734