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Abstract: The main result of the paper establishes the existence of a bounded weak solution for
a nonlinear Dirichlet problem exhibiting full dependence on the solution u and its gradient ∇u
in the reaction term, which is driven by a p-Laplacian-type operator with a coefficient G(u) that
can be unbounded. Through a special Moser iteration procedure, it is shown that the solution set
is uniformly bounded. A truncated problem is formulated that drops that G(u) be unbounded.
The existence of a bounded weak solution to the truncated problem is proven via the theory of
pseudomonotone operators. It is noted that the bound of the solution for the truncated problem
coincides with the uniform bound of the original problem. This estimate allows us to deduce that for
an appropriate choice of truncation, one actually resolves the original problem.

Keywords: p-Laplacian with unbounded coefficient; convection term; truncated problem; uniform
bound; weak solution; pseudomonotone operator

MSC: 35J70; 35J92; 47H30

1. Introduction

In this paper, we study the following Dirichlet problem:{
−div(G(u)|∇u|p−2∇u) = F(x, u,∇u) in Ω
u = 0 on ∂Ω

(1)

on a bounded domain Ω in RN with a Lipschitz boundary ∂Ω. In (1) we have a continuous
function G : R → [a0,+∞), with a0 > 0, a number p ∈ (1,+∞) with N > p, and a
Carathéodory function F : Ω×R×RN → R (i.e., F(·, t, ξ) is measurable on Ω for each
(t, ξ) ∈ R×RN and F(x, ·, ·) is continuous on R×RN for almost all x ∈ Ω). The notation
∇u stands for the gradient of u in the distributional sense. It is seen that the driving operator
in Equation (1) is the p-Laplacian with a coefficient G(u) depending on the solution u. The
notation G(u) in Equation (1) means the composition of the functions G : R → R and
u : Ω → R, that is, G(u)(x) = G(u(x)) for x ∈ Ω. The main point is that G(u) can be
unbounded from above, which does not permit to apply any standard method. It is also
worth mentioning that problem (1) is not in variational form.

The space underlying the Dirichlet problem (1) is the Banach space W1,p
0 (Ω) endowed

with the norm

‖u‖ :=
(∫

Ω
|∇u(x)|pdx

) 1
p
, ∀u ∈W1,p

0 (Ω).

The dual space of W1,p
0 (Ω) is denoted W−1,p′(Ω). Since it was supposed that N > p,

the critical Sobolev exponent is p∗ = Np/(N − p). Refer to [1] for the background related
to the space W1,p

0 (Ω).
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The (negative) p-Laplacian is the nonlinear operator −∆p : W1,p
0 (Ω) → W−1,p′(Ω)

(linear for p = 2) defined by

〈−∆p(u), v〉 :=
∫

Ω
|∇u|p−2∇u∇vdx, ∀u, v ∈W1,p

0 (Ω). (2)

Due to the unbounded function G(u), one cannot build a definition as in (2) corre-
sponding to the term −div(G(u)|∇u|p−2∇u) in (1). A major tool in our arguments is the
first eigenvalue λ1 of −∆p, which is positive and isolated in the spectrum of −∆p, and is
given by

λ1 := inf
u∈W1,p

0 (Ω), u 6=0

∫
Ω |∇u|pdx∫

Ω |u|pdx
. (3)

For the the rest of the paper, in order to simplify the notation we make the notational
convention that for any real number r > 1 we denote r′ := r/(r− 1) (the Hölder conjugate
of r).

The Carathéodory function F : Ω × R × RN → R determining the reaction term
F(x, u,∇u) is subject to the following hypotheses.

Hypothesis 1 (H1). There exist constants c1 ≥ 0, c2 ≥ 0, c3 ≥ 0, and r ∈ (p, p∗) such that

|F(x, t, ξ)| ≤ c1|ξ|
p
r′ + c2|t|r−1 + c3 for a.e. x ∈ Ω, ∀t ∈ R, ∀ξ ∈ RN .

Hypothesis 2 (H2). There exist constants d1 ≥ 0 and d2 ≥ 0 with d1 + λ−1
1 d2 < a0, and a

function σ ∈ L1(Ω) such that

F(x, t, ξ)t ≤ d1|ξ|p + d2|t|p + σ(x) for a.e. x ∈ Ω, ∀t ∈ R, ∀ξ ∈ RN ,

where λ1 denotes the first eigenvalue of −∆p.

The main result of this paper is stated as follows.

Theorem 1. Assume that G : R → [a0,+∞), with a0 > 0, is a continuous function and
F : Ω×R×RN → R is a Carathéodory function satisfying the conditions (H1) and (H2). Then
problem (1) has at least a bounded weak solution u ∈W1,p

0 (Ω) in the following sense:∫
Ω

G(u)|∇u|p−2∇u∇vdx =
∫

Ω
F(x, u,∇u)vdx, ∀v ∈W1,p

0 (Ω). (4)

Under hypothesis (H1), the integrals in (4) exist. The proof of Theorem 1 is presented
in Section 3. In order to see the effective applicability of Theorem 1, we provide an example.

Example 1. On a bounded domain Ω in RN with a Lipschitz boundary ∂Ω, we state the Dirichlet
problem {

−div(eu2 |∇u|p−2∇u) = b1|u|p−2u + b2
u

u2+1 |∇u|
p(r−1)

r in Ω
u = 0 on ∂Ω,

(5)

with constants p ∈ (1,+∞), r ∈ (p, p∗), b1 ≥ 0, b2 ≥ 0, provided that N > p and 1 >
b2 + λ−1

1 b1, where λ1 is given by (3). We readily check that (5) fits into the framework of problem
(1) taking G(t) = et2

for all t ∈ R and

F(x, t, ξ) = b1|t|p−2t + b2
t

t2 + 1
|ξ|

p(r−1)
r , ∀(x, t, ξ) ∈ Ω×R× ∈ RN .
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Indeed, one has G(t) ≥ a0 := 1 for all t ∈ R,

|F(x, t, ξ)| ≤ b1(|t|r−1 + 1) + b2|ξ|
p
r′ , ∀(x, t, ξ) ∈ Ω×R×RN ,

F(x, t, ξ)t ≤ b1|t|p + b2(|ξ|p + 1), ∀(x, t, ξ) ∈ Ω×R× ∈ RN .

Assumption (H1) is verified with c1 = b2, c2 = c3 = b1, while assumption (H2) holds with
d1 = b2, d2 = b1, σ(x) ≡ b2. Theorem 1 applies because a0 > d1 + λ−1

1 d2.

The inspiration for the present work comes from the recent paper [2] that deals with
the Dirichlet problem{

−div(a(x)g(|u|)|∇u|p−2∇u) = f (x, u,∇u) in Ω
u = 0 on ∂Ω

(6)

for a positive a ∈ L1
loc(Ω), a continuous function g : [0,+∞)→ [a0,+∞), with a0 > 0, and

a Carathéodory function f : Ω×R×RN → R. The standing point in that work was to
use the theory of weighted Sobolev spaces in [3] (see also [4]) with the weight a ∈ L1

loc(Ω)
requiring the condition

a−s ∈ L1(Ω) for some s ∈
(

N
p

,+∞
)
∩
[

1
p− 1

,+∞
)

.

If we consider our problem (1) as a particular case of (6) taking a(x) ≡ 1 on Ω and
apply the result in [2], the issue is that one obtains a solution of (1) belonging to the space
W1,ps

0 (Ω) with

ps =
ps

s + 1
. (7)

and not to the space W1,p
0 (Ω) as it would be natural according to the statement of (1). In this

respect, by (7) we note that ps < p, so W1,p
0 (Ω) is strictly contained in W1,ps

0 (Ω). Moreover,
the assumptions admitted therein for the reaction f (x, u,∇u) in (6) are more restrictive than
here because they are formulated in terms of ps corresponding to some s and not with p as
in conditions (H1)–(H2) for F(x, u,∇u). All of this shows that the treatment in [2] does not
provide the right approach to obtain Theorem 1. For this reason, we develop a direct study
for problem (1) relying just on the classical Sobolev space W1,p

0 (Ω). The present paper is
the first work studying problem (1) with unbounded coefficient G(u) in the Soboleev space
W1,p

0 (Ω). Certainly, we use some previous ideas but with substantial modifications and in
a different functional setting. The technique relies on truncation, which is needed because
the coefficient G(u) in the principal part of Equation (1) is unbounded. Other important
tools in our study are a special version of Moser iteration and the surjectivity theorem for
pseudomonotone operators.

We mention a few relevant works in the area of our paper. A large amount of results
in the field is based on variational smooth or nonsmooth methods for which we refer to the
recent publications [5–7]. They cannot be applied to problem (1) taking into account the
lack of variational structure. Nonvariational problems with convection terms have been
investigated in recent years through theoretic operator techniques, sub-supersolution and
approximation (see, e.g., [8–12]). The main point in these works lies in the dependence
of the reaction term with respect to the gradient of the solution without weakening the
ellipticity condition of the driving operator. In this connection, we also cite papers dealing
with the equations and inclusions driven by the (p, q)-Laplacian operators, such as, for
instance [13,14]. As an extension of this setting, the paper [15] deals with degenerate
(p, q)-Laplacian problems, but without dependence on the solution u in the principal part
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of the equation. An advance in this direction is ref. [2], where there is dependence on
solution u in the principal part of the equation of type (6) subject to a weight a(x). Here,
we drop the dependence on weight a(x) and allow to have a unbounded coefficient G(u)
in problem (1).

Regarding the rest of the paper, Section 2 focuses on the bounded solutions to problem
(1), and Section 3 contains the proof of Theorem 1.

2. Bounded Solutions to Problem (1)

Our first goal is to estimate the solutions in W1,p
0 (Ω).

Lemma 1. Assume that condition (H2) holds. Then the set of solutions to problem (1) is bounded
in W1,p

0 (Ω) with a bound that depends on function G only through the lower bound a0 of G.

Proof. Let u ∈W1,p
0 (Ω) be a solution of (1). Inserting v = u in (4) yields∫

Ω
G(u)|∇u|pdx =

∫
Ω

F(x, u,∇u)udx.

Invoking hypothesis (H2) and (3), we arrive at

a0‖u‖p ≤ (d1 + d2λ−1
1 )‖u‖p + ‖σ‖L1(Ω).

Since by hypothesis d1 + d2λ−1
1 < a0, the stated result is true.

We are now able to find a uniform bound for the solutions of (1).

Theorem 2. Assume that conditions (H1) and (H2) are satisfied. Then the solution set of problem
(1) is uniformly bounded, that is, there exists a constant C > 0 such that ‖u‖L∞(Ω) ≤ C for every

weak solution u ∈ W1,p
0 (Ω) to problem (1). The dependence of the uniform bound C on the data

in problem (1) and hypotheses (H1) and (H2) is indicated as C = C(N, p, Ω, a0, c1, c2, c3, d1, d2,
‖σ‖L1(Ω)). In particular, the uniform bound C depends on G only through its lower bound a0.

Proof. Given a weak solution u ∈ W1,p
0 (Ω) to problem (1), we have the representation

u = u+ − u− with u+ = max{u, 0} (the positive part of u) and u− = max{−u, 0} (the
negative part of u). We prove the uniform boundedness separately for u+ and u−. We only
give the proof for u+, noting that we can argue similarly in the case of u−.

We proceed by using in (4) the test function v = u+ukp
h ∈ W1,p

0 (Ω), where uh :=

min{u+, h} with arbitrary constants h > 0 and k > 0. The fact that v ∈ W1,p
0 (Ω) follows

from u ∈ Lp(Ω) and uh is bounded, while the distributional partial derivatives

∂v
∂xi

= ukp
h

∂u+

∂xi
+ kpukp−1

h u+ ∂uh
∂xi

, ∀i = 1, · · · , N,

belong to Lp(Ω) because u, ∂uh/∂xi ∈ Lp(Ω) and uh is bounded. This gives∫
Ω

G(u)|∇u|p−2∇u∇(u+ukp
h )dx =

∫
Ω

F(x, u,∇u)u+ukp
h dx. (8)
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The left-hand side of (8) can be estimated as follows:∫
Ω

G(u)|∇u|p−2∇u∇(u+ukp
h )dx

=
∫

Ω
G(u)|∇u|p−2∇u(ukp

h ∇(u
+) + kpu+ukp−1

h ∇(uh))dx (9)

≥ a0

[∫
Ω

ukp
h |∇(u

+)|pdx + kp
∫
{0<u<h}

ukp
h |∇(u

+)|pdx
]

.

For the right-hand side of (8), by hypothesis (H1), we obtain∫
Ω

F(x, u,∇u)u+ukp
h dx (10)

≤ c1

∫
Ω
|∇u|

p
r′ ukp

h u+dx + c2

∫
Ω
|u|r−1ukp

h u+dx + c3

∫
Ω

ukp
h u+dx.

By Young’s inequality, for each ε > 0 there is a constant c(ε) > 0 such that

c1

∫
Ω
|∇u|

p
r′ ukp

h u+dx = c1

∫
Ω
(|∇(u+)|

p
r′ u

kp
r′
h )(u

kp
r

h u+)dx (11)

≤ ε
∫

Ω
ukp

h |∇(u
+)|pdx + c(ε)

∫
Ω

ukp
h (u+)rdx.

It is clear that ∫
Ω
|u|r−1ukp

h u+dx =
∫

Ω
ukp

h (u+)rdx (12)

and, since r > 1 and uh ≤ u+,∫
Ω

ukp
h u+dx =

∫
{u+≥1}

ukp
h u+dx +

∫
{u+<1}

ukp
h u+dx (13)

≤
∫

Ω
ukp

h (u+)rdx + |Ω|,

where |Ω| denotes the Lebesgue measure of Ω.
If ε > 0 is sufficiently small, we deduce from (8), in conjunction with (9), (10), (11),

(12), and (13) that ∫
Ω

ukp
h |∇(u

+)|pdx + kp
∫
{0<u<h}

ukp
h |∇(u

+)|pdx (14)

≤ b
(∫

Ω
ukp

h (u+)rdx + 1
)

,

with a constant b > 0. The last integral exists because r < p∗.
On the other hand, by Bernoulli’s inequality and since uh = u+ on {0 < u < h}, we

derive ∫
Ω

ukp
h |∇(u

+)|pdx + kp
∫
{0<u<h}

ukp
h |∇(u

+)|pdx

=
∫
{u≥h}

|∇(uk
hu+)|pdx +

∫
{u<h}

|∇(uk
hu+)|pdx +

kp
(k + 1)p

∫
{0<u<h}

|∇(uk
hu+)|pdx

=
∫
{u≥h}

|∇(uk
hu+)|pdx +

kp + 1
(k + 1)p

∫
{0<u<h}

|∇(uk
hu+)|pdx (15)

≥ kp + 1
(k + 1)p

∫
Ω
|∇(uk

hu+)|pdx.
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Combining (14) and (15) leads to

kp + 1
(k + 1)p

∫
Ω
|∇(uk

hu+)|pdx ≤ b
(∫

Ω
ukp

h (u+)rdx + 1
)

. (16)

At this point, we choose q ∈ (p, r) with

(r− p)q
q− p

< p∗. (17)

The validity of such a choice holds in view of p < r < p∗ as postulated in condition
(H1). Then (17), the Sobolev embedding theorem, Hölder’s inequality with (q− p)/q +
p/q = 1, and Lemma 1 imply∫

Ω
ukp

h (u+)rdx =
∫

Ω
(u+)r−p(uk

hu+)pdx

≤
(∫

Ω
(u+)

(r−p)q
q−p dx

) q−p
q
(∫

Ω
(uk

hu+)qdx
) p

q
≤ K‖uk

hu+‖p
Lq(Ω)

,

with a constant K > 0.
On the basis of the previous inequality and the Sobolev embedding theorem, we obtain

from (16) that

c0
kp + 1
(k + 1)p ‖u

k
hu+‖p

Lp∗ (Ω)
≤ b

(
‖(u+)k+1‖p

Lq(Ω)
+ 1
)

,

with a constant c0 > 0. Then Fatou’s lemma letting h→ +∞ entails

c0
kp + 1
(k + 1)p ‖u

+‖p(k+1)
Lp∗(k+1)(Ω)

≤ b
(
‖(u+)k+1‖p

Lq(Ω)
+ 1
)

.

By some arrangements, we obtain for a constant C1 > 0 the estimate

‖u+‖L(k+1)p∗ (Ω) ≤ C
1

k+1
1 (k + 1)

1
k+1

(
‖(u+)k+1‖p

Lq(Ω)
+ 1
) 1

(k+1)p .

Noticing that the sequence (k + 1)
1√
k+1 is bounded, we find a constant C0 > 0 for

which it holds

‖u+‖L(k+1)p∗ (Ω) ≤ C
1√
k+1

0

(
‖u+‖(k+1)p

L(k+1)q(Ω)
+ 1
) 1

(k+1)p . (18)

We claim that there exists a constant C > 0 independent of the solution u to (1) such
that

‖u+‖Ld(Ω) ≤ C, ∀d ≥ 1. (19)

In the case where ‖u+‖L(k+1)q(Ω) ≤ 1 for infinitely many k, it is straightforward to show
the validity of the claim. Therefore, we may suppose that ‖u+‖L(k+1)q(Ω) > 1 for all k ≥ k0,

If ‖u+‖L(k+1)q(Ω) > 1 for all k, we see that (18) takes the form

‖u+‖L(k+1)p∗ (Ω) ≤ C
1√
k+1

1 ‖u+‖L(k+1)q(Ω), (20)
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with a constant C1 > 0. Through (20), we are able to carry on a Moser iteration, setting
inductively (kn + 1)q = (kn−1 + 1)p∗ with the initial step (k1 + 1)q = p∗. Applying
repeatedly (20), it turns out that

‖u+‖L(kn+1)p∗ (Ω) ≤ C
∑1≤i≤n

1√
ki+1

1 ‖u+‖L(k1+1)q(Ω)
, ∀n ≥ 1. (21)

The series ∑n≥1
1√

kn+1
converges because q < p∗ and kn → +∞ as n → ∞. Conse-

quently, we can obtain (19) letting n→ ∞ in (21).
It remains to handle the case when the number k0 is such that ‖u+‖L(k0+1)q(Ω)

≤ 1 and

‖u+‖L(k+1)q(Ω) > 1 for all k > k0. In this case, the Moser iteration reads as (kn + 1)q =

(kn−1 + 1)p∗ with the initial step (k1 + 1)q = k0 if k0 < p∗ and (k1 + 1)q = p∗ if k0 ≥ p∗.
In any case, we are led to (21) from which (19) can be established as before.

We can pass to the limit as d → ∞ in (19) obtaining ‖u+‖L∞(Ω) ≤ C for each weak

solution u ∈W1,p
0 (Ω) to problem (1). Analogously, we can prove that ‖u−‖L∞(Ω) ≤ C for

all weak solutions u ∈ W1,p
0 (Ω) to problem (1). Altogether, we have the uniform bound

‖u‖L∞(Ω) ≤ C for the solution set of problem (1).
A careful reading of the above proof reveals the dependence of the uniform bound

C on the data in problem (1) and on the coefficients, entering assumptions (H1) and (H2).
Precisely, we have to check how the constants b, q, K, c0, C1, and C0 arising in the proof
depend on the data given in (1), (H1), and (H2). Collecting all these renders the dependence
C = C(N, p, Ω, a0, c1, c2, c3, d1, d2, ‖σ‖L1(Ω)). This completes the proof.

3. Truncation Problem and Proof of Theorem 1

The method of proof relies on the truncation of the coefficient G(u) of the p-Laplacian
in problem (1) to drop its unboundedness. This idea was used in [2] in the context of the
degenerate p-Laplacian. Specifically, for any number R > 0, we introduce the truncation

GR(t) =


G(t) if |t| ≤ R
G(R) if t > R
G(−R) if t < −R.

(22)

By (22), we obtain a continuous function GR : R → [a0,+∞). We also consider the

associated operator AR : W1,p
0 (Ω)→W−1,p′

0 (Ω) given by

〈AR(u), v〉 =
∫

Ω
GR(u)|∇u|p−2∇u∇vdx, ∀u, v ∈W1,p

0 (Ω). (23)

The notation GR(u)| in Equation (23) means the composition of the functions GR :
R → R and u : Ω → R, that is GR(u)(x) = GR(u(x)) for x ∈ Ω. The next proposition
discusses the properties of AR.

Proposition 1. The nonlinear operator AR in (23) is well defined, bounded (i.e., it maps bounded
sets into bounded sets), continuous, and satisfies the S+ property, that is, any sequence {un} ⊂
W1,p

0 (Ω) with un ⇀ u in W1,p
0 (Ω) and

lim sup
n→∞

〈AR(un), un − u〉 ≤ 0 (24)

fulfills un → u in W1,p
0 (Ω).
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Proof. The continuity of the function G combined with (22), (23), and Hölder’s inequality
ensures

|〈AR(u), v〉| ≤ max
t∈[−R,R]

G(t)‖u‖p−1‖v‖.

for all u, v ∈W1,p
0 (Ω). It follows that the operator AR is well-defined and bounded.

In order to show the continuity of AR let un → u in W1,p
0 (Ω). By the continuity of G,

(22), (23), Hölder’s inequality, and (2), we find

|〈AR(un)−AR(u), v〉|

≤
∣∣∣∣∫Ω

GR(un)(|∇un|p−2∇un − |∇u|p−2∇u)∇vdx
∣∣∣∣

+

∣∣∣∣∫Ω
(GR(un)− GR(u))|∇u|p−2∇u∇vdx

∣∣∣∣
≤ max

t∈[−R,R]
G(t)|〈−∆p(un)− (−∆p(u)), v〉|

+

(∫
Ω
|GR(un)− GR(u)|

p
p−1 |∇u|pdx

) p−1
p
‖v‖

for all v ∈W1,p
0 (Ω). We infer that

‖AR(un)−AR(u)‖W−1,p′ (Ω)

≤ max
t∈[−R,R]

G(t)‖ − ∆p(un)− (−∆p(u))‖W−1,p′ (Ω)

+

(∫
Ω
|GR(un)− GR(u)|

p
p−1 |∇u|pdx

) p−1
p

.

The continuity of the p-Laplacian ∆p implies that −∆p(un)→ −∆p(u) in W−1,p′(Ω).
By Lebesgue’s dominated convergence theorem, we derive

lim
n→∞

∫
Ω
|GR(un)− GR(u)|

p
p−1 |∇u|pdx = 0,

whence AR(un)→ AR(u) in W−1,p′(Ω), so the continuity of AR is proven.
Now we show the S+ property for the operator AR. Let a sequence {un} satisfy

un ⇀ u in W1,p(a, Ω) and (24). It is seen that

lim sup
n→∞

〈AR(un)−AR(u), un − u〉 ≤ 0. (25)

Taking into account (23) and the monotonicity of −∆p, we have

〈AR(un)−AR(u), un − u〉

=
∫

Ω
GR(un)(|∇un|p−2∇un − |∇u|p−2∇u)∇(un − u)dx

+
∫

Ω
(GR(un)− GR(u))|∇u|p−2∇u∇(un − u)dx (26)

≥ a0〈−∆p(un)− (−∆p(u)), un − u〉

+
∫

Ω
(GR(un)− GR(u))|∇u|p−2∇u∇(un − u)dx.
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We claim that

lim
n→∞

∫
Ω
(GR(un)− GR(u))|∇u|p−2∇u∇(un − u)dx = 0. (27)

To this end, by Hölder’s inequality and since the sequence {un} is bounded in W1,p
0 (Ω),

we find a constant C > 0 such that∣∣∣∣∫Ω
(GR(un)− GR(u))|∇u|p−2∇u∇(un − u)dx

∣∣∣∣ (28)

≤ C
(∫

Ω
|GR(un)− GR(u)|

p
p−1 |∇u|pdx

) p−1
p

.

By Lebesgue’s dominated convergence theorem, it holds

lim
n→∞

∫
Ω
|GR(un)− GR(u)|

p
p−1 |∇u|pdx = 0. (29)

This is true because GR is continuous, un → u in Lp(Ω) and there is the domination

|GR(un)− GR(u)|
p

p−1 |∇u|p ≤ 2
1

p−1 ( max
t∈[−R,R]

G(t))
p

p−1 |∇u|p ∈ L1(Ω).

Then (25), (26), (27), (28), (29), and un ⇀ u in W1,p(Ω) yield

lim
n→∞
〈−∆p(un), un − u〉 = 0. (30)

Since it holds,

‖un‖p = 〈−∆p(un), u〉+ 〈−∆p(un), un − u〉

≤ ‖un‖p−1‖u‖+ 〈−∆p(un), un − u〉,

Equation (30) results in lim supn→∞ ‖un‖ ≤ ‖u‖. Recalling that space W1,p
0 (Ω) is uniformly

convex, we conclude that un → u in W1,p
0 (Ω), which proves the S+ property of the operator

AR. The proof is thus complete.

For any R > 0 and the truncation GR in (22), let us consider the auxiliary problem
−div(GR(u)|∇u|p−2∇u) = F(x, u,∇u) in Ω,

u = 0 on ∂Ω.
(31)

The solvability and a priori estimates for problem (31) are now studied.

Theorem 3. Assume that G : [0,+∞) → [a0,+∞) is a continuous function with a0 > 0, and
that F : Ω×R×RN → R is a Carathéodory function satisfying the conditions (H1) and (H2).
Then, for every R > 0, the auxiliary problem (31) has a weak solution uR ∈W1,p

0 (Ω) in the sense
that ∫

Ω
GR(uR)|∇uR|p−2∇uR∇vdx =

∫
Ω

F(x, uR,∇uR)vdx, ∀v ∈W1,p
0 (Ω). (32)

Moreover, the solution uR is uniformly bounded and fulfills the a priori estimate ‖uR‖L∞(Ω) ≤
C with the constant C = C(N, p, Ω, a0, c1, c2, c3, d1, d2, ‖σ‖L1(Ω)) provided by Theorem 2.
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Proof. Fix an R > 0. In view of (23), equality (32) reads as

〈AR(uR), v〉 =
∫

Ω
F(x, uR,∇uR)vdx, ∀v ∈W1,p

0 (Ω). (33)

Through hypothesis (H1) and Hólder’s inequality, we find∣∣∣∣∫Ω
F(x, u,∇u)vdx

∣∣∣∣ ≤ ∫Ω
|F(x, u,∇u)||v|dx

≤
∫

Ω
(c1|∇u|

p
r′ |v|+ c2|u|r−1|v|+ c3|v|)dx

≤ c1‖u‖
p
r′ ‖v‖Lr(Ω) + c2‖u‖r−1

Lr(Ω)
‖v‖Lr(Ω) + c3|Ω|

1
r′ ‖v‖Lr(Ω)

for all u ∈W1,p
0 (Ω) and v ∈ Lr(Ω). We deduce that the mapping

u ∈W1,p
0 (Ω) 7→ F(·, u(·),∇u(·)) ∈ Lr′(Ω) (34)

is well-defined and bounded. Furthermore, by Krasnoselskii’s theorem for Nemytskii
operators, the mapping in (34) is continuous from W1,p

0 (Ω) to Lr′(Ω), so continuous from
W1,p

0 (Ω) to W−1,p′(Ω) due to the continuous embedding W1,p
0 (Ω) ⊂ Lr(Ω).

Let us define the mapping BR : W1,p
0 (Ω)→W−1,p′(Ω) by

BR(u) = AR(u)− F(·, u(·),∇u(·)), ∀u ∈W1,p
0 (Ω). (35)

On account of Proposition 1 and on what was said regarding the mapping in (34), we

are entitled to assert that BR : W1,p
0 (Ω) → W−1,p′

0 (Ω) introduced in (35) is well-defined,
bounded and continuous.

The next step in the proof is to show that the mapping BR : W1,p
0 (Ω)→W−1,p′(Ω) is

a pseodomonotone operator, which means that if un ⇀ u in W1,p
0 (Ω) and

lim sup
n→∞

〈BR(un), un − u〉 ≤ 0, (36)

then

〈BR(v), u− v〉 ≤ lim inf
n→∞

〈BR(un), un − v〉 for all v ∈W1,p
0 (Ω). (37)

To this end, let {un} be a sequence as above. By the Rellich–Kondrachov theorem,
we derive from un ⇀ u in W1,p

0 (Ω) that un → u in Lr(Ω). As noted before, the sequence
{F(·, un(·),∇un(·))} is bounded in Lr′(Ω). Therefore, we have

lim
n→∞

∫
Ω

F(x, un(x),∇un(x))(un(x)− u(x))dx = 0.

Then (36) entails that (24) holds true. As Proposition 1 guarantees that AR has the S+

property, we can conclude that un → u in W1,p
0 (Ω). From here, it can be readily shown

(37) thanks to the continuity and boundedness properties stated in Proposition 1 and those
related to (34). This amounts to saying that BR is a pseudomonotone operator.

In the following, we prove that the operator BR : W1,p
0 (Ω) → W−1,p′

0 (Ω) is coercive,
that is

lim
‖u‖→∞

〈BR(u), u〉
‖u‖ = +∞. (38)
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Toward this we infer from (35), (33), (22), (3), Hölder’s inequality and hypothesis (H2)
that

〈BR(u), u〉 =
∫

Ω
GR(u)|∇u|pdx−

∫
Ω

F(x, u,∇u)udx

≥ (a0 − d1 − d2λ−1
1 )‖u‖p − ‖σ‖L1(Ω)

for all u ∈W1,p
0 (Ω). Since p > 1 and a0 − d1 − d2λ−1

1 > 0 as known from hypothesis (H2),
we confirm the validity of (38).

We showed on the reflexive Banach space W1,p
0 (Ω) that the operator BR : W1,p

0 (Ω)→
W−1,p′

0 (Ω) defined in (35) is bounded, pseudomonotone and coercive. According to the
main theorem for pseudomonotone operators (see, for example, [16], Th. 2.99), we can
conclude that the mapping BR is surjective. So, in particular, there exists uR ∈ W1,p

0 (Ω)
such that BR(uR) = 0, which is exactly (32). Therefore uR is a weak solution of auxiliary
problem (31).

Let us point out that the function G and its truncation GR take values in the same
set [a0,+∞), and function F is the same in both problems (1) and the (31). Consequently,
Theorem 2 can be applied to the auxiliary problem (31) and provides the same uniform
bound C = C(N, p, Ω, a0, c1, c2, c3, d1, d2, ‖σ‖L1(Ω)) of the solution set as for the original
problem (1). This ensures that ‖uR‖L∞(Ω) ≤ C, which completes the proof.

Relying on Theorem 3, we are now able to prove Theorem 1.

Proof of Theorem 1. It was established in Theorem 2 that the solution set of problem (1)
is uniformly bounded by a constant C = C(N, p, Ω, a0, c1, c2, c3, d1, d2, ‖σ‖L1(Ω)), where a0
is a lower bound of the function G. Since the truncated function GR has the lower bound
a0 too for all R > 0 (see (22)) and the reaction term F(x, t, ξ) is unchanged in problems
(1) and (31) and is subject to the same hypotheses (H1)-(H2), Theorem 2 applies to the
truncated problem (31) and provides the same bound C for its solution set whenever R > 0.
In particular, the solution uR ∈W1,p

0 (Ω) of problem (31) provided by Theorem 3 satisfies
the estimate ‖uR‖L∞(Ω) ≤ C.

Owing to the crucial information that C is independent of R > 0, we can choose
R ≥ C. Hence, the estimate ‖uR‖L∞(Ω) ≤ C and (22) render that the functions GR and G

coincide along the values uR(x) for all x ∈ Ω. According to Theorem 3, uR ∈ W1,p
0 (Ω)

solves problem (31), and thus it becomes a bounded weak solution of the original problem
(1). The conclusion of Theorem 1 is achieved.
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