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Abstract: In this paper, we studied a nutrient–phytoplankton model with time delay and diffusion
term. We studied the Turing instability, local stability, and the existence of Hopf bifurcation. Some
formulas are obtained to determine the direction of the bifurcation and the stability of periodic
solutions by the central manifold theory and normal form method. Finally, we verify the above
conclusion through numerical simulation.
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1. Introduction

One of the most complex and difficult problems in water pollution treatment is the
prevention and control of algal bloom. Due to the complexity of the pollution source and
the difficulty factor of material removal, it takes a lot of energy, but it is not very effective.
Therefore, scientists search for better methods to prevent and cure algal bloom, especially
using mathematical models, in order to find reasonable prevention and cure measures [1–7].
In addition, many scholars further study the dynamics of the N-P model by considering
factors such as time delay and diffusion [8–12]. M. Rehim et al. studied a nutrient–
plankton–zooplankton system with toxic phytoplankton and three delays, and showed
the phenomenon of stability switches [8]. Y. Wang and W. Jiang considered a differential
algebraic phytoplankton–zooplankton system with delay and harvesting, and indicated
that the toxic liberation delay of phytoplankton may affect the stability of the coexisting
equilibrium [10]. In particular, Huppert et al. [13] considered the following N-P model{

dN(t)
dt = a− bNP− eN,

dP(t)
dt = cNP− dP,

(1)

where N is the nutrient level and P is the density of phytoplankton. a denotes the constant
external nutrient inflow. b represents the maximal nutrient uptake rate. c represents the
maximal conversion rate of nutrients into phytoplankton. d stands for the per capita mortal-
ity rate of phytoplankton. e denotes the per capita loss rate of nutrients. Relevant research
work has analyzed the reasonable, deterministic, and empirical relationship between the
abundance of toxin-producing phytoplankton and the diversity of plankton communities
with large amounts of plankton but no toxins (called nontoxic plankton plants, NTP) [14].
In the case of toxic substances released by toxic phytoplankton (TPP), a simple model of
vegetative phytoplankton was proposed and analyzed to understand the dynamic changes
of the phenomenon of the seasonal mass reproductive cycle. The presence of chemical
and toxic substances helps explain this phenomenon [15–17]. In [18], Chakraborty et al.
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considered the effect of toxins produced by toxic phytoplankton on the death of nontoxic
phytoplankton, and produced the following equation{

dN
dt = a− bNP− eN,

dP
dt = cNP− dP− θP2

µ2+P2 .
(2)

where θ is the release rate of toxic chemicals by the TPP population, and µ denotes the
half-saturation constant.

Since the spatial distribution of nutrients and phytoplankton is inhomogeneous, there
is diffusion. In addition, there is a time delay in the conversion from nutrients to phyto-
plankton. So, we incorporate reaction diffusion and time delay into the model (2), that is{

∂N
∂t = d14N + a− bNP− eN,

∂P
∂t = d24P + cPN(t− τ)− dP− θP2

µ2+P2 ,
(3)

where d1 and d2 are diffusion coefficients for N and P, respectively. 4 is the Laplace
operator. This is based on the assumption that the prey and predator are not stationary
and will spread randomly . τ is the time delay that occurs for nutrients to be converted to
phytoplankton. For analysis convenience, we have denoted

h =
b
a

, s =
e
a

, α =
d
c

, β =
θ

c
.

The corresponding problem has the following form
∂N
∂t = d14N + a(−hNP− Ns + 1), x ∈ (0, lπ), t > 0,

∂P
∂t = d24P + cP

(
−α + N(t− τ)− βP

µ2+P2

)
, x ∈ (0, lπ), t > 0,

Nx(0, t) = Px(0, t) = 0, Nx(lπ, t) = Px(lπ, t) = 0, t > 0,
N(x, t) = N0(x, t) ≥ 0, P(x, t) = P0(x, t) ≥ 0, x ∈ [0, lπ], t ∈ [−τ, 0].

(4)

The content of the paper is arranged as follows. In Section 2, we study the stability and
the existence of the Hopf bifurcation. In Section 3, we analyze the property of Hopf bifurca-
tion. In Section 4, we provide a numerical simulation to verify the previous conclusions.
Finally, we conclude this paper.

2. Stability Analysis

In [18], Chakraborty et al. studied the existence of equilibria. We cite the following
result. The equilibrium points satisfy the following equation{

1− hNP− sN = 0,
−α + N − βP

µ2+P2 = 0, (5)

It can be calculated that trivial equilibrium
(

1
s , 0
)

and interior equilibrium (N∗, P∗),

where N∗ = 1
hP∗+s , and P∗ is a root of the equation

hαP3 + (hβ + sα− 1)P2 +
(

hαµ2 + sα
)

P− µ2(1− sα) = 0.

We provide the result from [18] as follows.

Lemma 1. The existence of a positive equilibrium for the model (4) can be divided into the follow-
ing cases.

(1) If 1− sα ≤ 0, system (2) has no positive equilibrium.
(2) If 0 < 1− sα ≤ hβ, system (2) has one unique positive equilibrium.
(3) If 1− sα > hβ, then system (2) has either three or one positive equilibrium.



Axioms 2022, 11, 56 3 of 15

In what follows, we always assume that 0 < 1− sα ≤ hβ, and we study the stability
of problem (4) for (N∗, P∗). Denote

N1(t) = N(·, t) N2(t) = P(·, t), N = (N1, N2)
T ,

X = C([0, lπ],R2), and Cτ := C([−τ, 0], X).

The linearized system of (4) at (N∗, P∗) is

Ṅ = (D∆ + L)N, (6)

where

D =

(
d1 0
0 d2

)
, dom(D∆) = {(N, P)T : N, P ∈ C2([0, lπ],R2), Nx, Px = 0, x = 0, lπ},

and L : Cτ 7→ X is defined by

Lφ(·) = L1φ(·) + L2φ(· − τ),

for φ = (φ1, φ2)
T ∈ Cτ with

L1 =

(
−aA −aB

0 D

)
, L2 =

(
0 0
C̃ 0

)
,

A = hP∗ + s, B =
h

hP∗ + s
, C̃ = cP∗, D =

cβP∗
(

P2
∗ − µ2)

(µ2 + P2∗ )
2 . (7)

The characteristic equations are

λ2 + λAn + Bn + Cne−λτ = 0, n ∈ N0, (8)

where An = (d1 + d2)
n2

l2 + aA− D, Bn = d1d2
n4

l4 + (aAd2 − Dd1)
n2

l2 − aAD, C = aBC̃.

2.1. Non-Delay Model

When τ = 0, the characteristic becomes

λ2 − Tnλ + Dn = 0, n ∈ N0, (9)

where {
Tn = −(d1 + d2)

n2

l2 + D− aA,

Dn = d1d2
n4

l4 + (aAd2 − Dd1)
n2

l2 + a(BC̃− AD),

and the eigenvalues are given by

λn =
Tn ±

√
T2

n − 4Dn

2
, n ∈ N0. (10)

Then, make hypothesis

a > a0 :=
D
A

, BC̃− AD > 0. (11)

Theorem 1. Suppose d1 = d2 = 0, τ = 0, and hypothesis (11) hold, then the equilibrium (N∗, P∗)
is locally asymptotically stable.
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Proof. Suppose d1 = d2 = 0, τ = 0, and hypothesis (11) hold, we can obtain T0 < 0,
D0 > 0, so the real part of the roots of the characteristic equation is negative, then the
equilibrium (N∗, P∗) is locally asymptotically stable.

It is calculated that the discriminant of Dn is Γ = a2 A2d2
2 + 2ad1d2

(
AD− 2BC̃

)
+ D2d2

1,
and

a± =
d1(2BC̃− AD)± d1

√
4BC̃(BC̃− AD)

A2d2
(12)

σ± =
−(aAd2 − Dd1)±

√
(aAd2 − Dd1)2 − 4d1d2a(BC̃− AD)

2d1d2
. (13)

It is easy to verify that a− < d1
d2

a0 < a+ under the hypothesis (11).

Theorem 2. Suppose d1 > 0, d2 > 0, τ = 0, and hypothesis (11) hold. For the system (4), we
have the following conclusion.

(1) If a ≥ d1
d2

a0, then the equilibrium (N∗, P∗) is locally asymptotically stable.

(2) If a− < a < d1
d2

a0, then the equilibrium (N∗, P∗) is locally asymptotically stable.

(3) If a0 < a < a−, and there is no k ∈ N such that k2

l2 ∈ (σ−, σ+), then the equilibrium
(N∗, P∗) is locally asymptotically stable.

(4) If a0 < a < a−, and there is a k ∈ N such that k2

l2 ∈ (σ−, σ+), then the equilibrium (N∗, P∗)
is Turing unstable.

Proof. We can obtain Tn < 0 and Dn > 0 for a ≥ d1
d2

a0. It can be concluded that all the
characteristic roots have a negative real part. Then, the equilibrium (N∗, P∗) is locally
asymptotically stable (so, statement (1) is true). In the same way, statements (1)–(3) are also
correct. Suppose the conditions in statement (4) are true, then at least there is a positive
real part of eigenvalue root. Then, the equilibrium (N∗, P∗) is Turing unstable.

2.2. Delay Model

Now, suppose τ > 0, one of the conditions (1)–(3) in Theorem 2 and hypothesis (11)
hold. Assume iω(ω > 0) is a solution of Equation (8), we can obtain

−w2 + iAnw + Bn + Ccoswτ − iCsinwτ = 0.

Then we have {
−w2 + Bn + Ccoswτ = 0,
wAn − Csinwτ = 0,

(14)

which leads to
w4 + (A2

n − 2Bn)w2 + B2
n − C2 = 0. (15)

Let z = ω2, Equation (15) is

z2 + (A2
n − 2Bn)z + B2

n − C2 = 0. (16)

By direct computation, we have

A2
n − 2Bn =

(
aA + d1

n2

l2

)2

+

(
D− d2

n2

l2

)2

> 0,

Bn + C = Dn > 0,

Bn − C = d1d2
n4

l4 + (aAd2 − Dd1)
n2

l2 − a(AD + BC̃).

(17)
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Define
M = { m ∈ N0 | Bn − C < 0 with n = m}. (18)

Lemma 2. Suppose one of the conditions (1)–(3) in Theorem 2 and hypothesis (11) hold. If M = ∅,
then Equation (16) has no positive root. If M 6= ∅, then the equation has positive roots.

Proof. The roots of Equation (16) are

z±n =
1
2
[−(A2

n − 2Bn)±
√
(A2

n − 2Bn)2 − 4(B2
n − C2)] (19)

It is easy to verify that z+n > 0 if and only if n ∈M, and z−n is always negative or a non
real number.

Suppose one of the conditions (1)–(3) in Theorem 2 and hypothesis (11) hold, from
Equation (14), we can obtain

sin ωτ =
ωAn

C
> 0, cos ωτ =

ω2 − Bn

C
.

For n ∈M, then Equation (8) has a pair of purely imaginary roots ± iωn at τ
j
n, j ∈ N0,

ωn =
√

zn, τ
j
n = τ0

n +
2jπ
ωn

, τ0
n =

1
ωn

arccos
ω2

n − Bn

C
. (20)

Lemma 3. Suppose one of the conditions (1)–(3) in Theorem 2 and hypothesis (11) hold. Then

Re[
dλ

dτ
]|

τ=τ
j
n
> 0 for n ∈M and j ∈ N0.

Proof. From (8), we can obtain

(
dλ

dτ
)−1 =

An + 2λ

λCe−λτ
− τ

λ
.

Then

Re(
dλ

dτ
)−1

τ=τ
j
n
=

A2
nw2 + 2w2(w2 − Bn)

A2
nw4 + (w3 − Bnw)2 =

√
(A2

n − 2Bn)2 − 4(B2
n − C2)

w4 + B2
n + (A2

n − 2Bn)w2 > 0.

Denote D := {τ j
n : τ

j
m 6= τk

n , m 6= n, m, n ∈M, j, k ∈ N0}, and τ∗ = min{τ ∈ D}.

Theorem 3. For system (4), assume one of the conditions (1)–(3) in Theorem 2 and hypothesis (11)
hold, then we have the following conclusion.

(1) If M = ∅, (N∗, P∗) is locally asymptotically stable for τ ≥ 0.
(2) If M 6= ∅, (N∗, P∗) is locally asymptotically stable for τ ∈ [0, τ∗) and unstable for τ > τ∗.

(3) Hopf bifurcation occurs when τ = τ
j
0 (j ∈ N0, n ∈M).

Proof. If M = ∅, then Bn − C > 0 and B2
n − C2 > 0, so Equation (16) has no positive root;

then, the roots of Equation (8) all have negative real parts. Therefore, (N∗, P∗) is locally
asymptotically stable. Similarly, statement (2) is also correct. When τ = τ

j
0 (j ∈ N0, n ∈M)

implying that Tn = 0, then Hopf bifurcation occurs near (N∗, P∗).
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3. Property of Hopf Bifurcation

By the method [19–21], we study the property of Hopf bifurcation. For fixed j ∈ N0

and n ∈ M, denote τ̃ = τ
j
n. Let Ñ(x, t) = N(x, τt)− N∗, and P̃(x, t) = P(x, τt)− P∗. The

system (4) (drop the tilde) is{
∂N
∂t = τ(d14N + a(1− h(N + N∗)(P + P∗)− s(N + N∗)),

∂P
∂t = τ(d24P + c(N(t− 1)− N∗)(P + P∗)− α(P + P∗)− β(P+P∗)2

µ2+(P+P∗)2 .
(21)

Let

τ = τ̃ + µ, N1(t) = N(·, t), N2(t) = P(·, t) and N = (N1, N2)
T .

Then (21) is written as

dN(t)
dt

= τ̃D∆N(t) + Lτ̃(Nt) + F(Nt, µ), (22)

where

Lµ(φ) = µ

(
−aAφ1(0)− aBφ2(0)
Cφ1(−1) + Dφ2(0)

)
, (23)

F(φ, µ) = µD∆φ + Lµ(φ) + f (φ, µ), (24)

with

f (φ, µ) = (τ̃ + µ)(F1(φ, µ), F2(φ, µ))T ,

F1(φ, µ) = a(1− h(φ1(0) + N∗)(φ2(0) + P∗)− s(φ1(0) + N∗) + Aφ1(0) + Bφ2(0)),

F2(φ, µ) = c((φ1(−1) + N∗)(φ2(0) + P∗)− α(φ2(0) + P∗)−
β(P∗ + φ2(0))2

µ2 + (P∗ + φ2(0))2 ).

Then
dN(t)

dt
= τ̃D∆N(t) + Lτ̃(Nt) (25)

has characteristic roots Λn := {iωnτ̃,−iωnτ̃}. Its linear functional differential equation is

dz(t)
dt

= −τ̃D
n2

l2 z(t) + Lτ̃(zt). (26)

There exists a 2× 2 matrix function ηn(σ, τ̃) −1 ≤ σ ≤ 0, such that

−τ̃D
n2

l2 φ(0) + Lτ̃(φ) =
∫ 0

−1
dηn(σ, τ)φ(σ).

Choose

ηn(σ, τ) =


τE σ = 0,
0 σ ∈ (−1, 0),
−τF σ = −1,

E =

(
−aA− d1

n2

l2 −aB
0 D− d2

n2

l2

)
, F =

(
0 0
C 0

)
. (27)

Define

(ψ, φ) = ψ(0)φ(0)−
∫ 0

−1

∫ σ

ξ=0
ψ(ξ − σ)dηn(σ, τ̃)φ(ξ)dξ

= ψ(0)φ(0) + τ̃
∫ 0

−1
ψ(ξ + 1)Fφ(ξ)dξ,

(28)
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for φ ∈ C([−1, 0],R2), ψ ∈ C([−1, 0],R2). Choose p1(θ) = (1, ξ)Teiωn τ̃σ (σ ∈ [−1, 0]),
p2(σ) = p1(σ) is a basis of A(τ̃) with Λn and q1(r) = (1, η)e−iωn τ̃r (r ∈ [0, 1]), q2(r) =
q1(r) is a basis of A∗ with Λn, where

ξ =
Ce−iτ̃ωn

iωn +
d2n2

l2 − D
, η =

B

iωn + D− d2n2

l2

.

Let Φ = (Φ1, Φ2) and Ψ∗ = (Ψ∗1 , Ψ∗2)
T with

Φ1(σ) =
p1(σ) + p2(σ)

2
, Φ2(σ) =

p1(σ)− p2(σ)

2i
, for θ ∈ [−1, 0].

In addition,

Ψ∗1(r) =
q1(r) + q2(r)

2
, Ψ∗2(r) =

q1(r)− q2(r)
2i

, for r ∈ [0, 1].

Then we can compute by (28)

D∗1 := (Ψ∗1 , Φ1), D∗2 := (Ψ∗1 , Φ2), D∗3 := (Ψ∗2 , Φ1), D∗4 := (Ψ∗2 , Φ2).

Define (Ψ∗, Φ) = (Ψ∗j , Φk) =

(
D∗1 D∗2
D∗3 D∗4

)
and construct a new basis Ψ for P∗ by

Ψ = (Ψ1, Ψ2)
T = (Ψ∗, Φ)−1Ψ∗.

Then (Ψ, Φ) = I2. In addition, define fn := (β1
n, β2

n), where

β1
n =

(
cos n

l x
0

)
, β2

n =

(
0

cos n
l x

)
.

We also define

d · fn = d1β1
n + d2β2

n, for d = (d1, d2)
T ∈ D1,

and

< N, P >:=
1

lπ

∫ lπ

0
N1P1dx +

1
lπ

∫ lπ

0
N2P2dx

for N = (N1, N2), P = (P1, P2), N, P ∈ X, and < φ, f0 >= (< φ, f 1
0 >,< φ, f 2

0 >)T .
Equation (21) can be rewritten as

dN(t)
dt

= Aτ̃ Nt + R(Nt, µ), (29)

where

R(Nt, µ) =

{
0, θ ∈ [−1, 0),
F(Nt, µ), θ = 0.

(30)

By the decomposition of C1, the above solution is

Nt = Φ
(

x1
x2

)
fn + h(x1, x2, µ), (31)

with (
x1
x2

)
= (Ψ,< Nt, fn >),
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and
h(x1, x2, µ) ∈ PSC1, h(0, 0, 0) = 0, Dh(0, 0, 0) = 0.

The solution of (22) is

Nt = Φ
(

x1(t)
x2(t)

)
fn + h(x1, x2, 0). (32)

Let z = x1 − ix2, and notice that p1 = Φ1 + iΦ2. Then, we can obtain

Φ
(

x1
x2

)
fn = (Φ1, Φ2)

(
z+z

2
i(z−z)

2

)
fn =

1
2
(p1z + p1z) fn,

and

h(x1, x2, 0) = h(
z + z

2
,

i(z− z)
2

, 0).

Hence, (32) is

Nt =
1
2
(p1z + p1z) fn + h(

z + z
2

,
i(z− z)

2
, 0)

=
1
2
(p1z + p1z) fn + W(z, z),

(33)

where

W(z, z) = h(
z + z

2
,

i(z− z)
2

, 0).

From [19], z meets

ż = iωnτ̃z + g(z, z), (34)

among them

g(z, z) = (Ψ1(0)− iΨ2(0)) < F(Nt, 0), fn > . (35)

Let

W(z, z) = W20
z2

2
+ W11zz + W02

z2

2
+ · · · , (36)

g(z, z) = g20
z2

2
+ g11zz + g02

z2

2
+ · · · ; (37)

from Equations (33) and (36), we can obtain

Nt(0) =
1
2
(z + z) cos

(nx
l

)
+ W(1)

20 (0)
z2

2
+ W(1)

11 (0)zz + W(1)
02 (0)

z2

2
+ · · · ,

Pt(0) =
1
2
(ξ + ξz) cos

(nx
l

)
+ W(2)

20 (0)
z2

2
+ W(2)

11 (0)zz + W(2)
02 (0)

z2

2
+ · · · ,

Nt(−1) =
1
2
(ze−iωn τ̃ + zeiωn τ̃) cos(

nx
l
)+W(1)

20 (−1)
z2

2
+W(1)

11 (−1)zz+W(1)
02 (−1)

z2

2
+ · · · ,

and

F1(Nt, 0) =
1
τ̃

F1 = α1Nt(0)Pt(0) + O(4), (38)

F2(Nt, 0) =
1
τ̃

F2 = cNt(−1)Pt(0) + β1P2
t (0) + β2P3

t (0) + O(4), (39)
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with

α1 = −ah, β1 =
βc
(
3µ2P2

∗ − µ4)
(µ2 + P2∗ )

2 , β2 = −
4βcµ2P∗

(
P2
∗ − µ2)

(µ2 + P2∗ )
4 .

Hence,

F1(Nt, 0) = cos2(
nx
l
)(

z2

2
χ20 + zzχ11 +

z2

2
χ20) +

z2z
2

cos
nx
l

ς11 +
z2z
2

cos3 nx
l

ς12 + · · · , (40)

F2(Nt, 0) = cos2(
nx
l
)(

z2

2
$20 + zz$11 +

z2

2
$20) +

z2z
2

cos
nx
l

ς21 +
z2z
2

cos3 nx
l

ς22 + · · · , (41)

< F(Nt, 0), fn >=τ̃(F1(Nt, 0) f 1
n + F2(Nt, 0) f 2

n)

=
z2

2
τ̃

(
χ20
ς20

)
Γ + zzτ̃

(
χ11
ς11

)
Γ +

z2

2
τ̃

(
χ20
ς20

)
Γ +

z2z
2

τ̃

(
κ1
κ2

)
+ · · ·

(42)

with

Γ =
1

lπ

∫ lπ

0
cos3(

nx
l
)dx,

χ20 =
α1ξ

2
, χ11 = α1

(
η

4
+

ξ

4

)
, ς12 = 0,

ς11 = α1(ξW1
11(0) + W2

11(0) +
W1

20(0)
2

η +
W2

20(0)
2

),

$20 =
1
2

ξe−iτωn
(

c + β1ξeiτωn
)

,

$11 =
1
4

e−iτωn
(

c
(

η + ξe2iτωn
)
+ 2β1ηξeiτωn

)
,

ς21 = W2
11(0)

(
2β1ξ + ce−iτωn

)
+ W2

20(0)
(

β1η +
1
2

ceiτωn

)
+ cξW1

11(−1) +
cηW1

02(−1)
2

,

ς22 =
3
4

β2ηξ2.

(43)

κ1 = ς11
1

lπ

∫ lπ

0
cos2(

nx
l
)dx + ς12

1
lπ

∫ lπ

0
cos4(

nx
l
)dx,

κ2 = ς21
1

lπ

∫ lπ

0
cos2(

nx
l
)dx

+ ς22
1

lπ

∫ lπ

0
cos4(

nx
l
)dx.

Denote
Ψ1(0)− iΨ2(0) := (γ1 γ2).

Notice that
1

lπ

∫ lπ

0
cos3(

nx
l
)dx = 0, n ∈ N,

and we have

(Ψ1(0)− iΨ2(0)) < F(Nt, 0), fn >=

z2

2
(γ1χ20 + γ2ς20)Γτ̃ + zz(γ1χ11 + γ2ς11)Γτ̃ +

z2

2
(γ1χ20 + γ2ς20)Γτ̃

+
z2z
2

τ̃[γ1κ1 + γ2κ2] + · · · ,

(44)

From (35), (37) and (44), we have g20 = g11 = g02 = 0, for n ∈ N. If n = 0, we obtain

g20 = γ1τ̃χ20 + γ2τ̃$20, g11 = γ1τ̃χ11 + γ2τ̃$11, g02 = γ1τ̃χ20 + γ2τ̃$20.
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Furthermore, for n ∈ N0, g21 = τ̃(γ1κ1 + γ2κ2). Now, we compute W20(θ) and W11(θ)
for θ ∈ [−1, 0]. From [19], we obtain

Ẇ(z, z) = W20zż + W11żz + W11zż + W02zż + · · · ,

Aτ̃W(z, z) = Aτ̃W20
z2

2
+ Aτ̃W11zz + Aτ̃W02

z2

2
+ · · · ,

Ẇ(z, z) = Aτ̃W + H(z, z),

where

H(z, z) = H20
z2

2
+ W11zz + H02

z2

2
+ · · ·

= X0F(Nt, 0)−Φ(Ψ,< X0F(Nt, 0), fn > · fn).
(45)

Hence, we have

(2iωnτ̃ − Aτ̃)W20 = H20, − Aτ̃W11 = H11, (−2iωnτ̃ − Aτ̃)W02 = H02, (46)

that is,

W20 = (2iωnτ̃ − Aτ̃)
−1H20, W11 = −A−1

τ̃ H11, W02 = (−2iωnτ̃ − Aτ̃)
−1H02. (47)

By (44), we have

H(z,z) = −Φ(0)Ψ(0) < F(Nt, 0), fn > · fn

=− (
p1(θ) + p2(θ)

2
,

p1(θ)− p2(θ)

2i
)

(
Φ1(0)
Φ2(0)

)
< F(Nt, 0), fn > · fn

=− 1
2
[p1(θ)(Φ1(0)− iΦ2(0)) + p2(θ)(Φ1(0) + iΦ2(0))] < F(Nt, 0), fn > · fn

=− 1
2
[(p1(θ)g20 + p2(θ)g02)

z2

2
+ (p1(θ)g11 + p2(θ)g11)zz + (p1(θ)g02 + p2(θ)g20)

z2

2
] + · · · .

Therefore by (45), for θ ∈ [−1, 0),

H20(θ) =

{
0 n ∈ N,
− 1

2 (p1(θ)g20 + p2(θ)g02) · f0 n = 0,

H11(θ) =

{
0 n ∈ N,
− 1

2 (p1(θ)g11 + p2(θ)g11) · f0 n = 0,

H02(θ) =

{
0 n ∈ N,
− 1

2 (p1(θ)g02 + p2(θ)g20) · f0 n = 0,

and
H(z, z)(0) = F(Nt, 0)−Φ(Ψ,< F(Nt, 0), fn >) · fn,

where

H20(0) =


τ̃

(
χ20
$20

)
cos2( nx

l ), n ∈ N,

τ̃

(
χ20
$20

)
− 1

2 (p1(0)g20 + p2(0)g02) · f0, n = 0.
(48)

H11(0) =


τ̃

(
χ11
$11

)
cos2( nx

l ), n ∈ N,

τ̃

(
χ11
$11

)
− 1

2 (p1(0)g11 + p2(0)g11) · f0, n = 0.
(49)
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Then, we can obtain

Ẇ20 = Aτ̃W20 = 2iωnτ̃W20 +
1
2
(p1(θ)g20 + p2(θ)g02) · fn, − 1 ≤ θ < 0.

That is,

W20(θ) =
i

2iωnτ̃
(g20 p1(θ) +

g02
3

p2(θ)) · fn + E1e2iωn τ̃θ ,

where

E1 =

{
W20(0) n ∈ N,
W20(0)− i

2iωn τ̃ (g20 p1(θ) +
g02
3 p2(θ)) · f0 n = 0.

Using the definition of Aτ̃ and (46), we have that for −1 ≤ θ < 0

− (g20 p1(0) +
g02
3

p2(0)) · f0 + 2iωnτ̃E1 − Aτ̃(
i

2ωnτ̃
(g20 p1(0) +

g02
3

p2(0)) · f0)

− Aτ̃E1 − Lτ̃(
i

2ωnτ̃
(g20 p1(0) +

g02
3

p2(0)) · fn + E1e2iωn τ̃θ)

= τ̃

(
χ20
$20

)
− 1

2
(p1(0)g20 + p2(0)g02) · f0.

As
Aτ̃ p1(0) + Lτ̃(p1 · f0) = iω0 p1(0) · f0,

and
Aτ̃ p2(0) + Lτ̃(p2 · f0) = −iω0 p2(0) · f0,

we have

2iωnE1 − Aτ̃E1 − Lτ̃E1e2iωn = τ̃

(
χ20
$20

)
cos2(

nx
l
), n ∈ N0.

That is,

E1 = τ̃E
(

χ20
$20

)
cos2(

nx
l
)

where

E =

(
2iωnτ̃ + d1

n2

l2 + aA aB
−Ce−2iωn τ̃ −D + 2iωnτ̃ + d2

n2

l2

)−1

.

Similarly, we have

−Ẇ11 =
i

2ωnτ̃
(p1(θ)g11 + p2(θ)g11) · fn, − 1 ≤ θ < 0.

That is,

W11(θ) =
i

2iωnτ̃
(p1(θ)g11 − p1(θ)g11) + E2.

Then,

E2 = τ̃E∗
(

χ11
$11

)
cos2(

nx
l
),

where

E∗ =

(
d1

n2

l2 + aA aB
−C −D + d2

n2

l2

)−1

.
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Therefore, we have c1(0) = i
2ωn τ̃ (g20g11 − 2|g11|2 − |g02|2

3 ) + 1
2 g21, µ2 = − Re(c1(0))

Re(λ′(τ j
n))

,

T2 = − 1
ωn τ̃ [Im(c1(0)) + µ2 Im(λ′(τ

j
n))], β2 = 2Re(c1(0)).

(50)

By [19], we have the following theorem.

Theorem 4. For any critical value τ
j
n, we have the Hopf bifurcation is forward (µ2 > 0) or

backward (µ2 < 0). The bifurcating periodic solutions are orbitally asymptotically stable (β2 < 0)
or unstable (β2 > 0). The period increases (T2 > 0) or decreases (T2 < 0).

4. Numerical Simulations

In order to verify the previous conclusion, we provide some numerical simulations by
Matlab. In particular, the numerical simulation of the systems with τ = 0 is implemented
by the pdepe function in Matlab, and τ > 0 is implemented by the finite-difference methods.
Choose the following parameters.

d1 = 2, h = 1.667, s = 0.267, α = 0.1, a = 1, β = 0.48, µ = 0.18, c = 0.5, l = 4. (51)

By direct computation, we have (N∗, P∗) ≈ (1.2130, 0.3344) is the unique positive
equilibrium, and A ≈ 0.8244, B ≈ 2.0220, C ≈ 0.1672, D ≈ 0.3064, BC− AD ≈ 0.0854 > 0,
and a0 ≈ 0.3717. Hence, hypothesis (11) holds. Now, we give the curves of a− and d1

d2
a0

with the predator’s diffusion coefficient d2 (Figure 1). We can see that a0 < a < a− holds
when d2 < d∗2 , then the Turing instability of (N∗, P∗) may occur. When d2 > d∗2 , then a > a−
holds, which implies (N∗, P∗) is locally asymptotically stable. Choose d2 = 0.1, we have
a− = 2.4603, σ− = 0.1723, σ+ = 2.4800, and k ∈ {2, 3, 4, 5, 6} such that k2

l2 ∈ (σ−, σ+). Then
(N∗, P∗) is Turing unstable (Figure 2).

a0

d1

d2

a0

a

a
-

d2 = d2
*

0.2 0.4 0.6 0.8 1.0

d2

0.5

1.0

1.5

2.0

2.5

a

Figure 1. The curves of a− and d1
d2

a0 with parameter d2.

We choose d2 = 0.4, and change the parameter β, which represents the release rate
of toxic chemicals by the TPP population. The bifurcation diagram of system (4) with
parameter β is given in Figure 3. We can see that the increasing parameter β is not beneficial
to the stability of (N∗, P∗) initially. However, when β crosses some critical value, increasing
parameter β is of benefit to the stability of (N∗, P∗). In particular, when the parameter β is
sufficiently large, (N∗, P∗) will always be stable.
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Figure 2. Numerical simulations for (4) with τ = 0 and d2 = 0.1.
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Figure 3. Bifurcation diagram of system (4) with parameter beta.

If we choose β = 0.48, we have τ∗ = τ0
0 ≈ 1.5710 and ω0 ≈ 0.2460. Then (P∗, N∗) is

locally asymptotically stable for τ ∈ [0, τ∗) (Figure 4), and Hopf bifurcation occurs when
τ = τ∗. We obtain

µ2 ≈ 0.5391 > 0, β2 ≈ −0.1217 < 0, and T2 ≈ 12.3699 > 0.

Hence, the stable bifurcating periodic solutions exist for τ > τ∗ (Figure 5). However, if
we choose β = 0.6 and τ = 2.3, (P∗, N∗) is locally asymptotically stable (Figure 6).

Figure 4. Numerical simulations for (4) with τ = 1.2 and β = 0.48.
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Figure 5. Numerical simulations for (4) with τ = 1.7 and β = 0.48.

Figure 6. Numerical simulations for (4) with τ = 1.7 and β = 0.6.

5. Conclusions

Diffusion and time delay was incorporated into a nutrient–phytoplankton model.
The instability and Hopf bifurcation induced by the time delay was studied. Through
the central manifold theory and normal form method, some parameters were given to
determine the property of bifurcating periodic solutions. The results indicate diffusion may
induce Turing unstable. The release rate β of toxic chemicals by the TPP population has a
stabilizing and destabilizing effect on the stability of the positive equilibrium. In addition,
the time delay can also affect the stability of the positive equilibrium, and it can induce
periodic oscillation of prey and predator population density.
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