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Abstract

:

We consider a nonlinear eigenvalue problem driven by the Dirichlet   ( p , 2 )  -Laplacian. The parametric reaction is a Carathéodory function which exhibits   ( p − 1 )  -sublinear growth as   x → + ∞   and as   x →  0 +   . Using variational tools and truncation and comparison techniques, we prove a bifurcation-type theorem describing the “spectrum” as   λ > 0   varies. We also prove the existence of a smallest positive eigenfunction for every eigenvalue. Finally, we indicate how the result can be extended to   ( p , q )  -equations (  q ≠ 2  ).
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1. Introduction


Let   Ω ⊆  R N    be a bounded domain with   C 2  -boundary   ∂ Ω  . In this paper, we study the following nonlinear eigenvalue problem for the Dirichlet   ( p , 2 )  -Laplacian


   (  P λ  )        −  Δ p  u  ( z )  − Δ u  ( z )  = λ f  ( z , u  ( z )  )   in  Ω ,         u |   ∂ Ω   = 0 ,  u ⩾ 0 ,  λ > 0 ,  2 < p .       








For every   r ∈ ( 1 , ∞ )   by   Δ r   we denote the r-Laplacian differential operator defined by


   Δ r  u =   div  ( | D u |   r − 2    D u )  ∀ u ∈   W 0  1 , p    ( Ω )   








(  D u   stands for the gradient of u). When   r = 2  , we have the usual Laplacian denoted by  Δ .



In the reaction,   λ > 0   is a parameter and   f ( z , x )   is a Carathéodory function. Such a function is jointly measurable. We assume that for almost all   z ∈ Ω  ,   f ( z , · )   is   ( p − 1 )  -sublinear as   x → + ∞  . We are looking for positive solutions as the parameter   λ > 0   varies. Our work complements those by Gasiński and Papageorgiou [1] and Papageorgiou, Rădulescu and Repovš [2] where the reaction is   ( p − 1 )  -superlinear in   x ∈ R  . Moreover, in the aforementioned works, the equation is driven by the p-Laplacian differential operator which is homogeneous, a property used by the authors in the proof of their results. In contrast, here, the   ( p , 2 )  -Laplace differential operator is not homogeneous.



We mention that equations driven by the sum of two differential operators of different structures (such as   ( p , 2 )  -equations) arise in the mathematical models of many physical processes. We refer to the survey papers of Marano and Mosconi [3], Rădulescu [4] and the references therein.




2. Mathematical Background—Hypotheses


The main spaces in the analysis of problem   (  P λ  )   are the Sobolev space    W 0  1 , p    ( Ω )    and the Banach space


   C 0 1   (  Ω ¯  )  =  { u ∈  C 1   (  Ω ¯  )  :  u  |  ∂ Ω   = 0 }  .  











By   ∥ · ∥  , we denote the norm of the Sobolev space    W 0  1 , p    ( Ω )   . On account of the Poincaré inequality, we have


   ∥ u ∥  =   ∥ D u ∥  p   ∀ u ∈  W 0  1 , p    ( Ω )  .  











The Banach space    C 0 1   ( Ω )    is an ordered Banach space with positive (order) cone


   C +  =  { u ∈  C 0 1   ( Ω )  :  u  ( z )  ⩾ 0   for all   z ∈  Ω ¯  }  .  











This cone has a nonempty interior given by


  int  C +  =  { u ∈  C +  :  u  ( z )  > 0   for all   z ∈ Ω ,     ∂ u   ∂ n     |   ∂ Ω    < 0 }  ,  








with n being the outward unit normal on   ∂ Ω   and     ∂ u   ∂ n   =   ( D u , n )   R N    .



We know that if   r ∈ ( 1 , + ∞ )  , then    W 0  1 , r     ( Ω )  *  =  W  − 1 ,  r ′     ( Ω )    (   1 r  +  1  r ′   = 1  ). Let    A r  :  W 0  1 , r    ( Ω )  ⟶  W  − 1 ,  r ′     ( Ω )    by the operator defined by


   〈  A r   ( u )  , h 〉  =  ∫ Ω    | D u |   r − 2     ( D u , D h )   R N    d z   for all   u , h ∈  W 0  1 , r    ( Ω )  .  











The next proposition gathers the main properties of this operator (see Gasiński and Papageorgiou [5]).



Proposition 1.

The operator    A r  :  W 0  1 , r    ( Ω )  ⟶  W  − 1 ,  r ′     ( Ω )    is bounded (that is, maps bounded sets to bounded sets), continuous, strictly monotone (thus maximal monotone too) and of type    ( S )  +  , that is,   A r   has the following property:




	
if    u n  ⟶ u   weakly in    W 0  1 , r    ( Ω )    and     lim sup  n → ∞    〈  A r   (  u n  )  ,  u n  − u 〉  ⩽ 0   , then    u n  ⟶ u   in    W 0  1 , r    ( Ω )   .










If   r = 2  , then we write    A 2  = A ∈ L  (  H 0 1   ( Ω )  ,  H  − 1    ( Ω )  )   .



The Dirichlet r-Laplace differential operator has a principal eigenvalue denoted by     λ ^  1   ( r )   . Therefore, if we consider the nonlinear eigenvalue problem


      −  Δ r  u  ( z )  =  λ ^    | u  ( z )  |   r − 2   u  ( z )   in  Ω ,         u |   ∂ Ω   = 0 ,      








then this problem has a smallest eigenvalue     λ ^  1   ( r )  > 0   which is isolated and simple. It has the following variational characterization:


    λ ^  1   ( r )  =  inf  u ∈  W 0  1 , r    ( Ω )  , u ≠ 0      ∥ D u ∥  r r    ∥ u ∥  r r   .  



(1)







For   x ∈ R  , we define    x ±  = max  { ± x , 0 }   . Then, for   u ∈  W 0  1 , p    ( Ω )   , we set    u ±   ( z )  = u   ( z )  ±    for all   z ∈ Ω  . We know that


   u ±  ∈  W 0  1 , p    ( Ω )  ,  u =  u +  =  u −  ,   | u |  =  u +  +  u −  .  











A set   S ⊆  W 0  1 , p    ( Ω )    is said to be “downward directed”, if given    u 1  ,  u 2  ∈ S  , we can find   u ∈ S   such that   u ⩽  u 1   ,   u ⩽  u 2   .



If   u , v : Ω ⟶ R   are measurable functions, then we write   u ≺ v   if and only if for all compact sets   K ⊆ Ω  , we have


  0 <  c K  ⩽ v  ( z )  − u  ( z )    for a . a .   z ∈ K .  











Evidently if   u , v ∈ C (  Ω ¯  )   and   u ( z ) < v ( z )   for all   z ∈ Ω  , then   u ≺ v  .



Now, we introduce the hypotheses on the reaction   f ( z , x )  .



H:  f : Ω × R ⟶ R   is a Carathéodory function such that for a.a.   z ∈ Ω  ,   f ( z , 0 ) = 0  ,   f ( z , x ) > 0   for all   x > 0   and



	(i)

	
For every   ϱ > 0  , there exists    a ϱ  ∈  L ∞   ( Ω )    such that


  f  ( z , x )  ⩽  a ϱ   ( z )    for a . a .   z ∈ Ω ,  all  0 ⩽ x ⩽ ϱ ;  












	(ii)

	
   lim  x → + ∞     f ( z , x )   x  p − 1    = 0   uniformly for a.a.   z ∈ Ω  ;




	(iii)

	
   lim  x →  0 +      f ( z , x )   x  p − 1    = 0   uniformly for a.a.   z ∈ Ω  ;




	(iv)

	
for every   ϱ > 0  , there exists s    ξ ^  ϱ  > 0   such that for a.a.   z ∈ Ω  , the function   x ⟼ f  ( z , x )  +   ξ ^  ϱ   x  p − 1     is nondecreasing on   [ 0 , ϱ ]  .







Remark 1.

Since we look for positive solutions and the above hypotheses concern the positive semiaxis    R +  =  [ 0 , + ∞ )   , without any loss of generality we may assume that


   f ( z , x ) = 0   f o r  a . a .   z ∈ Ω ,  a l l  x ⩽ 0 .   



(2)







Hypothesis   H ( i i )   implies that   f ( z , · )   is   ( p − 1 )  -sublinear as   x → + ∞   while hypothesis   H ( i i i )   says that   f ( z , · )   is sublinear near   0 +  . Hypothesis   H ( i v )   is essentially a one-sided local Lipschitz condition.






3. Positive Solutions


We introduce the following two sets:


    L   =    { λ > 0 :   problem  (  P λ  ) admits a positive solution  } ;       S λ    =     the set of positive solutions for problem  (  P λ  )  .     








We also set


   λ *  = inf L .  











First, we establish the existence of admissible parameters (eigenvalues) and determine the regularity properties of the corresponding solutions (eigenfunctions).



Proposition 2.

If hypotheses H hold, then   L ≠ ∅   and    S λ  ⊆ int  C +    for all   λ > 0  .





Proof. 

For every   λ > 0  , let    φ λ  :  W 0  1 , p    ( Ω )  ⟶ R   be the   C 1  -functional defined by


   φ λ   ( u )  =  1 p    ∥ D u ∥  p p  +  1 2    ∥ D u ∥  2 2  −  ∫ Ω  F  ( z ,  u +  )   d z  ∀ u ∈  W 0  1 , p    ( Ω )  ,  








with   F  ( z , x )  =  ∫ 0 x  f  ( z , s )   d s  . From hypotheses   H ( i ) , ( i i )  , we see that given   ε > 0  , we can find    c ε  > 0   such that


     0 ⩽ F  ( z , x )  ⩽  ε p   x p  +  c ε    for a . a .   z ∈ Ω ,  all  x ⩾ 0 .     



(3)




For   u ∈  W 0  1 , p    ( Ω )   , using (3) we have


   φ λ   ( u )  ⩾  1 p     ∥ D u ∥  p p  − λ ε   ∥ u ∥  p p   +  1 2    ∥ D u ∥  p p  − λ  c ε    | Ω |  N  ,  








with    | · |  N   being the Lebesgue measure on   R N  . Using (1) with   r = p  , we obtain


   φ λ   ( u )  ⩾  1 p   1 −   λ ε     λ ^  p   ( p )       ∥ D u ∥  p p  − λ  c ε    | Ω |  N  .  











Choosing   ε ∈ ( 0 ,     λ ^  1   ( p )   λ  )  , we infer that


   φ λ   ( u )  ⩾  c 1    ∥ u ∥  p  − λ  c ε    | Ω |  N  ,  








for some    c 1  > 0   and thus   φ λ   is coercive.



Additionally, using the Sobolev imbedding theorem, we see that   φ λ   is sequentially weakly lower semicontinuous. So, by the Weierstrass–Tonelli theorem, we can find    u 0  ∈  W 0  1 , p    ( Ω )    such that


      φ λ   (  u 0  )  =  min  u ∈  W 0  1 , p    ( Ω )     φ λ   ( u )  .     



(4)







On account of the strict positivity of   f ( z , · )  , if    u ¯  ∈ int  C +   , then


      ∫ Ω  F  ( z ,  u ¯  )   d z > 0 .     



(5)







Then, we have


      φ λ   (  u ¯  )     =     1 p   ∥ D   u ¯    ∥  p p  +  1 2    ∥ D  u ¯  ∥  2 2  − λ  ∫ Ω  F  ( z ,  u ¯  )   d z       =     c 2  − λ  ∫ Ω  F  ( z ,  u ¯  )   d z ,     








with    c 2  =  c 2   (  u ¯  )  > 0  . From (5) and by choosing   λ > 0   big, we have


   φ λ   (  u ¯  )  < 0 ,  








so


   φ λ   (  u 0  )  < 0 =  φ λ   ( 0 )   








(see (4)) and thus


   u 0  ≠ 0 .  











From (4), we have


   φ  λ  ′   (  u 0  )  = 0 ,  








so


      〈  A p   (  u 0  )  , h 〉  +  〈 A  (  u 0  )  , h 〉  = λ  ∫ Ω  f  ( z ,  u 0 +  )  h  d z  ∀ h ∈  W 0  1 , p    ( Ω )  .     



(6)







In (6), we choose   h = −  u 0 −  ∈  W 0  1 , p    ( Ω )   . We obtain


   ∥ D   u 0 −    ∥  p  ⩽ 0 ,  








thus    u 0  ⩾ 0   and    u 0  ≠ 0  .



Then, from (6), we have


         −  Δ p   u 0   ( z )  − Δ  u 0   ( z )  = λ f  ( z ,  u 0   ( z )  )   in  Ω ,        u 0    |   ∂ Ω   = 0 ,         



(7)




for   λ > 0   big and so   L ≠ ∅  .



From Theorem 7.1 of Ladyzhenskaya and Ural’tseva [6], we have that    u 0  ∈  L ∞   ( Ω )   . Then, the nonlinear regularity theory of Lieberman [7] implies that    u 0  ∈  C +  \  { 0 }   . Let    ϱ = ∥   u 0    ∥  ∞    and let     ξ ^  ϱ  > 0   be as postulated by hypothesis   H ( i v )  . From (7), we have


  −  Δ p   u 0   ( z )  − Δ  u 0   ( z )  + λ   ξ ^  ϱ   u 0    ( z )   p − 1   ⩾ 0  in  Ω ,  








so


   Δ p   u 0   ( z )  + Δ  u 0   ( z )  ⩽ λ   ξ ^  ϱ   u 0    ( z )   p − 1    in  Ω ,  








and thus    u 0  ∈ int  C +    (see Pucci and Serrin [8] (pp. 111, 120)). Therefore, we conclude that    S λ  ⊆ int  C +    for all   λ > 0  .  □





Next, we show that  L  is connected (more precisely, an upper half-line).



Proposition 3.

If hypotheses H hold,   λ ∈ L   and   ϑ > λ  , then   ϑ ∈ L  .





Proof. 

Since   λ ∈ L  , we can find    u λ  ∈  S λ  ∈ int  C +    (see Proposition 2). We introduce the Carathéodory function   k ( z , x )   defined by


  k  ( z , x )  =      f ( z ,  u λ   ( z )  )    if    x ⩽  u λ   ( z )        f ( z , x )    if     u λ   ( z )  < x .       



(8)







We set


  K  ( z , x )  =  ∫ 0 x  k  ( z , s )   d s  








and consider the   C 1  -functional    ψ ϑ  :  W 0  1 , p    ( Ω )  ⟶ R   defined by


   ψ ϑ   ( u )  =  1 p    ∥ D u ∥  p p  +  1 2    ∥ D u ∥  2 2  −  ∫ Ω  ϑ K  ( z , u )   d z  ∀ u ∈  W 0  1 , p    ( Ω )  .  











Note that (8) and hypotheses   H ( i ) , ( i i )   imply that, given   ε > 0  , we can find     c ^  ε  > 0   such that


  K  ( z , x )  ⩽  ε p   x p  +   c ^  ε    for a . a .   z ∈ Ω ,  all  x ∈ R .  



(9)







Using (9) and choosing   ε > 0   small, as in the proof of Proposition 2, we show that   ψ ϑ   is coercive. In addition, it is sequentially weakly lower semicontinuous. Therefore, we can find    u ϑ  ∈  W 0  1 , p    ( Ω )    such that


   ψ ϑ   (  u ϑ  )  =  min  u ∈  W 0  1 , p    ( Ω )     ψ ϑ   ( u )  ,  








so    ψ  ϑ  ′   (  u ϑ  )  = 0   and thus


   〈  A p   (  u ϑ  )  , h 〉  +  〈 A  (  u ϑ  )  , h 〉  =  ∫ Ω  ϑ k  ( z ,  u ϑ  )  h  d z  ∀ h ∈  W 0  1 , p    ( Ω )  .  



(10)







In (10), we choose   h =   (  u λ  −  u ϑ  )  +  ∈  W 0  1 , p    ( Ω )   . Then, using (8), we have


        〈  A p   (  u ϑ  )  ,   (  u λ  −  u ϑ  )  +  〉  +  〈 A  (  u ϑ  )  ,   (  u λ  −  u ϑ  )  +  〉        =     ∫ Ω  ϑ f  ( z ,  u λ  )    (  u λ  −  u ϑ  )  +   d z       ⩾     ∫ Ω  λ f  ( z ,  u λ  )    (  u λ  −  u ϑ  )  +   d z       =     〈  A p   (  u λ  )  ,   (  u λ  −  u ϑ  )  +  〉  +  〈 A  (  u λ  )  ,   (  u λ  −  u ϑ  )  +  〉      








since   f ⩾ 0   and    u λ  ∈  S λ   . Thus,


   u λ  ⩽  u ϑ   



(11)




(see Proposition 1).



From (8), (10) and (11), we infer that


      −  Δ p   u ϑ   ( z )  − Δ  u ϑ   ( z )  = ϑ f  ( z ,  u ϑ   ( z )  )   in  Ω ,        u ϑ    |   ∂ Ω   = 0 ,      








so    u ϑ  ∈  S ϑ  ⊆  C +    and thus   ϑ ∈ L  .  □





A byproduct of the above proof is the following corollary.



Corollary 1.

If hypotheses H hold,   λ ∈ L   and    u λ  ∈  S λ  ⊆ int  C +    and   ϑ > λ  , then   ϑ ∈ L   and we can find    u ϑ  ∈  S ϑ  ⊆ int  C +    such that    u λ  ⩽  u ϑ   .





We can improve this corollary using the strong comparison principle of Gasiński and Papageorgiou [1] (Proposition 3.2).



Proposition 4.

If hypotheses H hold,   λ ∈ L   and    u λ  ∈  S λ  ⊆ int  C +    and   ϑ > λ  , then   ϑ ∈ L   and we can find    u ϑ  ∈  S ϑ  ⊆ int  C +    such that    u ϑ  −  u λ  ∈ int  C +   .





Proof. 

From Corollary 1, we already know that   ϑ ∈ L   and there exists    u ϑ  ∈  S ϑ  ⊆ int  C +    such that


   u λ  ⩽  u ϑ  ,   u λ  ≠  u ϑ  .  



(12)







Consider the function   a :  R N  ⟶  R N    defined by


  a  ( y )  =   | y |   p − 2   y + y  ∀ y ∈  R N  .  











Evidently,   a ∈  C 1   (  R N  ;  R N  )    (recall that   2 < p  ) and we have


  ∇ a  ( y )  =   | y |   p − 2    id +  ( p − 2 )    y ⊗ y    | y |  2    + id  ∀ y ≠ 0 ,  








so


    ∇ a ( y ) , ξ , ξ   R N   ⩾   | ξ |  2   ∀ y , ξ ∈  R N  .  











Then, the tangency principle of Pucci and Serrin [8] (Theorem 2.5.2, p. 35) implies that


   u λ   ( z )  <  u ϑ   ( z )   ∀ z ∈ Ω  



(13)




(see (12)). Let    ϱ = ∥   u ϑ    ∥  ∞    and let     ξ ^  ϱ  > 0   be as postulated by hypothesis   H ( i v )  . We pick     ξ ˜  ϱ  >   ξ ^  ϱ    and using (12), hypothesis   H ( i v )   and the facts that   f ⩾ 0   and    u λ  ⩽  u ϑ   , we have


         −  Δ p   u ϑ  − Δ  u ϑ  + ϑ   ξ ˜  ϱ   u  ϑ   p − 1         =    ϑ ( f  ( z ,  u ϑ  )  +   ξ ^  ϱ   u  ϑ   p − 1   ) + ϑ  (   ξ ˜  ϱ  −   ξ ^  ϱ  )   u  ϑ   p − 1         ⩾    ϑ ( f  ( z ,  u λ  )  +   ξ ^  ϱ   u  λ   p − 1   ) + ϑ  (   ξ ˜  ϱ  −   ξ ^  ϱ  )   u  ϑ   p − 1         ⩾    λ f  ( z ,  u λ  )  + ϑ   ξ ˜  ϱ   u  λ   p − 1         =    −  Δ p   u λ  − Δ  u λ  + ϑ   ξ ˜  ϱ   u  λ   p − 1    in  Ω .     



(14)







Note that on account of (13), we have


  0 ≺ ϑ  (   ξ ˜  ϱ  −   ξ ^  ϱ  )   (  u  ϑ   p − 1   −  u  λ   p − 1   )  .  



(15)







Then, (14), (15) and Proposition 3.2 of Gasiński and Papageorgiou [1] imply that    u ϑ  −  u λ  ∈ int  C +   .  □





Proposition 5.

If hypotheses H hold, then    λ *  > 0  .





Proof. 

We argue by contradiction. Suppose that    λ *  = 0  . Let     {  λ n  }   n ∈ N   ⊆ L   be such that    λ n  →  0 +    and consider    u n  =  u  λ n   ⊆ int  C +    for all   n ∈ N  . We have


   〈  A p   (  u n  )  , h 〉  +  〈 A  (  u n  )  , h 〉  =  ∫ Ω   λ n  f  ( z ,  u n  )  h  d z  ∀ h ∈  W 0  1 , p    ( Ω )  ,  n ∈ N .  



(16)







On account of hypotheses   H ( i ) , ( i i )  , given   ε > 0  , we can find    c ε  > 0   such that


  0 ⩽ f  ( z ,  u n   ( z )  )  ⩽ ε  u n    ( z )   p − 1   +  c ε    for a . a .   z ∈ Ω ,  n ∈ N .  



(17)







In (16), first, we choose   h =  u n  ∈  W 0  1 , p    ( Ω )    and then on the right hand side we use (17). We obtain


   ∥ D   u n    ∥  p p   ⩽ ε ∥   u n    ∥  p p  +  c 3   ∥  u n  ∥   ∀ n ∈ N ,  








for some    c 3  =  c 3   ( ε )  > 0  , so


   1 −  ε    λ ^  1   ( p )       ∥  u n  ∥   p − 1   ⩽  c 3   ∀ n ∈ N  








(see (1) with   r = p  ). Choosing   ε ∈ ( 0 ,   λ ^  1   ( p )  )  , we see that the sequence     {  u n  }   n ∈ N   ⊆  W 0  1 , p    ( Ω )    is bounded. We may assume that


   u n  ⟶  u *    weakly in    W 0  1 , p    ( Ω )   and   u n  ⟶  u *   in   L p   ( Ω )  .  



(18)







In (16), we choose   h =  u n  −  u *  ∈  W 0  1 , p    ( Ω )   , pass to the limit as   n → + ∞   and use (18). We obtain


   lim  n → + ∞     〈  A p   (  u n  )  ,  u n  −  u *  〉  +  〈 A  (  u n  )  ,  u n  −  u *  〉   = 0 ,  








so, using the monotonicity of A, we obtain


   lim sup  n → + ∞     〈  A p   (  u n  )  ,  u n  −  u *  〉  +  〈 A  ( u )  ,  u n  −  u *  〉   = 0 ,  








thus


   lim sup  n → + ∞   (  〈  A p   (  u n  )  ,  u n  −  u *  〉  ) ⩽ 0  








and hence


   u n  ⟶  u *   in   W 0  1 , p    ( Ω )   



(19)




(see Proposition 1). Hypotheses   H ( i ) , ( i i ) , ( i i i )   imply that given   ε > 0  , we can find    c 4  =  c 4   ( ε )  > 0   such that


  0 ⩽ f  ( z , x )  ⩽ ε x +  c 4   x  p − 1     for a . a .   z ∈ Ω ,  x ⩾ 0 ,  



(20)




so


  0 ⩽ f  ( z ,  u n   ( z )  )  ⩽ ε  u n   ( z )  +  c 4   u n    ( z )   p − 1     for a . a .   z ∈ Ω ,  n ∈ N ,  








thus the sequence   { f  ( · ,  u n   ( · )  )  ⊆  L  p ′    ( Ω )    is bounded (see (19) and recall that    p ′  < 2 < p  ). Therefore, if in (16) we pass to the limit as   n → + ∞  , we obtain


   〈  A p   (  u *  )  , h 〉  +  〈 A  (  u *  )  , h 〉  = 0  ∀ h ∈  W 0  1 , p    ( Ω )  .  











Choosing   h =  u *  ∈  W 0  1 , p    ( Ω )   , we obtain


   ∥ D   u *    ∥  p  ⩽ 0 ,  








so


   u *  = 0 .  



(21)







From (19) and the nonlinear regularity theory of Lieberman [7], we know that there exist   α ∈ ( 0 , 1 )   and    c 5  > 0   such that


   u n  ∈  C 0  1 , α    (  Ω ¯  )   and    ∥  u n  ∥    C 0  1 , α    (  Ω ¯  )    ⩽  c 5   ∀ n ∈ N .  



(22)




Since the embedding    C 0  1 , α    (  Ω ¯  )  ⊆  C 0 1   (  Ω ¯  )    is compact, from (19), (21) and (22), we infer that


   u n  ⟶ 0  in   C 0 1   (  Ω ¯  )   as  n → + ∞ .  



(23)







Let    y n  =   u n    ∥   u n    ∥   1 , 2      , for   n ∈ N  , with    ∥ · ∥   1 , 2    denoting the norm of    H 0 1   ( Ω )   . We have


   ∥   y n    ∥   1 , 2   = 0 ,   y n  ⩾ 0  ∀ n ∈ N .  











We may assume that


   y n  ⟶ y   weakly in    H 0 1   ( Ω )  ,   y n  ⟶ y  in   L 2   ( Ω )  ,  y ⩾ 0 .  



(24)







From (16), we have


   ∥   u n    ∥   1 , 2   p − 2    〈  A p   (  y n  )  , h 〉  +  〈 A  (  y n  )  , h 〉  =  λ n   ∫ Ω    f ( z ,  u n  )    ∥   u n    ∥   1 , 2     h  d z  ∀ h ∈  W 0  1 , p    ( Ω )  .  



(25)







On account of (20), we have


  0 ⩽   f ( z ,  u n   ( z )  )    ∥   u n    ∥   1 , 2     ⩽ ε  y n   ( z )  +  u n    ( z )   p − 2    y n   ( z )  ⩽  c 6   y n   ( z )    for a . a .   z ∈ Ω ,  n ∈ N ,  








for some    c 6  > 0   and thus


   the sequence       f ( · ,  u n   ( · )  )    ∥   u n   ∥      n ∈ N   ⊆  L p   ( Ω )    is bounded   



(26)




(recall that, if   2 < p  , then    p ′  < 2  ). Therefore, if in (25) we pass to the limit as   n → + ∞   and use (23), (24) and (26), we obtain


   〈 A  ( y )  , h 〉  ⩽ 0  ∀ h ∈  W 0  1 , p    ( Ω )  ,  








so   y = 0   and hence    ∥ D   y n    ∥  2  ⟶ 0   and   n → + ∞   (see (25)), a contradiction since    ∥   y n    ∥   1 , 2   = 1   for all   n ∈ N  . Therefore, we conclude that    λ *  > 0  .  □





Next, we prove a multiplicity result when   λ >  λ *   .



Proposition 6.

If hypotheses H hold and   λ >  λ *   , then problem   (  P λ  )   has at least two positive solutions


    u 0  ,  u ^  ∈ int  C +  ,   u 0  ≠  u ^  .   













Proof. 

Let   μ ∈ (  λ *  , λ )  . We have   μ , λ ∈ L   and then, according to Proposition 4, we can find    u 0  ∈  S λ  ⊆ int  C +    and    u μ  ∈  S μ  ⊆ int  C +    such that


   u 0  −  u μ  ∈ int  C +  .  



(27)







We truncate   f ( z , · )   from below at    u μ   ( z )    and introduce the Carathéodory function   e ( z , x )   defined by


  e  ( z , x )  =      f ( z ,  u μ   ( z )  )    if    x ⩽  u μ   ( z )  ,       f ( z , x )    if     u μ   ( z )  < x .       



(28)







We set


  E  ( z , x )  =  ∫ 0 x  e  ( z , s )   d s  








and consider the   C 1  -functional     φ ^  λ  :  W 0  1 , p    ( Ω )  ⟶ R   defined by


    φ ^  λ   ( u )  =  1 p    ∥ D u ∥  p p  +  1 2    ∥ D u ∥  2 2  −  ∫ Ω  λ E  ( z , u )   d z  ∀ u ∈  W 0  1 , p    ( Ω )  .  











Let


   [  u μ  )  =  { u ∈  W 0  1 , p    ( Ω )  :   u μ   ( z )  ⩽ u  ( z )    for a . a .   z ∈ Ω }  .  











Then, from (28), we see that


    φ ^  λ     |  [  u μ  )   =  φ λ  |   [  u μ  )   + ξ ,  



(29)




with   ξ ∈ R  . From the proof of Proposition 2, we know that   φ λ   is coercive. Hence   φ λ   is coercive. Additionally,   φ λ   is sequentially weakly lower semicontinuous. Therefore, we can find     u ^  0  ∈  W 0  1 , p    ( Ω )    such that


    φ ^  λ   (   u ^  0  )  =  min  u ∈  W 0  1 , p    ( Ω )      φ ^  λ   ( u )  ,  



(30)




so


    φ ^   λ  ′   (   u ^  0  )  = 0 ,  








and hence


   〈  A p   (   u ^  0  )  , h 〉  +  〈 A  (   u ^  0  )  , h 〉  =  ∫ Ω  λ e  ( z ,   u ^  0  )  h  d z  ∀ h ∈  W 0  1 , p    ( Ω )  .  



(31)







Choose   h ∈   (  u μ  −   u ^  0  )  +  ∈  W 0  1 , p    ( Ω )   . Using (28), we have


        〈  A p   (   u ^  0  )  ,   (  u μ  −   u ^  0  )  +  〉  +  〈 A  (   u ^  0  )  ,   (  u μ  −   u ^  0  )  +  〉        =     ∫ Ω  λ f  ( z ,  u μ  )    (  u μ  −   u ^  0  )  +   d z       ⩾     ∫ Ω  μ f  ( z ,  u μ  )    (  u μ  −   u ^  0  )  +   d z       =     〈  A p   (  u μ  )  ,   (  u μ  −   u ^  0  )  +  〉  +  〈 A  (  u μ  )  ,   (  u μ  −   u ^  0  )  +  〉      








(since   f ⩾ 0  ,   μ < λ   and    u μ  ∈  S μ   ), so


   u μ  ⩽   u ^  0   








(see Proposition 1).



Then, from (28) and (31), we infer that     u ^  0  ∈  S λ  ⊆ int  C +   .



If     u ^  0  ≠  u 0   , then this is the second positive solution of   (  P λ  )  . Therefore, we assume that


    u ^  0  =  u 0  .  











From (27), (29) and (30), it follows that


   u 0  ∈ int  C +    is a local  C 0 1   (  Ω ¯  )  − minimizer of  φ λ    








and so


   u 0  ∈ int  C +    is a local  W 0  1 , p    ( Ω )  − minimizer of  φ λ    



(32)




(see Gasiński and Papageorgiou [9]).



Hypothesis   H ( i i i )   implies that given   ε > 0  , we can find   δ = δ ( ε ) > 0   such that


  F  ( z , x )  ⩽  ε 2   x 2    for a . a .   z ∈ Ω ,  all   | x |  ⩽ δ  



(33)




(see (2)). Let   u ∈  C 0 1   (  Ω ¯  )    with     ∥ u ∥    C 0 1   (  Ω ¯  )    ⩽ δ  . We have


      φ λ   ( u )     ⩾     1 p    ∥ D u ∥  p p  +  1 2    ∥ D u ∥  2 2  −   λ ε  2    ∥ u ∥  2 2        ⩾     1 p    ∥ D u ∥  p p  +  1 2   1 −   λ ε     λ ^  1   ( 2 )       ∥ D u ∥  2 2      








(see (1) with   r = 2  ). Choosing   ε ∈ ( 0 ,     λ ^  1   ( 2 )   λ  )  , we obtain


   φ λ   ( u )  ⩾  1 p    ∥ u ∥  p   ∀ u ∈  C 0 1   (  Ω ¯  )  ,    ∥ u ∥    C 0 1   (  Ω ¯  )    ⩽ δ ,  








so


  u = 0   is a local  C 0 1   (  Ω ¯  )  − minimizer of  φ λ    








and thus


  u = 0   is a local  W 0  1 , p    ( Ω )  − minimizer of  φ λ    



(34)




(see Gasiński and Papageorgiou [9]).



We assume that    φ λ   ( 0 )  = 0 ⩽  φ λ   (  u 0  )   . The reasoning is similar if the opposite inequality holds, using (34) instead of (32).



We also assume that


   K  φ λ   =  { u ∈  W 0  1 , p    ( Ω )  :   φ  λ  ′   ( u )  = 0 }   








(the critical set of   φ λ  ) is finite. Otherwise, we already have an infinity of distinct positive solutions of   (  P λ  )  . On account of (32) and using Theorem 5.7.6 of Papageorgiou, Rădulescu and Repovš [2] (p. 449), we can find   ϱ ∈ ( 0 , 1 )   small such that


   φ λ   ( 0 )  = 0 ⩽  φ λ   (  u 0  )  <  inf   ∥ u −   u 0   ∥ = ϱ     φ λ   ( u )  =  m λ  ,  0 < φ <  ∥  u 0  ∥  .  



(35)







Recall that   φ λ   is coercive (see the proof of Proposition 2). Therefore, from Proposition 5.1.15 of Papageorgiou, Rădulescu and Repovš [2] (p. 449), we have that


   φ λ    satisfies the PS − condition .   



(36)







Then, (35) and (36) permit the use of the mountain pass theorem. Therefore, we can find    u ^  ∈  W 0  1 , p    ( Ω )    such that


   φ  λ  ′   (  u ^  )  = 0  and   m λ  ⩽  φ λ   (  u ^  )  .  



(37)







From (35) and (37), we conclude that


   u ^  ∈  S λ  ⊆ int  C +   and   u ^  ≠  u 0  .  











□





It remains to be decided what we can say for the critical parameter value   λ *  . We show that    λ *  > 0   is admissible too.



Proposition 7.

If hypotheses H hold, then    λ *  ∈ L  .





Proof. 

Let     {  λ n  }   n ∈ N   ⊆ L   be such that    λ n  ⟶  λ * +   . We can find    u n  ∈  S  λ n   ⊆ int  C +    such that


   〈  A p   (  u n  )  , h 〉  +  〈 A  (  u n  )  , h 〉  =  λ n   ∫ Ω  f  ( z ,  u n  )  h  d z  ∀ h ∈  W 0  1 , p    ( Ω )  ,  n ∈ N .  



(38)







In (38), we use   h =  u n  ∈  W 0  1 , p    ( Ω )   . Then,


   ∥   u n    ∥  p  ⩽  λ 1   ∫ Ω  f  ( z ,  u n  )   u n   d z  ∀ n ∈ N .  



(39)







On account of hypotheses   H ( i ) , ( i i )  , given   ε > 0  , we can find    c ε  > 0   such that


  0 ⩽ f  ( z , x )  x ⩽ ε  x p  +  c ε    for a . a .   z ∈ Ω ,  all  x ⩾ 0 .  



(40)







We use (40) in (39) and have


   ∥   u n    ∥  p  ⩽  λ 1   ε    λ ^  1   ( p )     ∥   u n    ∥  p  +  c ε    | Ω |  N   








(see (1) with   r = p   and recall that    | · |  N   is the Lebesgue measure on   R N  ), so


   1 −   λ 1     λ ^  1   ( p )    ε   ∥   u n    ∥  p  ⩽  c ε    | Ω |  N   ∀ n ∈ N .  











We choose   ε ∈ ( 0 ,     λ ^  1   ( p )    λ 1   )   and infer that the sequence     {  u n  }   n ∈ N   ⊆  W 0  1 , p    ( Ω )    is bounded. Therefore, we may assume that


   u n  ⟶  u *    weakly in    W 0  1 , p    ( Ω )   and   u n  ⟶  u *   in   L p   ( Ω )  .  











Then, reasoning as in the proof of Proposition 5 (see the part of the proof after (18)), we show that


   u n  ⟶  u *   in   W 0  1 , p    ( Ω )  ,   u *  ≠ 0 .  











Therefore, if in (38) we pass to the limit as   n → + ∞  , then


   〈  A p   (  u *  )  , h 〉  +  〈 A  (  u *  )  , h 〉  =  λ *   ∫ Ω  f  ( f ,  u *  )  h  d z  ∀ h ∈  W 0  1 , p    ( Ω )  ,  








so    u *  ∈  S  λ *   ⊆ int  C +    and so    λ *  ∈ L  .  □





We have proved that


  L = [  λ *  , ∞ ) .  











Next, we show that for every   λ ∈ L  , problem   (  P λ  )   admits a smallest positive solution (minimal positive solution).



Proposition 8.

If hypotheses H hold and   λ ∈ L  , then problem   (  P λ  )   admits a smallest solution    u  λ  *  ∈  S λ  ⊆ int  C +    (that is,    u  λ  *  ⩽ u   for all   u ∈  S λ   ).





Proof. 

From Proposition 7 of Papageorgiou, Rădulescu and Repovš [10], we know that   S λ   is downward directed. Using Lemma 3.10 of Hu and Papageorgiou [11] (p. 178), we can find a decreasing sequence     {  u n  }   n ∈ N   ⊆  S λ    such that


   inf  n ∈ N    u n  = inf  S λ  .  











We have


   〈  A p   (  u n  )  , h 〉  +  〈 A  (  u n  )  , h 〉  =  ∫ Ω  λ f  ( z ,  u n  )  h  d z  ∀ h ∈  W 0  1 , p    ( Ω )  ,  n ∈ N  



(41)




and


  0 ⩽  u n  ⩽  u 1   ∀ n ∈ N .  



(42)







In (41), we choose   h =  u n  ∈  W 0  1 , p    ( Ω )    and then use (42) and hypothesis   H ( i )   to establish that     {  u n  }   n ∈ N   ⊆  W 0  1 , p    ( Ω )    is bounded. Therefore, we may assume that


   u n  ⟶  u  λ  *    weakly in    W 0  1 , p    ( Ω )   and   u n  ⟶  u  λ  *   in   L p   ( Ω )  .  



(43)







Then, as before (see the proof of Proposition 5 after (18)), using (43) we obtain


   u n  ⟶  u  λ  *   in   W 0  1 , p    ( Ω )   and   u  λ  *  ≠ 0 .  



(44)







If in (41) we pass to the limit as   n → + ∞   and use (44), then


   〈  A p   (  u  λ  *  )  , h 〉  +  〈 A  (  u  λ  *  )  , h 〉  =  ∫ Ω  λ f  ( z ,  u  λ  *  )  h  d z  ∀ h ∈  W 0  1 , p    ( Ω )  ,  








so    u  λ  *  ∈  S λ  ⊆ int  C +   ,    u  λ  *  = inf  S λ   .  □





The theorem that follows summarizes our findings concerning the changes in the set of positive solutions of   (  P λ  )   as   λ > 0   moves.



Theorem 1.

If hypotheses H hold, then there exists    λ *  > 0   such that




	(a) 

	
for all   λ >  λ *    problem   (  P λ  )   has at least two positive solutions    u 0  ,  u ^  ∈ int  C +   ,    u 0  ≠  u ^   ;




	(b) 

	
for   λ =  λ *   , problem   (  P λ  )   has at least one positive solution    u *  ∈ int  C +   ;




	(c) 

	
for every   λ ∈ ( 0 ,  λ *  )   problem   (  P λ  )   has no positive solution;




	(d) 

	
for every   λ ∈ L = [  λ *  , ∞ )  , problem   (  P λ  )   has a smallest positive solution    u  λ  *  ∈ int  C +   .











Remark 2.

From Proposition 4, we know that the minimal solution map    k ^  : L ⟶  C 0 1   (  Ω ¯  )    defined by    k ^   ( λ )  =  u  λ  *    is strictly increasing in the sense that


  if   λ *  ⩽ μ ⩽ λ ,  then   u  λ  *  −  u  μ  *  ∈ int  C +  .  











It is worth mentioning that when the reaction   f ( z , · )   is   ( p − 1 )  -superlinear, then we have the “bifurcation” in   λ > 0  , for small values of the parameter (see [1,2]). Here,   f ( z , · )   is   ( p − 1 )  -sublinear, and the “bifurcation” in   λ > 0   occurs for large values of the parameter.






4.   ( p , q )  -Equations


In this section, we briefly mention the situation for the more general   ( p , q )  -equations,   q ≠ 2  . We now deal with the following nonlinear Dirichlet eigenvalue problem:


     (  P λ  )  ′         −  Δ p  u  ( z )  −  Δ q  u  ( z )  = λ f  ( z , u  ( z )  )   in  Ω ,         u |   ∂ Ω   = 0 ,  u ⩾ 0 ,  λ > 0 ,   1 < q < p .       











If we strengthen the conditions on   f ( z , · )  , we can have a similar “bifurcation-type” result for problem    (  P λ  )  ′  .



The new conditions on   f ( z , x )   are the following:



H’:  f : Ω × R ⟶ R   is a Carathéodory function,   f ( z , 0 ) = 0   for a.a.   z ∈ Ω  , hypotheses    H ′   ( i )  ,  ( i i )  ,  ( i i i )    are the same as the corresponding hypotheses   H ( i ) , ( i i ) , ( i i i )   and   ( i v )   for a.a.   z ∈ Ω  ,   f ( z , · )   is strictly increasing on   R +  .



Remark 3.

According to hypothesis    H ′   ( i v )   , we have


  0 < f ( z , x )   for a . a .   z ∈ Ω ,  all  x > 0 .  











The function   f  ( z , x )  = a  ( z )   x  τ − 1     for a.a.   z ∈ Ω  , all   x ⩾ 0   with   a ∈  L ∞   ( Ω )    and   1 < τ < q < p   satisfies hypotheses H’.





For the   ( p , q )  -equation (  q ≠ 2  ), we cannot use the tangency principle of Pucci and Serrin [8] (p. 35) (see the proof of Proposition 4). Instead, on account of the stronger condition    H ′   ( i v )   , we can use Proposition 3.4 of Gasiński and Papageorgiou [1] (strong comparison principle) and have that    u ϑ  −  u λ  ∈ int  C +   . Then, all the other results remain valid and so we can have the following bifurcation-type result for problem    (  P λ  )  ′  .



Theorem 2.

If hypotheses   H ′   hold, then there exists    λ * ′  > 0   such that




	(a) 

	
for all   λ >  λ * ′   , problem    (  P λ  )  ′   has at least two positive solutions    u 0  ,  u ^  ∈ int  C +   ,    u 0  ≠  u ^   ;




	(b) 

	
for   λ =  λ * ′   , problem    (  P λ  )  ′   has at least one positive solution    u *  ∈ int  C +   ;




	(c) 

	
for every   λ ∈   ( 0 ,  λ *  )  ′   , problem    (  P λ  )  ′   has no positive solution;




	(d) 

	
for every   λ ∈  L ′  =  [  λ * ′  , ∞ )   , problem    (  P λ  )  ′   has a smallest positive solution    u  λ  *  ∈ int  C +   .











Remark 4.

The function   f ( z , x )   defined by


   f  ( z , x )  =      a  ( z )  (   (  x +  )   r − 1   +   (  x +  )   η − 1   )    i f    | x | ⩽ 1 ,       a  ( z )  ln  (  x +  )     i f    1 < | x | ,        








with   a ∈  L ∞   ( Ω )   ,   p < r < η   satisfies hypotheses H but not hypotheses   H ′  .
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