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Abstract: We consider a nonlinear eigenvalue problem driven by the Dirichlet (p, 2)-Laplacian. The
parametric reaction is a Carathéodory function which exhibits (p — 1)-sublinear growth as x — +oc0
and as x — 01. Using variational tools and truncation and comparison techniques, we prove a
bifurcation-type theorem describing the “spectrum” as A > 0 varies. We also prove the existence of
a smallest positive eigenfunction for every eigenvalue. Finally, we indicate how the result can be
extended to (p, g)-equations (7 # 2).
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1. Introduction

Let QO C RN be a bounded domain with C?-boundary 9Q). In this paper, we study the
following nonlinear eigenvalue problem for the Dirichlet (p,2)-Laplacian

(P) —Apu(z) — Au(z) = Af(z,u(z)) inQ,
ulagn=0,u>0,A>0,2<p.
For every r € (1,00) by A, we denote the r-Laplacian differential operator defined by
Avu = div (|Dul""2Du) Vu € W,”(Q)

(Du stands for the gradient of u). When r = 2, we have the usual Laplacian denoted by A.

In the reaction, A > 0 is a parameter and f(z, x) is a Carathéodory function. Such
a function is jointly measurable. We assume that for almost all z € Q), f(z,-) is (p — 1)-
sublinear as x — +oco. We are looking for positive solutions as the parameter A > 0
varies. Our work complements those by Gasiriski and Papageorgiou [1] and Papageorgiou,
Radulescu and Repovs [2] where the reaction is (p — 1)-superlinear in x € R. Moreover, in
the aforementioned works, the equation is driven by the p-Laplacian differential operator
which is homogeneous, a property used by the authors in the proof of their results. In
contrast, here, the (p,2)-Laplace differential operator is not homogeneous.

We mention that equations driven by the sum of two differential operators of different
structures (such as (p, 2)-equations) arise in the mathematical models of many physical
processes. We refer to the survey papers of Marano and Mosconi [3], Rddulescu [4] and the
references therein.

2. Mathematical Background—Hypotheses

The main spaces in the analysis of problem (P, ) are the Sobolev space Wg P(Q) and
the Banach space o B
Co(Q) ={u e C'(Q): ulpn =0}

Axioms 2022, 11, 58. https:/ /doi.org/10.3390/axioms11020058 https:/ /www.mdpi.com/journal/axioms


https://doi.org/10.3390/axioms11020058
https://doi.org/10.3390/axioms11020058
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://doi.org/10.3390/axioms11020058
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms11020058?type=check_update&version=1

Axioms 2022, 11, 58

20f13

By || - ||, we denote the norm of the Sobolev space WS 7(Q). On account of the Poincaré
inequality, we have

1,
lull = [[Dull, Vu € WyP(Q).

The Banach space C}(€) is an ordered Banach space with positive (order) cone
Ci={uecC}(Q): u(z) =0forallz € O}.
This cone has a nonempty interior given by
intCy ={ueCq: u(z) >0forallz € O, g—mag < 0},

with 7 being the outward unit normal on 9Q and % = (Du, n)gn.
We know that if r € (1,400), then Wy"(Q)* = W-1"(Q) (} +3 = 1). Let
A W&'r(Q) — W1 (Q) by the operator defined by

(Ar(u),h) = /Q |Du|"~2(Du, Dh)gn dz  for all u,h € Wy (Q).

The next proposition gathers the main properties of this operator (see Gasiriski and
Papageorgiou [5]).

Proposition 1. The operator A, : W&'r(Q) — WY(Q) is bounded (that is, maps bounded
sets to bounded sets), continuous, strictly monotone (thus maximal monotone too) and of type (S)+,
that is, A, has the following property:

if uy — u weakly in Wy (Q) and lim sup (A (un), tn — 1) < 0, then uy — uin Wy” (Q).
n—oo

If r = 2, then we write Ay = A € L(H}(Q), H 1(Q)).
_ The Dirichlet -Laplace differential operator has a principal eigenvalue denoted by
A1(r). Therefore, if we consider the nonlinear eigenvalue problem
{ —Avu(z) = AMu(z)|"2u(z) inQ,
u|aQ =0,

then this problem has a smallest eigenvalue A;(r) > 0 which is isolated and simple. It has
the following variational characterization:

N r
W= e 1D
ueW,” (Q),u0 ]|

M

r
r

For x € R, we define x* = max{4x,0}. Then, for u € W&’p(Q), weset u™ (z) = u(z)*
for all z € (). We know that

ut € W&’p(ﬂ), u=u"=u", |ul=ut+u".

AsetS C W&’p (Q)) is said to be “downward directed”, if given uq,up € S, we can find
u € Ssuch thatu < uq, u < up.

If u,v: (3 — R are measurable functions, then we write # < v if and only if for all
compact sets K C (), we have

0<ckx<v(z)—u(z) foraa.zeK.

Evidently if u,v € C(Q) and u(z) < v(z) forall z € (), then u < v.
Now, we introduce the hypotheses on the reaction f(z, x).
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H: f: O xR — Ris a Carathéodory function such that for a.a. z € (), f(z,O) =0,

f(z,x) > 0forall x > 0and
(i) Forevery ¢ > 0, there exists a, € L*(2) such that

f(z,x) <ag(z) foraa.ze, all0<x<o;

fex) _

(i) limy—yeo T = 0 uniformly for a.a. z € (;

fzx) _

—-1 = O uniformly fora.a. z € ();

(iii) lim, o+

(iv) for every o > 0, there exists sgg > 0 such that for a.a. z € (), the function x —

flz,x)+ ngp_l is nondecreasing on [0, ¢].

Remark 1. Since we look for positive solutions and the above hypotheses concern the positive

semiaxis Ry = [0, +o0), without any loss of generality we may assume that

f(z,x) =0 foraa.zeQ,allx<0.

()

Hypothesis H(ii) implies that f(z,-) is (p — 1)-sublinear as x — +o0 while hypothesis
H((iit) says that f(z,-) is sublinear near 0". Hypothesis H(iv) is essentially a one-sided local

Lipschitz condition.

3. Positive Solutions

We introduce the following two sets:

L = {A>0: problem (P,) admits a positive solution };
Sy = the set of positive solutions for problem (P, ).
We also set
Ay =iInf L.

First, we establish the existence of admissible parameters (eigenvalues) and determine

the regularity properties of the corresponding solutions (eigenfunctions).

Proposition 2. If hypotheses H hold, then L # @ and S, C intC4 forall A > 0.

Proof. Forevery A >0, let ¢, : W&’p (Q)) — R be the C!-functional defined by

1 1 1,
pa(u) = ;IIDMHﬁ + §||DM||§ - /QF(Z/W)dZ vu e Wy (QQ),

with F(z,x) = [ f(z,5)ds. From hypotheses H (i), (ii), we see that given ¢ > 0, we can

find ¢, > 0 such that

0< F(z,x) < %x"’—i—cE foraa.ze Q, allx > 0.
Foru € Wg’p(Q), using (3) we have

1 1
oatw) > 5 (10wl = Aclull}) + 51Dulf — Accfol,

with | - |y being the Lebesgue measure on RN. Using (1) with r = p, we obtain

1 Ae
NOEE (1 _ A) 1Du]? = Ace Q.
p Ap(p) :

®)
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Choosing ¢ € (0, 1;’”) ), we infer that

Pr(u) = crflull? = Ace|Qln,

for some c¢; > 0 and thus ¢, is coercive.
Additionally, using the Sobolev imbedding theorem, we see that ¢, is sequentially
weakly lower semicontinuous. So, by the Weierstrass—Tonelli theorem, we can find ug €

W&’p (Q) such that

@r(ug) = min ¢, (u). @
uew,” (Q)

On account of the strict positivity of f(z,-), if # € intC,, then

/ F(z,u)dz > 0. (5)
Q
Then, we have
@ = SIpulh+ 3 IDaB -2 [ Fle i dz
Pa o p ) 2 Ja 7
- —/\/ F(z,7) dz,
2 A (z,7)dz

with ¢; = ¢p(#) > 0. From (5) and by choosing A > 0 big, we have

pr(u) <0,

SO
@a(uo) < 0= 9)(0)
(see (4)) and thus

Uup 75 0.
From (4), we have
¢4 (o) =0,
SO
(Ay(ttg), h) + (A(ug), h) = A/Qf(z, u)hdz Yh e WP (Q), ©)

In (6), we choose h = —u € Wg'p(Q). We obtain
[Dug |[p <0,

thus ug > 0 and uy # 0.
Then, from (6), we have

{ —Apug(z) — Aug(z) = Af(z,up(z)) inQ,

“0|an =0,

@)

for A > 0big and so £ # @.

From Theorem 7.1 of Ladyzhenskaya and Ural’tseva [6], we have that 1y € L®(Q)).
Then, the nonlinear regularity theory of Lieberman [7] implies that up € Cy \ {0}. Let
0 = ||up||e and let Eg > 0 be as postulated by hypothesis H(iv). From (7), we have

—Apug(z) — Aug(z) + /\Eguo(z)pfl >0 inQ,
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so
Apug(z) + Aug(z) < )\Eguo(z)p*1 inQ,

and thus ug € intC (see Pucci and Serrin [8] (pp. 111, 120)). Therefore, we conclude that
S) CintCy forallA > 0. O

Next, we show that £ is connected (more precisely, an upper half-line).

Proposition 3. If hypotheses H hold, A € L and ¢ > A, then ¢ € L.

Proof. Since A € £, we can find u, € S, € intC, (see Proposition 2). We introduce the
Carathéodory function k(z, x) defined by

{ flzur(z)) if x<up(z)
k(z,x) =

f(z,x) if wuy(z) <.

®)
We set ;
K(z,x) :/0 k(z,s)ds

and consider the C!-functional g Wé P(Q) — R defined by
1 p, 1 2 Lp
o) = IDul + 5 IDul} —/QﬂK(z,u) dz Vi e W(Q).

Note that (8) and hypotheses H(i), (ii) imply that, given ¢ > 0, we can find ¢; > 0
such that c
K(z,x) < Exp +¢C foraa.zeQ, allx € R. 9)

Using (9) and choosing € > 0 small, as in the proof of Proposition 2, we show that
is coercive. In addition, it is sequentially weakly lower semicontinuous. Therefore, we can

find uy € Wé’p(Q) such that

Po(us) = min  Ppy(u),

uew,” (Q)

so Py (ug) = 0 and thus
(Ay(ug), h) + (A(ug), h) = /Q Ok(z, ug)hdz Wh € W (Q). (10)

In (10), we choose h = (u) —uy)™ € Wé’p(()). Then, using (8), we have
(Ap(ug), (up —ug) ™) + (A(us), (upr —ug) ™)
[ ortz ) —ua)* dz

LA G (= o) dz
(Ap(up), (ur —ug)™) + (A(ur), (ur — ug)™)

WV

since f > 0and u) € S,. Thus,
Uy < Uy (11)

(see Proposition 1).
From (8), (10) and (11), we infer that

{ —Apug(z) — Aug(z) = 0f(z,ug(z)) inQ,

ul9|30 =0,
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souy € Sy CCyrandthusd e L. O

A byproduct of the above proof is the following corollary.

Corollary 1. If hypotheses H hold, A € L and uy € Sy C intCy and & > A, then ¢ € L and we
can find uy € Sy C intCy such that uy < uy.

We can improve this corollary using the strong comparison principle of Gasiriski and
Papageorgiou [1] (Proposition 3.2).

Proposition 4. If hypotheses H hold, A € Land u) € Sy C intC and ¢ > A, then ¢ € L and
we can find ug € Sy C intC. such that ug — u, € intC.

Proof. From Corollary 1, we already know that ¢ € £ and there exists uy € Sy C intC
such that

uy <ug, Uy F Uy, (12)

Consider the function a: RN — RN defined by
ay) =lyl" Py +y ¥y €RY.

Evidently, a € C!(RN;RN) (recall that 2 < p) and we have

Va(y) = |y|P2 (id+ (p— z)ﬂi}) +id Yy #£0,

SO
(Va(y), &) gy = |7 Wy, & € RN,

Then, the tangency principle of Pucci and Serrin [8] (Theorem 2.5.2, p. 35) implies that
uy(z) <ug(z) VzeQ (13)

(see (12)). Let 0 = ||ug||c and let CA'Q > 0 be as postulated by hypothesis H(iv). We pick
EQ > EQ and using (12), hypothesis H(iv) and the facts that f > 0 and u) < uy, we have

—Apuyg — Aug + 19§ng_1

O(f(z,u9) + Euh ) + 0 — Eouy !

O(F(z ur) + Eoul ) + 8(Eo — Eouy !

Af(z,uy) + ﬁ'g},ﬁ*

—Apity — Duy + 0Guh ' in Q. (14)

VoWV

Note that on account of (13), we have
¥ 7 -1 -1
0=<8(Co—Co)(uy  —uf ). (15)

Then, (14), (15) and Proposition 3.2 of Gasiniski and Papageorgiou [1] imply that
Uy —uy € intCy. O

Proposition 5. If hypotheses H hold, then A, > 0.

Proof. We argue by contradiction. Suppose that A, = 0. Let {1, },eny € £ be such that
An — 0T and consider u, = u,, C intC, forall n € N. We have

(Ay (1), h) + (A(1y), h) = /QAnf(z, whdz Vhe WP(Q), neN.  (16)
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On account of hypotheses H(i), (ii), given ¢ > 0, we can find ¢, > 0 such that
0< f(z,un(z)) < sun(z)”’*1 +c¢. foraa.zeQ,neN. (17)

In (16), first, we choose h = u,, € W&’p (Q)) and then on the right hand side we use (17).
We obtain
IDuy ||} < ellunllp + c3llunl| Vn €N,

for some ¢3 = c3(e) > 0, so

€
1- A> lua|P"! <ec3 VneN
< Ai(p)

(see (1) with r = p). Choosing ¢ € (0,A;(p)), we see that the sequence {u, }neny C W&’p(Q)
is bounded. We may assume that

Uy — s  weakly in W&’p(Q) and u, — u, in LP(Q)). (18)

In (16), we choose h = u,, — u, € Wg’p(Q), pass to the limit as n — +co and use (18).
We obtain
lim  ((Ap(un), un — 1s) + (A(un), un — us)) =0,

n—r—+o0

s0, using the monotonicity of A, we obtain

limsup ((Ap(un), 1p — ) + (A(u), up —us)) =0,

n—+0o
thus
limsup ((Ap(un), 1n — ux)) <0
n——+o00
and hence
Uy — 1, in W, (Q) (19)

(see Proposition 1). Hypotheses H(i), (ii), (iii) imply that given ¢ > 0, we can find ¢4 =
cs(€) > 0 such that

0< f(z,x) <ex+ cuxP71 foraa.zeQ, x >0, (20)

so
0 < flz,un(z)) < euy(z) + cauny(z)P~! foraa.zeQ, neN,

thus the sequence {f(-,u,(-)) C LV (Q) is bounded (see (19) and recall that p’ < 2 < p).
Therefore, if in (16) we pass to the limit as n — +oc0, we obtain

(Ap(ue), by + (A(us), ) =0 Vh e W,”(Q).
Choosing h = u, € W&’p (Q)), we obtain
1Dy <0,

SO
1, = 0. (21)

From (19) and the nonlinear regularity theory of Lieberman [7], we know that there
exista € (0,1) and ¢5 > 0 such that

up € CY*(Q) and ”””H(:é'“(ﬁ) <cs VneN (22)
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Since the embedding Cé'“ (Q) C Ccl) (Q) is compact, from (19), (21) and (22), we infer that
Uy — 0 inCH(Q) asn— +oo. (23)
Up

Ta, - for n € N, with || - |1,2 denoting the norm of H}(Q)). We have

Lety, = e
lynllia =0, y, >0 VneN.
We may assume that

yn —y weaklyin H (Q), y, — vy inL?(Q), y>0. (24)

From (16), we have

a2 A ) ) + (A, ) = A [ TE btz e Wit )

On account of (20), we have

0 < Lz

T < eyn(z) + un(2)P2yn(z) < cyu(z) foraa.ze€Q, neN,
n|l1,2

for some cg > 0 and thus

the sequence {f('un()) } C LP(Q) is bounded (26)
lunll ) pen

(recall that, if 2 < p, then p’ < 2). Therefore, if in (25) we pass to the limit as n — +o0 and
use (23), (24) and (26), we obtain

(A(y),h) <0 Vhe WP (Q),

so y = 0 and hence || Dy, || — 0 and n — o0 (see (25)), a contradiction since [[yx||12 =1
for all n € N. Therefore, we conclude that A, > 0. O

Next, we prove a multiplicity result when A > A,.

Proposition 6. If hypotheses H hold and A > A, then problem (P)) has at least two positive
solutions
up, U € intCy, ugy # .

Proof. Let i € (A4, A). We have y, A € L and then, according to Proposition 4, we can find
up € S CintCy and uy, € Sy C intCy. such that

up — uy € intCy. (27)

We truncate f(z,-) from below at u;(z) and introduce the Carathéodory function
e(z, x) defined by

(28)
f(z,x) if u,(z) <

( )_{f(z,uy(z)) if x <uy(z),

We set

E(z,x) = /Oxe(z,s)ds
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and consider the C!'-functional @, : Wg’p (Q2) — R defined by
N 1 p, 1 2 Lp
Pa(0) = [ Dull; + 5||Du||2—/Qms(z,u) dz Yue W(Q).

Let
[uy) ={u e W&’p(Q) s uy(z) <u(z)foraa.z € Q.

Then, from (28), we see that

Paliwy = Pl + 6 (29)

with ¢ € R. From the proof of Proposition 2, we know that ¢, is coercive. Hence ¢, is
coercive. Additionally, ¢, is sequentially weakly lower semicontinuous. Therefore, we can

find 7y € W&’p (Q)) such that

Pa(iio) = min G (u), (30)
uGWO'p(Q)
SO
@)\ (i) = 0,
and hence

(Ay (i), h) + (A(fig), h) = /Q Ae(z,fig)hdz  Yh € WY (€). (31)
Choose h € (uy, — iip) " € Wé'p(ﬂ). Using (28), we have

(Ap (i), (uy — o) ™) + (A(io), (uy — o) ™)
/QAf(z, uy) (uy — i)t dz
/Q pf (z,uy) (uy — ilg) " dz
(Ap(uy), (uy — o) ™) + (Aluy), (uy — o) ™)

(since f >0, < Aand uy € S), so

WV

uy<ﬁ0

(see Proposition 1).
Then, from (28) and (31), we infer that iig € S, C intC,..
If ity # u, then this is the second positive solution of (P, ). Therefore, we assume that

ﬁo = Uy.
From (27), (29) and (30), it follows that
ug € intCy is a local C} (Q))-minimizer of ¢,

and so
Uy € intCy is a local W&’p (Q)-minimizer of ¢, (32)

(see Gasiniski and Papageorgiou [9]).
Hypothesis H (iii) implies that given ¢ > 0, we can find § = d(¢) > 0 such that

F(z,x) < =x*> foraa.z€ Q, all |x| < (33)

N m

(see (2)). Let u € C}(Q) with ||u||C(1J(5) < 0. We have

1 1 Ae
pa(u) = ;HDullﬁ + EIIDuH% - 7llu||%
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1 1 Ae
> ZIoulf+ 3 (1- 5 Ioul
p A(2)

(see (1) with r = 2). Choosing ¢ € (0, Al)gz) ), we obtain

1 _
pa(u) > ;HMH” v € Co(Q), llullcam <9,
SO o
u = 0is a local C} (Q))-minimizer of ¢,

and thus
u = 0is alocal W&’p (Q)-minimizer of ¢, (34)

(see Gasiniski and Papageorgiou [9]).

We assume that ¢ (0) = 0 < ¢, (up). The reasoning is similar if the opposite inequality
holds, using (34) instead of (32).

We also assume that

Koy = {1 € Wy?(Q) : ¢)(u) =0}

(the critical set of ¢, ) is finite. Otherwise, we already have an infinity of distinct positive
solutions of (P ). On account of (32) and using Theorem 5.7.6 of Papageorgiou, Radulescu
and Repovs [2] (p. 449), we can find ¢ € (0,1) small such that

Pr(0) =0 < @a(ug) < inf  @p(u) =my, 0 < @ < |lugl. (35)

llu—uoll=e

Recall that @, is coercive (see the proof of Proposition 2). Therefore, from Proposi-
tion 5.1.15 of Papageorgiou, Ridulescu and Repovs [2] (p. 449), we have that

@, satisfies the PS-condition. (36)
Then, (35) and (36) permit the use of the mountain pass theorem. Therefore, we can
find

e W&’p(Q) such that
(@) =0 and my < (i), 37)

From (35) and (37), we conclude that
neS) CintCy and o # uo.
O

It remains to be decided what we can say for the critical parameter value A,. We show
that A, > 0 is admissible too.

Proposition 7. If hypotheses H hold, then A, € L.

Proof. Let {A,},eny C £ be such that A, — Af. We can find u, € S, C intCy such that
(Ay (1), 1) + (A(1t), By = Ay /Q flzun)hdz Vhe WeP(Q), neN.  (38)
In (38), weuse h = u, € W(}'p(Q). Then,

lua P < M /Of(z, Up)updz Vn €N, (39)
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On account of hypotheses H(i), (ii), given ¢ > 0, we can find ¢, > 0 such that
0< f(z,x)x < exP+¢, foraa.ze ), allx >0. (40)

We use (40) in (39) and have
€
M (p

[unlP <A )IIMnH”JrCsIQ\N

(see (1) with r = p and recall that | - |y is the Lebesgue measure on RN), so

(1—f1 s)|un||P<ceo|N wneN.
AM(p)

We choose ¢ € (0, Al}\—(lm) and infer that the sequence {uy },en C Wé’p (Q) is bounded.
Therefore, we may assume that

Uy — u, weakly in W&’p(Q) and wu, — u, inLP(Q).

Then, reasoning as in the proof of Proposition 5 (see the part of the proof after (18)),
we show that
Uy — 1y in W, (Q), s # 0.

Therefore, if in (38) we pass to the limit as # — +oo, then
(Ay (1), 1) + (A(w),h) = A /Qf(f,u*)h dz Vhe W),

souy, €Sy, CintCL andso A, € L. O

We have proved that
L = [Ay, 00).

Next, we show that for every A € £, problem (P, ) admits a smallest positive solution
(minimal positive solution).

Proposition 8. If hypotheses H hold and A € L, then problem (P) admits a smallest solution
uy € Sy CintCy (thatis, uy <uforallu € Sy).

Proof. From Proposition 7 of Papageorgiou, Radulescu and Repovs [10], we know that S,
is downward directed. Using Lemma 3.10 of Hu and Papageorgiou [11] (p. 178), we can
find a decreasing sequence {1, },cny C Sy such that

inf u,, =inf§S,.
neN
We have

(Ay (1), ) + (A(1y), h) = /Q Af(z,w)hdz Whe WP (Q), neN 1)

and
O0<u, <uy VneN., 42)
In (41), we choose h = u, € W&’p (Q)) and then use (42) and hypothesis H(i) to
establish that {u, },en C Wg’p (Q)) is bounded. Therefore, we may assume that

uy, — u) weakly in W&’p(Q) and wu, — uy inLF(Q). (43)
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Then, as before (see the proof of Proposition 5 after (18)), using (43) we obtain
Uy — uy in W&’p(Q) and uj #0. (44)

If in (41) we pass to the limit as n — +co and use (44), then
* * ' * 1/
(A (), 1) + (A(u), ) = /Q Af(zuf)hdz Yhe WP (Q),

souy € Sy CintCy, uy =infS). O

The theorem that follows summarizes our findings concerning the changes in the set
of positive solutions of (Py) as A > 0 moves.

Theorem 1. If hypotheses H hold, then there exists A, > 0 such that

(a) for all A > A, problem (Py) has at least two positive solutions ug, i € intCy, ug # ii;
(b) for A = A, problem (Py) has at least one positive solution u, € intC;

(c) for every A € (0, Ay) problem (Py) has no positive solution;

(d) for every A € L = [A«,0), problem (Py) has a smallest positive solution u} € intC,.

Remark 2. From Proposition 4, we know that the minimal solution map k: L — @ 1(®)
defined by k(A) = u} is strictly increasing in the sense that

if A, < u <A, thenuj — u}’i € intCy.

It is worth mentioning that when the reaction f(z, -) is (p — 1)-superlinear, then we
have the “bifurcation” in A > 0, for small values of the parameter (see [1], [2]). Here, f(z,-)
is (p — 1)-sublinear, and the “bifurcation” in A > 0 occurs for large values of the parameter.

4. (p,q)-Equations

In this section, we briefly mention the situation for the more general (p, g)-equations,
q # 2. We now deal with the following nonlinear Dirichlet eigenvalue problem:

p —Apu(z) — Agu(z) = Af(z,u(z)) inQ,
() { it b
upn=0,u>=0,A>01<q<p.
If we strengthen the conditions on f(z, -), we can have a similar “bifurcation-type”
result for problem (P,)’.
The new conditions on f(z, x) are the following:

H: f: QO xR — Ris a Carathéodory function, f(z,0) = 0 for a.a. z € ), hypotheses
H'(i), (ii), (iii) are the same as the corresponding hypotheses H(i), (ii), (iii) and (iv) for
a.a. z € ), f(z,-) is strictly increasing on R*.

Remark 3. According to hypothesis H'(iv), we have
0< f(z,x) foraa.ze Q,allx >0.

The function f(z,x) = a(z)x" ! foraa. z € Q, all x > 0 witha € L®(Q) and
1 < T < gq < p satisties hypotheses H’.

For the (p, q)-equation (g # 2), we cannot use the tangency principle of Pucci and
Serrin [8] (p. 35) (see the proof of Proposition 4). Instead, on account of the stronger
condition H’(iv), we can use Proposition 3.4 of Gasiniski and Papageorgiou [1] (strong
comparison principle) and have that uy — u, € intC,. Then, all the other results remain
valid and so we can have the following bifurcation-type result for problem (P,)’.
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Theorem 2. If hypotheses H' hold, then there exists A, > 0 such that

(a) for all A > A!,, problem (P))" has at least two positive solutions ug, i € intC., ug # i;
(b) for A = A, problem (P))" has at least one positive solution u, € intC;

(c) for every A € (0, A.)’, problem (Py)" has no positive solution;

(d) for every A € L' = [Al, 00), problem (Py)" has a smallest positive solution u’ € intC,.

Remark 4. The function f(z, x) defined by
a(2) ()14 ()i x| <,

a(z) In(x™) if 1<|x|,

flz,x) =
witha € L®(Q), p < r < 1 satisfies hypotheses H but not hypotheses H'.
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