Sustainable Integrated Fuzzy Optimization for Multimodal Petroleum Supply Chain Design with Pipeline System: The Case Study of Vietnam
Abstract
:1. Introduction
2. Literature Review
3. Methodology
3.1. Location Determination Algorithm
3.2. Fuzzy Mixed-Integer Programming Model
3.2.1. Sets and Parameters
3.2.2. Decision Variables
3.2.3. Objective Functions
3.2.4. Constraints
3.3. Fuzzy Min-Max Goal Programming Model (FMMGPM)
4. Numerical Results
4.1. Case Study Description
4.2. Multiple Objective Optimization Results
4.3. Uncertainty Sensitivity Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Region | Gasoline | Diesel Oil |
---|---|---|
Northern | 80,304,000 | 86,996,000 |
Central | 68,832,000 | 74,568,000 |
Southern | 80,304,000 | 86,996,000 |
Parameter | Waterway | Railway | Roadway | Pipeline |
---|---|---|---|---|
Transportation Cost (USD/Barrel-Km) | 0.081 | 0.147 | 0.334 | 0.074 |
Transportation Emission Factor (g/Barrel-km) | 2.17 | 1.58 | 4.09 | 0.68 |
Parameter | Crude Oil | Gasoline | Diesel Oil |
---|---|---|---|
Annual export quota (Barrel) | 3,483,559,729 | - | - |
Annual import quota (Barrel) | - | 3,710,546,452 | 2,473,697,635 |
Expected refining ratio (%) | - | 46 | 40 |
Sell price (USD/Barrel) | 60 | 121.88 | 90.31 |
Refining cost (USD/Barrel) | - | 85.94 | 60.16 |
Purchasing cost (USD/Barrel) | - | 92.32 | 70.22 |
Exploitation cost (USD/Barrel) | 35 | - | - |
Parameter | Scale | ||
---|---|---|---|
Small | Medium | Large | |
Distribution center capacity (Barrel/year) | 100,000,000 | 150,000,000 | 200,000,000 |
Distribution center fixed cost (USD) | 1,000,000 | 1,500,000 | 2,000,000 |
Pipeline construction cost (USD/Km) | 2,880,000 |
Parameter | Refining Plant | |
---|---|---|
Dungquat | Nghison | |
Refining capacity (Barrel/year) | 69,350,000 | 73,000,000 |
Rig Exploitation capacity (Barrel/year-rig) | 996,155,844 |
Abbreviation | Definition |
---|---|
3E assessment | Economy, Energy and Environment |
FMMGPM | Fuzzy Min-Max Goal Programming Model |
FMOMILP | Fuzzy Multi-Objective Mixed Integer Linear Programming |
MILP | Mixed Integer Linear Programming |
MCDM | Multiple Criteria Decision Making |
HCSC | Hydrocarbon Supply Chain |
SCPSC | Sustainable Competitive Petroleum Supply Chain |
TFN | Triangular Fuzzy Numbers |
DC | Distribution Center |
References
- Brutschin, E.; Fleig, A. Innovation in the energy sector—The role of fossil fuels and developing economies. Energy Policy 2016, 97, 27–38. [Google Scholar] [CrossRef]
- Emenike, S.N.; Falcone, G. A review on energy supply chain resilience through optimization. Renew. Sustain. Energy Rev. 2020, 134, 110088. [Google Scholar] [CrossRef]
- Guliman, B.; Ionescu, S.; Niculescu, A. Modern Logistics Methods. FAIMA Bus. Manag. J. 2017, 5, 64–74. [Google Scholar]
- Yuan, M.; Zhang, H.; Wang, B.; Shen, R.; Long, Y.; Liang, Y. Future scenario of China’s downstream oil supply chain: An energy, economy and environment analysis for impacts of pipeline network reform. J. Clean. Prod. 2019, 232, 1513–1528. [Google Scholar] [CrossRef]
- Hosseini, S.; Ivanov, D. Bayesian networks for supply chain risk, resilience and ripple effect analysis: A literature review. Expert Syst. Appl. 2020, 161, 113649. [Google Scholar] [CrossRef]
- Chen, Z.; Ming, X.; Zhou, T.; Chang, Y. Sustainable supplier selection for smart supply chain considering internal and external uncertainty: An integrated rough-fuzzy approach. Appl. Soft Comput. 2020, 87, 106004. [Google Scholar] [CrossRef]
- Wang, C.-N.; Nhieu, N.-L.; Chung, Y.-C.; Pham, H.-T. Multi-Objective Optimization Models for Sustainable Perishable Intermodal Multi-Product Networks with Delivery Time Window. Mathematics 2021, 9, 379. [Google Scholar] [CrossRef]
- Wang, C.-N.; Nhieu, N.-L.; Tran, T.T.T. Stochastic Chebyshev Goal Programming Mixed Integer Linear Model for Sustainable Global Production Planning. Mathematics 2021, 9, 483. [Google Scholar] [CrossRef]
- Sahin, B.; Soylu, A. Multi-Layer, Multi-Segment Iterative Optimization for Maritime Supply Chain Operations in a Dynamic Fuzzy Environment. IEEE Access 2020, 8, 144993–145005. [Google Scholar] [CrossRef]
- U.S. Energy Information Administration. Vietnam Petroleum and Other Liquids; U.S. Energy Information Administration: Washington, DC, USA, 2021.
- Decision on the Approval of the Revised National Power Development Master Plan for the 2011–2020 Period with the Vision to 2030; Prime Minister; Vietnam Department of Prime Minister: Hanoi, Vietnam, 2016.
- Wang, B.; Liang, Y.; Zheng, T.; Yuan, M.; Zhang, H. Optimisation of a downstream oil supply chain with new pipeline route planning. Chem. Eng. Res. Des. 2019, 145, 300–313. [Google Scholar] [CrossRef]
- Ghasemzadeh, F.; Pishdar, M.; Antuchevičienė, J. Prioritization of Petroleum Supply Chains’ Disruption Management Strategies Using Combined Framework of Bsc Approach, Fuzzy Ahp and Fuzzy Choquet Integral Operator. J. Bus. Econ. Manag. 2017, 18, 897–919. [Google Scholar] [CrossRef] [Green Version]
- Eslami Baladeh, A.; Cheraghi, M.; Khakzad, N. A multi-objective model to optimal selection of safety measures in oil and gas facilities. Process Saf. Environ. Prot. 2019, 125, 71–82. [Google Scholar] [CrossRef]
- Grudz, V.; Grudz, Y.; Zapukhliak, V.; Chudyk, I.; Poberezhny, L.; Slobodyan, N.; Bodnar, V. Optimal Gas Transport Management Taking into Account Reliability Factor. Manag. Syst. Prod. Eng. 2020, 28, 202–208. [Google Scholar] [CrossRef]
- Sahebi, H.; Nickel, S.; Ashayeri, J. Strategic and tactical mathematical programming models within the crude oil supply chain context—A review. Comput. Chem. Eng. 2014, 68, 56–77. [Google Scholar] [CrossRef]
- Zimmermann, H.-J. Fuzzy Programming and Linear Programming with Several Objective Functions. Fuzzy Sets Syst. 1978, 1, 45–55. [Google Scholar] [CrossRef]
- Sear, T.N. Logistics Planning in the Downstream Oil Industry. J. Opl. Res. Soc. 1993, 44, 9–17. [Google Scholar] [CrossRef]
- Konak, A.; Coit, D.W.; Smith, A.E. Multi-objective optimization using genetic algorithms: A tutorial. Reliab. Eng. Syst. Saf. 2006, 91, 992–1007. [Google Scholar] [CrossRef]
- Jiao, J.-L.; Zhang, J.-L.; Tang, Y.-S. A Model for the Optimization of the Petroleum Supply Chain in China and its Empirical Analysis. In Proceedings of the 2010 International Conference on E-Business and E-Government, Guangzhou, China, 7–9 May 2010; pp. 3327–3330. [Google Scholar]
- Fernandes, L.J.; Relvas, S.; Barbosa-Póvoa, A.P. Downstream Petroleum Supply Chain Planning under Uncertainty. In Computer Aided Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2015; Volume 37, pp. 1889–1894. [Google Scholar]
- Wang, C.N.; Nhieu, N.L.; Nguyen, H.P.; Wang, J.W. Simulation-based Optimization Integrated Multiple Criteria Decision-Making Framework for Wave Energy Site Selection: A Case Study of Australia. IEEE Access 2021, 9, 167458–167476. [Google Scholar] [CrossRef]
- Attia, A.M.; Ghaithan, A.M.; Duffuaa, S.O. A multi-objective optimization model for tactical planning of upstream oil & gas supply chains. Comput. Chem. Eng. 2019, 128, 216–227. [Google Scholar]
- Sheel, A.; Singh, Y.P.; Nath, V. Managing agility in the downstream petroleum supply chain. Int. J. Bus. Excell. 2020, 20, 269–294. [Google Scholar] [CrossRef]
- Guo, Y.; Meng, X.; Wang, D.; Meng, T.; Liu, S.; He, R. Comprehensive risk evaluation of long-distance oil and gas transportation pipelines using a fuzzy Petri net model. J. Nat. Gas Sci. Eng. 2016, 33, 18–29. [Google Scholar] [CrossRef]
- Kim, Y.; Yun, C.; Park, S.B.; Park, S.; Fan, L.T. An integrated model of supply network and production planning for multiple fuel products of multi-site refineries. Comput. Chem. Eng. 2008, 32, 2529–2535. [Google Scholar] [CrossRef]
- Kuo, T.-H.; Chang, C.-T. Application of a Mathematic Programming Model for Integrated Planning and Scheduling of Petroleum Supply Networks. Ind. Eng. Chem. Res. 2008, 47, 1935–1954. [Google Scholar] [CrossRef]
- Al-Qahtani, K.; Elkamel, A. Multisite facility network integration design and coordination: An application to the refining industry. Comput. Chem. Eng. 2008, 32, 2189–2202. [Google Scholar] [CrossRef]
- Al-Othman, W.B.E.; Lababidi, H.M.S.; Alatiqi, I.M.; Al-Shayji, K. Supply chain optimization of petroleum organization under uncertainty in market demands and prices. Eur. J. Oper. Res. 2008, 189, 822–840. [Google Scholar] [CrossRef]
- Hamedi, M.; Zanjirani Farahani, R.; Husseini, M.M.; Esmaeilian, G.R. A distribution planning model for natural gas supply chain: A case study. Energy Policy 2009, 37, 799–812. [Google Scholar] [CrossRef]
- Jie, C.; Jing, L.; Shilong, Q. Transportation network optimization of import crude oil in China based on minimum logistics cost. In Proceedings of the 2010 IEEE International Conference on Emergency Management and Management Sciences, Beijing, China, 8–10 August 2010; IEEE: Piscataway, NJ, USA, 2010. [Google Scholar]
- Song, F.M. A comprehensive model for predicting CO2 corrosion rate in oil and gas production and transportation systems. Electrochim. Acta 2010, 55, 689–700. [Google Scholar] [CrossRef]
- Aizemberg, L.; Kramer, H.H.; Pessoa, A.A.; Uchoa, E. Formulations for a problem of petroleum transportation. Eur. J. Oper. Res. 2014, 237, 82–90. [Google Scholar] [CrossRef]
- Kazemi, Y.; Szmerekovsky, J. Modeling downstream petroleum supply chain: The importance of multi-mode transportation to strategic planning. Transp. Res. Part E Logist. Transp. Rev. 2015, 83, 111–125. [Google Scholar] [CrossRef]
- Ghezavati, V.R.; Ghaffarpour, M.H.; Salimian, M. A hierarchical approach for designing the downstream segment for a supply chain of petroleum production systems. J. Ind. Syst. Eng. 2015, 8, 1–17. [Google Scholar]
- Rocha, R.; Grossmann, I.E.; de Aragão, M.V.S.P. Petroleum supply planning: Reformulations and a novel decomposition algorithm. Optim. Eng. 2017, 18, 215–240. [Google Scholar] [CrossRef]
- Devold, H.; Graven, T.; Halvorsrød, S.O. Digitalization of Oil and Gas Facilities Reduce Cost and Improve Maintenance Operations. In Proceedings of the Offshore Technology Conference 2017, Houston, TX, USA, 1–4 May 2017. [Google Scholar]
- Anifowose, B.; Odubela, M. Methane emissions from oil and gas transport facilities—Exploring innovative ways to mitigate environmental consequences. J. Clean. Prod. 2015, 92, 121–133. [Google Scholar] [CrossRef]
- Creating a High-Performance Downstream Petroleum Supply Chain. 2000. Available online: http://kambing.ui.ac.id/onnopurbo/library/library-ref-eng/ref-eng-1/application/e-commerce/eichmann.pdf (accessed on 22 February 2021).
- Allen, D.T.; Torres, V.M.; Thomas, J.; Sullivan, D.W.; Harrison, M.; Hendler, A.; Herndon, S.C.; Kolb, C.E.; Fraser, M.P.; Hill, A.D.; et al. Measurements of methane emissions at natural gas production sites in the United States. Proc. Natl. Acad. Sci. USA 2013, 110, 17768–17773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hadizadeh, A.K.A.; Allen, J.K. Designing a Dynamic Bi-Objective Network Model for a Petroleum Supply Chain. In Proceedings of the 2012 Industrial and Systems Engineering Research Conference; Institute of Industrial and Systems Engineers (IISE): Peachtree Corners, GA, USA, 2012. [Google Scholar]
- Moradi Nasab, N.; Amin-Naseri, M.R. Designing an integrated model for a multi-period, multi-echelon and multi-product petroleum supply chain. Energy 2016, 114, 708–733. [Google Scholar] [CrossRef]
- Ghaithan, A.M.; Attia, A.; Duffuaa, S.O. Multi-objective optimization model for a downstream oil and gas supply chain. Appl. Math. Model. 2017, 52, 689–708. [Google Scholar] [CrossRef]
- Moradinasab, N.; Amin-Naseri, M.R.; Behbahani, T.J.; Jafarzadeh, H. Competition and cooperation between supply chains in multi-objective petroleum green supply chain: A game theoretic approach. J. Clean. Prod. 2018, 170, 818–841. [Google Scholar] [CrossRef]
- Alghanmi, A.; Yang, Z.; Blanco-Davis, E. Risk analysis of petroleum transportation using fuzzy rule-based Bayesian reasoning. Int. J. Shipp. Transp. Logist. 2020, 12, 39–64. [Google Scholar] [CrossRef]
- Chamani FoomaniDana, A.; Tamannaei, M. A Game-Theoretic Approach for Transportation of Oil Products in a Duopolistic Supply Chain. AUT J. Civ. Eng. 2020, 5, 7. [Google Scholar]
- Zhou, X.; Zhang, H.; Xin, S.; Yan, Y.; Long, Y.; Yuan, M.; Liang, Y. Future scenario of China’s downstream oil supply chain: Low carbon-oriented optimization for the design of planned multi-product pipelines. J. Clean. Prod. 2020, 244, 118866. [Google Scholar] [CrossRef]
- Elkamel, A.; Ba-Shammakh, M.; Douglas, P.; Croiset, E. An Optimization Approach for Integrating Planning and CO2 Emission Reduction in the Petroleum Refining Industry. Ind. Eng. Chem. Res. 2008, 47, 760–776. [Google Scholar] [CrossRef]
- Guyonnet, P.; Grant, F.H.; Bagajewicz, M.J. Integrated Model for Refinery Planning, Oil Procuring and Product Distribution. Ind. Eng. Chem. Res. 2009, 48, 463–482. [Google Scholar] [CrossRef]
- Lima, C.; Relvas, S.; Barbosa-Póvoa, A. Corrigendum to Designing and planning the downstream oil supply chain under uncertainty using a fuzzy programming approach. Comput. Chem. Eng. 2021, 153, 107400. [Google Scholar] [CrossRef]
- Pudasaini, P. Integrated planning of downstream petroleum supply chain: A multi-objective stochastic approach. Oper. Res. Perspect. 2021, 8, 100189. [Google Scholar] [CrossRef]
- Santibanez-Borda, E.; Korre, A.; Nie, Z.; Durucan, S. A multi-objective optimisation model to reduce greenhouse gas emissions and costs in offshore natural gas upstream chains. J. Clean. Prod. 2021, 297, 126625. [Google Scholar] [CrossRef]
- Panos, E.; Densing, M.; Volkart, K. Access to electricity in the World Energy Council’s global energy scenarios: An outlook for developing regions until 2030. Energy Strategy Rev. 2016, 9, 28–49. [Google Scholar] [CrossRef] [Green Version]
- Vietnam Gasoline Prices. 2021. Available online: https://www.globalpetrolprices.com/Vietnam/gasoline_prices/ (accessed on 21 March 2021).
- Annual Statistical Bulletin. 2020. Available online: https://asb.opec.org/ (accessed on 20 January 2021).
- Vietnam Oil Consumption. 2021. Available online: https://www.ceicdata.com/en/indicator/vietnam/oil-consumption (accessed on 20 February 2021).
- Vietnam Cities Database. 2020. Available online: https://simplemaps.com/data/vn-cities (accessed on 15 December 2020).
- Vietnam Energy Sector. 2019. Available online: https://www.ukabc.org.uk/wp-content/uploads/2019/07/Energy-Sector-Update-April-2019.pdf (accessed on 10 February 2021).
- The Vietnam Household Living Standards Survey 2018. May 2020. Available online: https://www.gso.gov.vn/en/data-and-statistics/2020/05/result-of-the-vietnam-household-living-standards-survey-2018 (accessed on 27 July 2021).
- Vietnam’s Crude Oil Export Price. 2021. Available online: https://tuoitre.vn/viet-nam-xuat-khau-dau-tho-gia-thap-20210322075805618.htm (accessed on 10 March 2021).
- Blancas, L.C.; El-Hifnawi, M.B. Facilitating Trade through Competitive, Low-Carbon Transport: The Case for Vietnam’s Inland and Coastal Waterways; The World Bank: Washington, DC, USA, 2014. [Google Scholar]
- Tencati, A.; Russo, A.; Quaglia, V. Sustainability along the global supply chain: The case of Vietnam. Soc. Responsib. J. 2010, 6, 91–107. [Google Scholar] [CrossRef]
- Oil and Gas Pipeline Construction Costs. 2021. Available online: https://www.gem.wiki/Oil_and_Gas_Pipeline_Construction_Costs#:~:text=For%20proposed%20onshore%20US%20gas,(%244.10%20million%2Fkm) (accessed on 30 December 2020).
No. | Author | Year | Oil and Gas Supply Chain | Problem Characteristic | Objective Function | |||||
---|---|---|---|---|---|---|---|---|---|---|
Upstream | Downstream | Facility Scale | Pipeline System Development | Intermodal Transportation | Economic | Environment | Energy Security | |||
1 | H.-J. Zimmerman [17] | 1978 | X | X | ||||||
2 | T. N. Sear [18] | 1993 | X | X | ||||||
3 | Don A. Eichmann [39] | 2000 | X | X | X | X | X | |||
4 | A. Konak et al. [19] | 2006 | X | X | ||||||
5 | Y. Kim et al. [26] | 2008 | X | X | X | |||||
6 | T.-H. Kuo and C.-T. Chang [27] | 2008 | X | X | X | X | X | |||
7 | A. Elkamel et al. [48] | 2008 | X | X | X | |||||
8 | W. B.E. Al-Othman et al. [29] | 2008 | X | X | X | X | X | |||
9 | K. Al-Qahtani and A. Elkamel [28] | 2008 | X | X | X | |||||
10 | Pierre Guyonnet et al. [49] | 2009 | X | X | X | |||||
11 | F. M. Song [32] | 2009 | X | X | X | X | ||||
12 | Maryam Hamedi et al. [30] | 2009 | X | X | X | X | ||||
13 | Jie Chen et al. [31] | 2010 | X | X | X | |||||
14 | Jian-ling Jiao et al. [20] | 2010 | X | X | X | |||||
15 | A. Khosrojerdi et al. [41] | 2012 | X | X | X | X | ||||
16 | David T. Allen et al. [40] | 2013 | X | X | X | |||||
17 | Luiz Aizemberg et al. [33] | 2014 | X | X | X | X | ||||
18 | Y. Kazemi et al. [34] | 2015 | X | X | X | X | ||||
19 | L. J. Fernandes et al. [21] | 2015 | X | X | X | |||||
20 | V. R. Ghezavati et al. [35] | 2015 | X | X | X | X | ||||
21 | B. Anifowose and M. Odubela [38] | 2015 | X | X | X | X | X | X | ||
22 | Y. Guo et al. [25] | 2016 | X | X | X | X | ||||
23 | N. M. Nasab and M. R. Amin-Naseri [42] | 2016 | X | X | X | X | X | |||
24 | F. Ghasemzadeh et al. [13] | 2017 | X | X | X | X | ||||
25 | B. Guliman et al. [3] | 2017 | X | X | X | X | X | X | X | |
26 | R.Rocha et al. [36] | 2017 | X | X | X | X | ||||
27 | A. M. Ghaithan et al. [43] | 2017 | X | X | X | X | X | X | ||
28 | B. Wang et al. [12] | 2019 | X | X | X | X | ||||
29 | N. Moradinasab et al. [44] | 2018 | X | X | X | X | X | X | ||
30 | M. Yuan et al. [4] | 2019 | X | X | X | X | ||||
31 | A. E. Baladeh et al. [14] | 2019 | X | X | ||||||
32 | X. Zhou et al. [47] | 2020 | X | X | X | X | X | |||
33 | Ahmed M. Attia et al. [23] | 2019 | X | X | X | X | X | |||
34 | A. C. FoomaniDana and M. Tamannaei [46] | 2020 | X | X | X | X | X | X | X | |
35 | A. Alghanmi et al. [45] | 2020 | X | X | X | X | ||||
36 | Ashutosh Sheel et al. [24] | 2020 | X | X | ||||||
37 | V. Grudz et al. [15] | 2020 | X | X | X | |||||
38 | C. Lima et al. [50] | 2021 | X | X | X | X | ||||
39 | P. Pudasaini [51] | 2021 | X | X | X | X | ||||
40 | E. Santibanez-Borda et al. [52] | 2021 | X | X | X | X | ||||
41 | This study | 2021 | X | X | X | X | X | X | X | X |
No. | Author | Year | Uncertainty Approach | Uncertainty Factor | Methodology | ||||
---|---|---|---|---|---|---|---|---|---|
Stochastic | Fuzzy | Demand | Resource | Cost | Linear/Mixed Integer Programming | Heuristic Algorithm/Others | |||
1 | H.-J. Zimmermann [17] | 1978 | X | X | X | X | |||
2 | T. N. Sear [18] | 1993 | X | X | X | ||||
3 | Don A. Eichmann [39] | 2000 | X | X | X | X | |||
4 | A. Konak et al. [19] | 2006 | X | X | X | ||||
5 | Y. Kim et al. [26] | 2008 | X | X | |||||
6 | T.-H. Kuo and C.-T. Chang [27] | 2008 | X | X | X | X | |||
7 | A. Elkamel et al. [48] | 2008 | X | X | X | ||||
8 | W.B.E. Al-Othman et al. [29] | 2008 | X | X | X | X | X | ||
9 | K. Al-Qahtani and A. Elkamel [28] | 2008 | X | X | X | X | X | ||
10 | Pierre Guyonnet et al. [49] | 2009 | X | X | X | X | |||
11 | F.M. Song [32] | 2009 | X | X | |||||
13 | Maryam Hamedi et al. [30] | 2009 | X | X | X | X | |||
14 | Jie Chen et al. [31] | 2010 | X | X | X | ||||
15 | Jian-ling Jiao et al. [20] | 2010 | X | X | X | X | |||
16 | A. Khosrojerdi et al. [41] | 2012 | X | X | |||||
17 | David T. Allen et al. [40] | 2013 | X | ||||||
18 | Luiz Aizemberg et al. [33] | 2014 | X | X | X | X | X | ||
19 | Y. Kazemi et al. [34] | 2015 | X | X | X | X | |||
20 | L. J. Fernandes et al. [21] | 2015 | X | X | X | X | X | ||
21 | V.R. Ghezavati et al. [35] | 2015 | X | X | X | X | |||
22 | B. Anifowose and M. Odubela [38] | 2015 | X | ||||||
23 | Y. Guo et al. [25] | 2016 | X | X | |||||
24 | N. M. Nasab and M. R. Amin-Naseri [42] | 2016 | X | X | X | X | |||
25 | F. Ghasemzadeh et al. [13] | 2017 | X | X | X | X | X | X | |
26 | B. Guliman et al. [3] | 2017 | X | X | X | X | X | ||
27 | R. Rocha et al. [36] | 2017 | X | X | |||||
28 | A. M. Ghaithan et al. [43] | 2017 | X | X | X | X | |||
29 | N. Moradinasab et al. [44] | 2018 | X | X | X | X | |||
30 | M. Yuan et al. [4] | 2019 | X | ||||||
31 | A. E. Baladeh et al. [14] | 2019 | X | ||||||
32 | B. Wang et al. [12] | 2019 | X | ||||||
33 | X. Zhou et al. [47] | 2020 | X | ||||||
34 | Ahmed M. Attia et al. [23] | 2019 | X | X | X | X | X | ||
35 | A. C. FoomaniDana and M. Tamannaei [46] | 2020 | X | X | X | ||||
36 | A. Alghanmi et al. [45] | 2020 | X | X | |||||
37 | Ashutosh Sheel et al. [24] | 2020 | X | X | X | X | |||
38 | V. Grudz et al. [15] | 2020 | X | X | |||||
39 | C. Lima et al. [50] | 2021 | X | X | X | X | |||
40 | P. Pudasaini [51] | 2021 | X | X | X | X | |||
41 | E. Santibanez-Borda et al. [52] | 2021 | X | X | X | ||||
42 | This study | 2021 | X | X | X | X | X | X |
Notation | Unit | Description |
---|---|---|
Fuzzy Parameters | ||
USD/barrel | Unit price of exported crude oil | |
USD/barrel | Unit price of post-refining products p for domestic consumption | |
USD/km | The unit transport cost of mode m | |
USD | Fixed costs of setting up distribution centers with scale s | |
USD/km | Fixed cost of pipeline system setup | |
USD/barrel | Unit exploitation cost of crude oil | |
USD/barrel | Unit refining cost of post-refining product p | |
USD/barrel | Unit importing cost of post-refining product p | |
gram CO2/km | Transportation environment factor of mode m | |
Barrel | Domestic demand for product p in region n | |
% | Expected refining ratio of post-refining product p | |
Barrel | Export quota for crude oil | |
Barrel | Import quota for post-refining product p | |
Barrel | Maximum capacity of drilling rig i | |
Barrel | Maximum capacity of refining plant j | |
Non-fuzzy parameters | ||
Barrel | Maximum capacity of distribution center with scale s | |
Km | Transportation distance from drilling rig i to refining plant j by mode m | |
Km | Transportation distance from drilling rig i to seaport l by mode m | |
Km | Transportation distance from refining plant j to distribution center k by mode m | |
Km | Transportation distance from seaport l to distribution center k by mode m | |
Km | Transportation distance from distribution center k to market region n by mode m | |
M | Big M value |
Set Description | Indices | Notation |
---|---|---|
Rigs | {PV Drilling, I; PV Drilling II; PV Drilling III; TAD—PV Drilling V; PV Drilling VI; PV Drilling 11} | |
Refinery plants | {Dungquat; Nghison} | |
Ports | {Haiphong; Quinhon; Hochiminh city} | |
Distribution centers | {Hanoi; Danang; Hochiminh city; Cantho} | |
Market central points | {Northern; Central; Southern} | |
Product types | {Gasoline; Diesel Oil} | |
Transportation modes | {Waterway; Railway; Roadway; Pipeline} | |
Construction scales | {Small; Medium; Large} |
Market Region | Center Point Coordinates | No. of Related Provinces and Cities | No. of Solving Iteration | |
---|---|---|---|---|
Latitude | Longitude | |||
Northern | 21.0245 | 105.8412 | 26 | 8 |
Central | 15.9357 | 108.1827 | 18 | 90 |
Southern | 10.8166 | 106.6333 | 19 |
Objective Function | Objective Goal | FMMGPM Objective Value |
---|---|---|
Profit (Mil. USD) | 53,196.95 | 52,161.85 |
Energy Security (%) | 100% | 82.70% |
Transportation Emission (Ton CO2/Barrel-km) | 527,783.91 | 696,005.89 |
Case Notation | ||
---|---|---|
I | 0.3 | 0.3 |
II | 0.5 | 0.5 |
III | 0.3 | 0.5 |
IV | 0.5 | 0.3 |
Scenarios | Objective Goal | ||
---|---|---|---|
Profit | Energy Security | Transportation Emission | |
I-1 | 53,196.947 | 100% | 527,783.910 |
I-2 | 56,389.000 | 100% | 600,616.000 |
I-3 | 51,644.389 | 100% | 447,239.035 |
II-1 | 62,158.088 | 100% | 498,839.088 |
II-2 | 71,782.463 | 100% | 643,816.850 |
II-3 | 53,975.732 | 100% | 377,372.806 |
III-1 | 61,869.010 | 100% | 560,090.422 |
III-2 | 71,781.496 | 100% | 707,191.723 |
III-3 | 58,291.575 | 100% | 501,678.521 |
IV-1 | 54,577.516 | 100% | 468,320.016 |
IV-2 | 56,347.103 | 100% | 520,171.822 |
IV-3 | 46,485.418 | 100% | 322,997.157 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.-N.; Nhieu, N.-L.; Tran, K.-P.; Wang, Y.-H. Sustainable Integrated Fuzzy Optimization for Multimodal Petroleum Supply Chain Design with Pipeline System: The Case Study of Vietnam. Axioms 2022, 11, 60. https://doi.org/10.3390/axioms11020060
Wang C-N, Nhieu N-L, Tran K-P, Wang Y-H. Sustainable Integrated Fuzzy Optimization for Multimodal Petroleum Supply Chain Design with Pipeline System: The Case Study of Vietnam. Axioms. 2022; 11(2):60. https://doi.org/10.3390/axioms11020060
Chicago/Turabian StyleWang, Chia-Nan, Nhat-Luong Nhieu, Kim-Phong Tran, and Yen-Hui Wang. 2022. "Sustainable Integrated Fuzzy Optimization for Multimodal Petroleum Supply Chain Design with Pipeline System: The Case Study of Vietnam" Axioms 11, no. 2: 60. https://doi.org/10.3390/axioms11020060
APA StyleWang, C. -N., Nhieu, N. -L., Tran, K. -P., & Wang, Y. -H. (2022). Sustainable Integrated Fuzzy Optimization for Multimodal Petroleum Supply Chain Design with Pipeline System: The Case Study of Vietnam. Axioms, 11(2), 60. https://doi.org/10.3390/axioms11020060