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1. Introduction

In 1992, Matthews [1] initiated the idea of non-zero self-distance by introducing the
notion of the partial metric as a part of the study of the denotational semantics of data flow
programming languages in a topological model in computer sciences and also extended
Banach’s contraction principle [2] in such space. Subsequently, many authors have begun
to report its topological properties and obtained many fixed-point theorems in this space
(for more details and references, we refer to [3–8]). On the other hand, in 1950, Nakano [9]
introduced the concept of the modular in connection with the theory of order spaces,
which was later developed by Musielak and Orlicz [10], Khamsi [11] and Kozlowski [12] as
modular function space.

In 2006, Chistyakov [13] introduced the notion of the metric modular on an arbitrary
set and the corresponding modular space, which is more general than a metric space, and,
based on this, he further studied Lipschitz continuity and a class of superposition (or Ne-
mytskii) operators on modular metric space (see also [14,15]). Recently, Hosseinzadeh and
Parvaneh [16] introduced the notion of partial modular metric spaces as a generalization
partial metric space and gave some fixed-point results.

In this paper, we refine the concept of the partial modular metric to eliminate the
occurrence of discrepancies in the non-zero self-distance and triangular inequality and
prove a common fixed-point theorem for four self-mappings with a suitable example.
As an application of our result, the existence of a solution for a system of Volterra integral
equations is discussed.

2. Preliminaries

In this section, we recall some definitions and properties to use in our result.
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Definition 1 ([1]). Let X 6= ∅. A function p : X× X → [0, ∞) is called a partial metric on X if
it satisfies:
(p1) : 0 ≤ p(x, y), ∀x, y ∈ X and p(x, y) = p(x, x) = p(y, y)⇐⇒ x = y;
(p2) : p(x, x) ≤ p(x, y), ∀x, y ∈ X ;
(p3) : p(x, y) = p(y, x), ∀x, y ∈ X ;
(p4) : p(x, y) ≤ p(x, z) + p(z, y)− p(z, z), ∀x, y, z ∈ X.
Then, the pair (X, p) is called a partial metric space.

Obviously, if p(x, y) = 0, then, from (p1) and (p2), we have x = y, but the converse
may not be true. Moreover, if (X, p) is a partial metric space, then the function dp : X×X →
[0, ∞) defined by

dp(x, y) = 2p(x, y)− p(x, x)− p(y, y)

is a metric on X.

Example 1 ([1]). Let X 6= ∅ and c ≥ 0. Define p(x, y) = |x− y|+ c; the p is a partial metric on
X and the corresponding metric is dp(x, y) = 2|x− y|, ∀x, y ∈ X.

Every partial metric p on X generates a T0 topology τp on X with a base, which is
defined by the family of open p− balls {Bp(x, ε) : x ∈ X, ε > 0}, where Bp(x, ε) = {u :
p(x, u) < p(x, x) + ε}, ∀x ∈ X and ε > 0.

Definition 2 ([13–15]). Let X 6= ∅. A function ω : (0,+∞)× X × X → [0, ∞), defined by
ω(λ, x, y) = ωλ(x, y), is called a modular metric on X if it satisfies the following:
(ω1) : ωλ(x, y) = 0⇐⇒ x = y, ∀λ > 0;
(ω2) : ωλ(x, y) = ωλ(y, x), ∀x, y ∈ X and ∀λ > 0;
(ω3) : ωλ+µ(x, y) ≤ ωλ(x, z) + ωµ(z, y) ∀x, y, z ∈ X and ∀λ, µ > 0.

If in lieu of (ω1), we write

(ω1′) : ωλ(x, x) = 0, ∀λ > 0,

and then ω is called the pseudomodular metric on X. Note that the function λ 7−→ ωλ ∈
[0, ∞) is non-decreasing. Indeed, ∀x, y ∈ X and ∀λ, µ > such that 0 < µ < λ; from (ω1)
and (ω3), we obtain

ωλ(x, y) ≤ ωλ−µ(x, x) + ωµ(x, y) = ωµ(x, y).

Moreover, we say that ω is convex if it satisfies the axioms (ω1), (ω2) of Definition 2
and the following:

(ω4) : ωλ+µ(x, y) ≤ λ

λ + µ
ωλ(x, z) +

µ

λ + µ
ωµ(z, y), ∀x, y, z ∈ X and ∀λ, µ > 0.

Now, we define the following definition, a general form of convex modular metric on
X.

Definition 3. A modular metric ω defined on a non-empty set X is said to be a weak convex
modular if it satisfies the axioms (ω1), (ω2) of Definition 2 such that there exists a function
α : (0, ∞)× (0, ∞)→ (0, 1) satisfying the following:

(ω4′) : ωλ+µ(x, y) ≤ α(λ, µ)ωλ(x, z) + (1− α(λ, µ))ωµ(z, y),

∀x, y, z ∈ X and ∀λ, µ > 0.

Obviously, every convex modular metric is a weak convex modular metric but the
converse may not be true. Moreover, every (weak) convex modular metric is a modular
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metric but the converse may not be true. In fact, by setting α = λ
λ+µ , then 0 < α < 1 and

0 < 1− α = µ
λ+µ < 1, so (ω4) and (ω4′) infer directly the axiom (ω3) of Definition 2.

Let X 6= ∅ be an arbitrary set. For given x0 ∈ X, we define

Xω(x0) = {x ∈ X : lim
λ→+∞

ωλ(x0, x) = 0}

and
X∗ω(x0) = {x ∈ X : ∃λ = λ(x) > 0, ωλ(x0, x) < ∞}.

Then, the two sets Xω and X∗ω are called modular spaces centered at x0. It is obvious
that Xω ⊆ X∗ω . If x0 ∈ X is an arbitrary, then Xω(x0) and X∗ω(x0) are written as Xω and X∗ω .
If ω is a modular metric on X, then the modular space Xω is a metric space equipped with
a non-trivial metric given by

dω(x, y) = inf{λ : ωλ(x, y) ≤ λ}, ∀x, y ∈ Xω.

Further, if ω is a convex modular on X, then Xω = X∗ω , and this common space can be
equipped with a metric d∗ω defined by

d∗ω(x, y) = inf{λ : ωλ(x, y) ≤ 1}, ∀x, y ∈ Xω.

If a modular metric ω on X is finite and ωλ(x, y) = ωµ(x, y) ,∀x, y ∈ X and ∀λ, µ > 0,
then d(x, y) = ωλ(x, y) is a metric on X.

Example 2 ([17]). Let (X, d) be a metric space. Define ωλ(x, y) = d(x,y)
λ , ∀x, y ∈ X and ∀λ > 0.

Then, ω is a modular metric on X. Moreover, ω is convex and hence it is a weak convex modular
metric on X.

Lemma 1 ([14]). Let ω be a modular metric on a set X, given a sequence {xn}n∈N in Xω and
x ∈ Xω. Then, dω(xn, x) → 0 as n → ∞ if and only if ωλ(xn, x) → 0 as n → ∞, ∀λ > 0. A
similar assertion holds for Cauchy sequences.

Example 3. Define ωλ(x, y) = e−λ |x−y|
c , c > 0 ∀x, y ∈ X and ∀λ > 0. Obviously, ω satisfies

the axioms (ω1), (ω2) and (ω3) of Definition 2. Therefore, ω is a modular metric but not a convex
modular metric on X.

In fact, ∀λ, µ > 0, and we have

ωλ+µ(x, y) ≤ e−(λ+µ)

c
[|x− z|+ |z− y|]

=
eλ

eλ+µ

e−λ|x− z|
c

+
eµ

eλ+µ

e−µ|z− y|
c

=
eλ

eλ+µ
ωλ(x, z) +

eµ

eλ+µ
ωµ(z, y).

Note that 0 < λ
λ+µ < eλ

eλ+µ < 1 and 0 < µ
λ+µ < eµ

eλ+µ < 1. Thus, ω is not a convex modular
metric on X.

Definition 4 ([16]). Let X 6= ∅ and ωp : (0,+∞)× X × X → [0, ∞) be a function defined by
ωp(λ, x, y) = ω

p
λ(x, y), which is called a partial modular metric on X if it satisfies the following

axioms:
(ω

p
1 ): ω

p
λ(x, y) = ω

p
λ(x, x) = ω

p
λ(y, y)⇐⇒ x = y, ∀λ > 0;

(ω
p
2 ) : ω

p
λ(x, x) ≤ ω

p
λ(x, y), ∀ x, y ∈ X and ∀λ > 0;

(ω
p
3 ) : ω

p
λ(x, y) = ω

p
λ(y, x), ∀x, y ∈ X and ∀λ > 0;
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(ω
p
4 ) : ω

p
λ+µ(x, y) ≤ ω

p
λ(x, z) + ω

p
µ(z, y) − ω

p
λ(x,x)+ω

p
λ(z,z)+ω

p
µ(z,z)+ω

p
λ(y,y)

2 , ∀x, y ∈ X and
∀λ, µ > 0.

As in Definition 1, the self-distance in Definition 4 of a partial modular metric need
not be restricted to zero, i.e., ω

p
λ(x, x) = 0. Note that if x = y = z, ∀λ, µ > 0, then, from

(ω
p
4 ), it follows that ω

p
λ(x, x) = 0. In order to avoid this limitation, we modify the axioms

(ω
p
1 ) and (ω

p
4 ) in Definition 4 and restate them as follows.

Definition 5. Let X 6= ∅ and ωp : (0,+∞) × X × X → [0, ∞) be a function defined by
ωp(λ, x, y) = ω

p
λ(x, y), which is called a partial modular metric on X if it retains the axioms (ωp

2 )

and (ω
p
3 ) of Definition 4 with the following:

(ω
p
1′) : ω

p
λ(x, x) = ω

p
µ(x, x) and ω

p
λ(x, x) = ω

p
λ(x, y) = ω

p
λ(y, y)⇐⇒ x = y, ∀λ, µ > 0;

(ω
p
4′) : ω

p
λ+µ(x, y) ≤ ω

p
λ(x, z) + ω

p
µ(z, y)−ω

p
λ(z, z), ∀x, y ∈ X and ∀λ, µ > 0.

Obviously, if ω
p
λ(x, y) = 0, then, from (ω

p
1′) and (ω

p
2 ), we have x = y, but the converse

may not be true. It is not difficult to see that a partial modular metric ωp on X is a modular
metric but the converse may not be true. If a partial modular metric ωp on X possesses
a finite value and is independent of the parameter λ > 0 that is ω

p
λ(x, y) = ω

p
µ(x, y),

∀λ, µ > 0, then p(x, y) = ω
p
λ(x, y) is a partial metric on X.

Definition 6. A partial modular metric ωp on X is said to be convex if, in addition to the axioms
(ω

p
1′), (ω

p
2 ) and (ω

p
3 ), it satisfies the following:

(ω
p
5 ) : ω

p
λ+µ(x, y) ≤ λ

λ + µ
ω

p
λ(x, y) +

µ

λ + µ
ω

p
µ(z, y)− λ

λ + µ
ω

p
λ(z, z),

∀x, y, z ∈ X and ∀λ, µ > 0.

Definition 7. A partial modular metric ωp on X is said to be weakly convex if it satisfies the
axioms (ωp

1′), (ω
p
2 ), (ω

p
3 ) and the following:

(ω
p
5′) : ω

p
λ+µ(x, y) ≤ α(λ, µ)ω

p
λ(x, y) + (1− α(λ, µ))ω

p
µ(z, y)− α(λ, µ)ω

p
λ(z, z),

∀x, y, z ∈ X and ∀λ, µ > 0, where α : (0, ∞)× (0, ∞)→ (0, 1) is a function.

Now, we define the following definitions as in the modular metric:

Definition 8. Let ωp be a partial modular metric on a set X. For given x0 ∈ X, we define

Xωp(x0) = {x ∈ X : lim
λ→+∞

ω
p
λ(x0, x) = c},

for some c ≥ 0 and

X∗ωp(x0) = {x ∈ X : ∃λ = λ(x) > 0, ω
p
λ(x0, x) < ∞}.

Then, two sets Xωp and X∗ωp are called partial modular spaces centered at x0. It is obvious
that Xωp ⊂ X∗ωp . We write Xωp ≡ Xωp(x0) and X∗ ≡ X∗ωp(x0), if x0 ∈ X is arbitrary.

Remark 1. For every x, y ∈ X, the function λ 7−→ ω
p
λ ∈ [0, ∞) is non-increasing. Indeed,

∀x ∈ X and 0 < µ < λ, from (ω
p
1′) and (ω

p
4′), and we obtain

ω
p
λ(x, y) ≤ ω

p
λ−µ(x, x) + ω

p
µ(x, y)−ω

p
λ−µ(x, x) = ω

p
µ(x, y).



Axioms 2022, 11, 62 5 of 18

Lemma 2. Let ωp be a partial modular metric on a non-empty set X. Define

ωs
λ(x, y) = 2ω

p
λ(x, y)−ω

p
λ(x, x)−ω

p
λ(y, y).

Then, ωs is a modular metric on X.

Proof. Obviously, ωs holds (ω2) of Definition 2. For (ω1) and (ω3), we have
(ω1) : If x = y, then ωs

λ(x, y) = 0, ∀λ > 0. Suppose ωs
λ(x, y) = 0, ∀λ > 0, then

2ω
p
λ(x, y) = ω

p
λ(x, x) + ω

p
λ(y, y).

From (ω
p
2 ) of Definition 5, we obtain

2ω
p
λ(x, x) ≤ 2ω

p
λ(x, y) = ω

p
λ(x, x) + ω

p
λ(y, y) =⇒ ω

p
λ(x, x) ≤ ω

p
λ(y, y).

Similarly, we obtain

2ω
p
λ(y, y) ≤ 2ω

p
λ(x, y) = ω

p
λ(x, x) + ω

p
λ(y, y) =⇒ ω

p
λ(y, y) ≤ ω

p
λ(x, x).

Consequently, we obtain

ω
p
λ(x, y) = ω

p
λ(x, x) = ω

p
λ(y, y).

Thus, by the second part of (ωp
1′) of Definition 5, x = y.

(ω3) : From (ω
p
1′) of Definition 5, we obtain

ω
p
λ+µ(x, x) = ω

p
λ(x, x) and ω

p
λ+µ(y, y) = ω

p
λ(y, y), ∀x, y ∈ X and ∀λ, µ > 0.

Now, by (ω
p
4′) of Definition 5, we have

ωs
λ+µ(x, y) = 2ω

p
λ+µ(x, y)−ω

p
λ+µ(x, x)−ω

p
λ+µ(y, y)

= 2ω
p
λ+µ(x, y)−ω

p
λ(x, x)−ω

p
µ(y, y)

≤ 2
(

ω
p
λ(x, z) + ω

p
µ(z, y)−ω

p
λ(z, z))

)
−ω

p
λ(x, x)−ω

p
µ(y, y)

=
(

2ω
p
λ(x, z)−ω

p
λ(x, x)−ω

p
λ(z, z)

)
+
(

2ω
p
µ(z, y)−ω

p
λ(z, z))−ω

p
µ(y, y)

)
=ωs

λ(x, z) + ωs
µ(z, y).

Thus, ωs satisfies the axioms (ω1), (ω2) and (ω3) of Definition 2 and hence ωs is a
modular metric.

Remark 2. (i) Let ωs be a modular metric induced by partial modular metric ωp on a non-empty
set X, and then Xωs shall denote the modular space with respect to modular metric ωs.
(ii) Let ω be a modular metric on X and c ≥ 0; then,

ω
p
λ(x, y) = ωλ(x, y) + c

defines a partial modular metric on X and the corresponding modular metric is ωs
λ(x, y) =

2ωλ(x, y) or ωs
λ(x, y) = 2(ωp

λ(x, y)− c). Moreover, ωp is (weakly) convex if ω is a (weakly)
convex modular metric with c = 0 on X.

Example 4. Let X = R. Define a function ω
p
λ : (0, ∞)× X× X → [0, ∞) by

ω
p
λ(x, y) = e−λ|x− y|+ c,

where c ≥ 0, λ > 0 and ∀x, y ∈ X. Then, ωp is a partial modular metric on X.
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Example 5. Let (X, d) be a metric space and a function ωp be defined by

ω
p
λ(x, y) =

d(x, y) + c
λ

, ∀x, y ∈ X, and ∀λ > 0

where c ≥ 0. We see that limλ→+∞ ω
p
λ(x, y) = 0, ∀x, y ∈ X. However, ωp is not a partial

modular metric on X. Indeed, by the first part of (ωp
1′) of Definition 5, ω

p
λ(x, x) 6= ω

p
µ(x, x), ∀x ∈

X and ∀λ, µ > 0, λ 6= µ.

Example 6. Let X = R. Define

ω
p
λ(x, y) = e−λ|x− y|+ |x|+ |y|, ∀x, y ∈ X and ∀λ > 0.

Then, ωp is a partial modular metric on X. It is obvious that (ωp
1′), (ω

p
2 ) and (ω

p
3 ) of

Definition 5 hold. For (ωp
4′), ∀λ, µ > 0 and ∀x, y, z ∈ X, we have

ω
p
λ+µ(x, y) = e−(λ+µ)|x− y|+ |x|+ |y|

≤ e−(λ+µ)
(
|x− z|+ |z− y|

)
+ |x|+ |y|

=
(

e−(λ+µ)|x− z|+ |x|
)
+
(

e−(λ+µ)|z− y|+ |y|
)

≤
(

e−λ|x− z|+ |x|+ |z|
)
+
(

e−µ|z− y|+ |z|+ |y|
)
− 2|z|

= ω
p
λ(x, z) + ω

p
µ(z, y)−ω

p
λ(z, z).

Thus, ωp is a partial modular metric on X.

Example 7. Let X 6= ∅ be a set. Define ω
p
λ(x, y) = |x−y|

λ + c, c > 0, ∀x, y ∈ X and ∀λ > 0.
It is obvious that (ωp

1′), (ω
p
2 ) and (ω

p
3 ) of Definition 5 hold. Now, we show that ωp is a partial

modular metric and but not (weakly) convex on X.
For (ωp

4′), ∀x, y, z ∈ X and ∀λ, µ > 0, we have

ω
p
λ+µ(x, y) =

|x− y|
λ + µ

+ c

≤ 1
λ + µ

(
|x− z|+ |z− y|

)
+ c

≤
( |x− z|

λ
+ c
)
+
( |z− y|

µ
+ c
)
− c

= ω
p
λ(x, z) + ω

p
µ(z, y)−ω

p
µ(z, z).

Then, ωp is a partial modular metric on X. On the other hand, ∀λ, µ > 0 and ∀x.y, z ∈ X,
and we have

ω
p
λ+µ(x, y) ≤ 1

λ + µ

(
|x− z|+ |z− y|

)
+ c

=
λ

λ + µ

( |x− z|
λ

+ c
)
+

µ

λ + µ

( |z− y|
µ

+ c
)

=
λ

λ + µ
ω

p
λ(x, z) +

µ

λ + µ
ω

p
µ(z, y).



Axioms 2022, 11, 62 7 of 18

To show that ωp is not convex on X, ∀λ, µ > 0, taking x = 4, y = 1, z = 2, then( λ

λ + µ
ω

p
λ(x, z) +

µ

λ + µ
ω

p
µ(z, y)− λ

λ + µ
ω

p
µ(z, z)

)
−ω

p
λ+µ(x, y)

=
( 3

λ + µ
+ c− λ

λ + µ
c
)
−
( 3

λ + µ
+ c
)

= − λ

λ + µ
c < 0.

This shows that ωp is not convex and, hence, it is not a weakly convex partial modular metric
on X.

Example 8. Let ωp be a partial modular metric on a non-empty set X. Define ω
p
λ(x, y) =

ωλ(x,y)
λ , ∀x, y ∈ X and ∀λ > 0. Then, ωp is convex and hence it is a weakly convex partial

modular metric on X.

Example 9. For any non-empty set X, define ω
p
λ(x, y) = e−λωλ(x, y), ∀x, y ∈ X and ∀λ > 0.

Then, ωp is weakly convex but is not a convex partial modular metric on X.

Definition 9. Let ωp be a partial modular metric on a non-empty set X and {xn} be a sequence in
a partial modular space Xωp ; then,

(i) {xn} is said to be convergent to a point x ∈ Xωp , if and only if, for every ε > 0, there exists
n0 ∈ N∪ {0} such that

|ωp
λ(xn, x)−ω

p
λ(x, x)| ≤ ε,

∀n ≥ n0 and ∀λ > 0. We write limn→+∞ ω
p
λ(xn, x) = ω

p
λ(x, x), ∀λ > 0;

(ii) a sequence {xn} is a Cauchy in Xωp if limn,m→+∞ ω
p
λ(xn, xm) = c, ∀λ > 0, for some c ≥ 0.

In this case, limn→+∞ ω
p
λ(xn, xn) = limm→+∞ ω

p
λ(xm, xm) = c. Thus, if {xn} is a Cauchy

sequence in Xωs , then c = 0;
(iii) a partial modular space Xωp is said to be complete if every Cauchy sequence converges to a

point x ∈ Xωp such that

lim
n,m→+∞

ω
p
λ(xn, xm) = ω

p
λ(x, x), ∀λ > 0.

Remark 3. (i) If {xn} is a Cauchy sequence in Xωs , i.e., limn,m→+∞ ωs
λ(xn, xm) = 0, then

lim
n,m→+∞

ω
p
λ(xn, xm) = lim

n→+∞
ω

p
λ(xn, xn) = lim

m→+∞
ω

p
λ(xm, xm).

(ii) If {xn} is a Cauchy sequence in Xωs that converges to some point x ∈ Xωs , then

lim
n,m→+∞

ω
p
λ(xn, xm) = lim

n→+∞
ω

p
λ(xn, xn) = ω

p
λ(x, x).

(iii) A sequence {xn} in Xωp is a Cauchy sequence if it is a Cauchy sequence in Xωs , i.e.,
limn,m→+∞ ωs

λ(xn, xm) = 0.

Lemma 3. Let ωp be a partial modular on X and {xn} be a sequence in Xωp . Then,

(i) {xn} is a Cauchy sequence in Xωp if it is a Cauchy sequence in the modular space Xωs induced
by partial modular metric ωp;

(ii) a partial modular space Xωp is complete if and only if the modular space Xωs induced by ωp

is complete. Furthermore,

lim
n→+∞

ωs
λ(xn, x) =0⇐⇒ lim

n→∞
[2ω

p
λ(xn, x)−ω

p
λ(xn, xn)−ω

p
λ(x.x)] = 0



Axioms 2022, 11, 62 8 of 18

or

lim
n→∞

ωs
λ(xn, x) =0⇐⇒ lim

n→+∞
ω

p
λ(xn, x) = lim

n→+∞
ω

p
λ(xn, xn) = ω

p
λ(x, x), ∀λ > 0.

Definition 10 ([18]). A continuous function F : [0, ∞) × [0, ∞) → R is called a C− class
function if, for any s, t ∈ R, the following conditions hold:

(i) F (s, t) ≤ s;
(ii) F (s, t) = s implies s = 0 or t = 0.

Example 10 ([18]). The following are examples of the C−class function:

(i) F (s, t) = αs, α ∈ (0, 1);
(ii) F (s, t) = s

(1+t)r , r ∈ (0, ∞);

(iii) F (s, t) = log(t+αs)
(1+t) , α > 1.

Definition 11 ([19]). A control function ψ : [0, ∞)→ [0, ∞) is called an altering distance if the
following conditions hold:

(i) ψ is non-decreasing and continuous;
(ii) ψ(t) = 0 if and only if t = 0.

We denote by Ψ the set of all altering distance functions.

Example 11 ([20]). The following examples are the altering distance functions:

(i) ψ(t) = eαt + βt− 1;
(ii) ψ(t) = αt2 + ln(βt + 1), where α, β > 0.

Definition 12 ([18]). A control function ϕ : [0, ∞)→ [0, ∞) is called an ultra-altering distance
if the following conditions hold:

(i) ϕ is continuous;
(ii) ϕ(t) > 0, t > 0 and ϕ(0) ≥ 0.

Φ denotes the set of all ultra-altering distance functions.

Definition 13 ([21]). A triplet (ψ, ϕ,F ), where ψ ∈ Ψ, ϕ ∈ Φ and F ∈ C is monotonically
increasing if

∀x, y ∈ [0, ∞), x ≤ y =⇒ F (ψ(x), ϕ(x)) ≤ F (ψ(y), ϕ(y)).

Further, we say that the triplet (ψ, ϕ,F ) is strictly monotonically increasing if

∀x, y ∈ [0, ∞) x < y =⇒ F (ψ(x), ϕ(x)) < F (ψ(y), ϕ(y)).

Example 12 ([21]). Consider a C− class function F (s, t) = s− t. Define ψ, ϕ : [0, ∞)→ [0, ∞)
by ϕ(x) =

√
x and

ψ(x) =

{√
x, 0 ≤ x ≤ 1;

x2, x > 1.

Obviously, the triplet (ψ, ϕ,F ) is monotonically increasing.

Definition 14 ([22]). Let P and Q be two self-mappings on a non-empty set X; then, they are said
to be weakly compatible if they commute at their coincidence points, i.e., PQx = QPx, for some
x ∈ X.

Definition 15 ([23]). Let X 6= ∅ and P ,Q : X → X be two self-mappings. If u = Px = Qx,
for some x ∈ X, then x is called a coincidence point of P andQ, and u is called a point of coincidence
(briefly, poc) of P and Q.
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Lemma 4 ([23]). If P and Q are weakly compatible self-mappings on a non-empty set X, and if P
and Q have a unique point of coincidence u = Px = Qx, then u is the unique common fixed-point
P and Q.

3. Main Results

Let ωp be a partial modular metric on a non-empty set X and Xωp be a partial modular
space. Suppose that P ,Q,R,S : Xωp → Xωp are four self-mappings such that

PXωp ⊆ QXωp and RXωp ⊆ SXωp . (1)

Let x0 ∈ Xωp be any point. By virtue of (1), the two sequences {xn} and {yn} in Xωp

are defined as follows:

y2n = Px2n = Qx2n+1 and y2n+1 = Rx2n+1 = Sx2n+2, ∀n ∈ N∪ {0}. (2)

Inspired by Chandok et al. [4], we are ready to prove the following lemma, which
plays a crucial role in the subsequent results.

Lemma 5. Let ωp be a partial modular metric on a non-empty set X and Xωp be a partial modular
space. Suppose that P ,Q,R,S : Xωp → Xωp are four self-mappings satisfying the condition (1).
If there exist ψ ∈ Ψ, ϕ ∈ Φ and F ∈ C such that the triplet (ψ, ϕ,F ) is a monotonically increasing
function satisfying the following:

ψ(ω
p
λ(Px,Ry)) ≤ F (ψ(M(x, y)), ϕ(M(x, y))), (3)

where

M(x, y) = max{ωp
λ(Sx,Qy), ω

p
λ(Sx,Px), ω

p
λ(Qy,Ry),

1
2
[ω

p
2λ(Qy,Px) + ω

p
2λ(Sx,Ry)]},

∀λ > 0 and ∀x, y ∈ Xωp . Then, the sequence {yn} defined by (2) is a Cauchy sequence in Xωp .

Proof. From (2), we recall that

y2n = Px2n = Qx2n+1 and y2n+1 = Rx2n+1 = Sx2n+2, ∀n ∈ N∪ {0}.

Using (3), we obtain

ψ(ω
p
λ(y2n, y2n+1)) = ψ(ω

p
λ(Px2n,Rx2n+1)) (4)

≤ F (ψ(M(x2n, x2n+1)), ϕ(M(x2n, x2n+1))),

where

M(x2n, x2n+1) = max{ωp
λ(Sx2n,Qx2n+1), ω

p
λ(Sx2n,Px2n), ω

p
λ(Qx2n+1,Rx2n+1), (5)

1
2
[ω

p
2λ(Qx2n+1,Px2n) + ω

p
2λ(Sx2n,Rx2n+1)]}

= max{ωp
λ(y2n−1, y2n), ω

p
λ(y2n−1, y2n), ω

p
λ(y2n, y2n+1),

1
2
[ω

p
2λ(y2n, y2n) + ω

p
2λ(y2n−1, y2n+1)]}.
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and by (ω
p
1′) and (ω

p
4′), we have

1
2
[ω

p
2λ(y2n, y2n) + ω

p
2λ(y2n−1, y2n+1)] (6)

≤ 1
2
[ω

p
λ(y2n, y2n) + ω

p
λ(y2n−1, y2n) + ω

p
λ(y2n, y2n+1)−ω

p
λ(y2n, y2n)]

=
1
2
[ω

p
λ(y2n−1, y2n) + ω

p
λ(y2n, y2n+1)].

Using (5), (6) and the monotonicity of the triplet (ψ, ϕ,F ), (4) becomes

ψ(ω
p
λ(y2n, y2n+1)) ≤ F (ψ(max{ωp

λ(y2n−1, y2n), ω
p
λ(y2n, y2n+1)}), (7)

ϕ(max{ωp
λ(y2n−1, y2n), ω

p
λ(y2n), y2n+1)})),

From the above inequality, the following cases arise:
Case (I): Suppose ω

p
λ(y2n−1, y2n) < ω

p
λ(y2n, y2n+1); then, from (7) and by the strict

monotonicity of (ψ, ϕ,F ), we obtain

ψ(ω
p
λ(y2n, y2n+1)) <F (ψ(ω

p
λ(y2n, y2n+1), ϕ(ω

p
λ(y2n, y2n+1)))

≤ψ(ω
p
λ(y2n, y2n+1)).

Therefore, ω
p
λ(y2n, y2n+1) < ω

p
λ(y2n, y2n+1). This is a contradiction.

Case (I I): Suppose ω
p
λ(y2n, y2n+1) ≤ ω

p
λ(y2n−1, y2n); then, from (7), we obtain

ψ(ω
p
λ(y2n, y2n+1)) ≤F (ψ(ω

p
λ(y2n−1, y2n)), ϕ(ω

p
λ(y2n−1, y2n)). (8)

Since ψ is a non-increasing function, then, from (8), we have

ψ(ω
p
λ(y2n, y2n+1)) ≤ψ(ω

p
λ(y2n−1, y2n)) =⇒ ω

p
λ(y2n, y2n+1)) ≤ ω

p
λ(y2n−1, y2n).

This shows that {ωp
λ(y2n, y2n+1)} is a non-increasing sequence of non-negative real

numbers. Thus, there exists ε ≥ 0 such that

lim
n→+∞

ω
p
λ(y2n, y2n+1) = ε, ∀λ > 0.

Taking the limit as n→ +∞ in (8), we obtain

ψ(ε) ≤ F (ψ(ε), ϕ(ε)) ≤ ψ(ε) =⇒ F (ψ(ε), ϕ(ε)) = ψ(ε),

so ψ(ε) = 0 or ϕ(ε) = 0 and hence ε = 0, i.e.,

lim
n→+∞

ω
p
λ(y2n, y2n+1) = 0, ∀λ > 0. (9)

Now, we show that {yn} is a Cauchy sequence in Xωp . By Lemma 3, it is sufficient to
prove that a subsequence {y2n} of {yn} is a Cauchy sequence in Xωs .

From (ω
p
2 ) of Definition 4, we have

0 ≤ ω
p
λ(y2n, y2n) ≤ ω

p
λ(y2n, y2n+1), ∀λ > 0,

so from (9), it follows that
lim

n→+∞
ω

p
λ(y2n, y2n) = 0. (10)

Similarly, limn→+∞ ω
p
λ(y2n+1, y2n+1) = 0, ∀λ > 0.
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If possible, let {y2n} be not a Cauchy in Xωs , and then there exists δ > 0 such that,
for each even +ve integer k, we can find subsequence {y2m(k)} and {y2n(k)} of {y2n} with
2n(k) > 2m(k) ≥ k such that

ωs
λ(y2m(k), y2n(k)) > δ, ∀ λ > 0. (11)

Now, we choose 2n(k) corresponding to 2m(k) such that it is the smallest even integer
with 2n(k) > 2m(k) and satisfies Inequality (11). Hence,

ωs
λ(y2m(k), y2n(k)−1) ≤ δ, ∀ λ > 0. (12)

By triangular inequality (ω3) and (12), we have

ωs
λ(y2m(k), y2n(k)) ≤ ωs

λ
2
(y2m(k), y2n(k)−1) + ωs

λ
2
(y2n(k)−1, y2n(k))|

≤ δ + ωs
λ
2
(y2n(k)−1, y2n(k)). (13)

On the other hand, by Lemma 2, ∀λ > 0, we have

ωs
λ(y2n(k)−1, y2n(k)) = 2ω

p
λ(y2n(k)−1, y2n(k))−ω

p
λ(y2n(k)−1, y2n(k)−1) (14)

−ω
p
λ(y2n(k), y2n(k)).

Letting k→ +∞ on (14), then from (9) and (10) , ∀λ > 0, we have

lim
k→+∞

ωs
λ(y2n(k)−1, y2n(k)) = 0, ∀λ > 0. (15)

From (13), using (11) and (15), we have

δ < lim
k→∞

ωs
λ(y2m(k), y2n(k)) ≤ δ, ∀λ > 0.

This implies
lim

k→+∞
ωs

λ(y2m(k), y2n(k)) = δ. (16)

Again, using the triangular inequality (ω3), we have

ωs
λ(y2n(k), y2m(k)) ≤ ωs

λ
2
(y2n(k), y2n(k)−1) + ωs

λ
2
(y2n(k)−1, y2m(k))

≤ ωs
λ
2
(y2n(k), y2n(k)−1) + ωs

λ
4
(y2n(k)−1, y2m(k)−1)

+ ωs
λ
4
(y2m(k)−1, y2m(k)). (17)

Furthermore, we have

ωs
λ(y2n(k)−1, y2m(k)−1) ≤ ωs

λ
2
(y2n(k)−1, y2n(k)) + ωs

λ
4
(y2n(k), y2m(k)) (18)

+ ωs
λ
4
(y2m(k), y2m(k)−1)

Letting the limit as k→ +∞ in (17) and (18), using (15) and (16), we obtain

lim
k→∞

ωs
λ(y2n(k)−1, y2m(k)−1) = δ.

Further, we have

ωs
λ(y2n(k)+1, y2m(k)) ≤ ωs

λ
2
(y2n(k)+1, y2n(k)) + ωs

λ
2
(y2n(k), y2m(k)). (19)
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However,

ωs
2λ(y2n(k), y2m(k)) ≤ ωs

λ(y2n(k), y2n(k)+1) + ωs
λ(y2n(k)+1, y2m(k)). (20)

Taking the limit on (19) and (20) as k→ +∞ and using (15) and (16), we obtain

lim
k→+∞

ωs
λ(y2n(k)+1, y2m(k)) = δ. (21)

Since ∀λ > 0, we have

ωs
λ(y2n(k), y2m(k)) = [2ω

p
λ(y2n(k), y2m(k))−ω

p
λ(y2n(k), y2n(k))

−ω
p
λ(y2m(k), y2m(k)].

Taking the limit on the above equation as k → +∞, and then using (9) and (16), we
obtain

lim
k→+∞

ω
p
λ(y2n(k), y2m(k)) =

δ

2
= d (say) (22)

Similarly, we obtain

lim
k→+∞

ω
p
λ(y2n(k), y2m(k)−1) =

δ

2
= d and lim

k→+∞
ω

p
λ(y2n(k)+1, y2m(k)) =

δ

2
= d. (23)

Now, from (3), we obtain

ψ(ω
p
λ(y2m(k), y2n(k)+1)) = ψ(ω

p
λ(Px2m(k),Rx2n(k)+1)) (24)

≤ F (ψ(M(x2m(k), x2n(k)+1)), ϕ(M(x2m(k), x2n(k)+1))),

where

M(x2m(k), x2n(k)+1) =max{ωp
λ(Sx2m(k), Qx2n(k)+1), ω

p
λ(Sx2m(k), Px2m(k)),

ω
p
λ(Qx2n(k)+1, Rx2n(k)+1),

1
2
[ω

p
2λ(Qx2n(k)+1, Px2m(k)) + ω

p
2λ(Sx2m(k), Rx2n(k)+1)]}

=max{ωp
λ(y2m(k)−1, y2n(k)), ω

p
λ(y2m(k)−1, y2m(k)),

ω
p
λ(y2n(k), y2n(k)+1),

1
2
[ω

p
2λ(y2n(k), y2m(k)) + ω

p
2λ(y2m(k)−1, y2n(k)+1)]}

and by (ω
p
4′), we have

1
2
[ω

p
2λ(y2n(k), y2m(k)) + ω

p
2λ(y2m(k)−1, y2n(k)+1)]

=
1
2

ω
p
2λ(y2n(k), y2m(k)) +

1
2
[ω

p
λ(y2m(k)−1, y2m(k)) + ω

p
λ(y2m(k), y2n(k)+1)

−ω
p
λ(y2m(k), y2m(k))].

Taking the limit as k → +∞ on (24), and then using (9), (10), (20), (22) and (23), we
obtain

ψ(d) ≤ F (ψ(d), ϕ(d)) ≤ ψ(d) =⇒ F (ψ(d), ϕ(d)) = ψ(d),

which implies ψ(d) = 0 or ϕ(d) = 0; then, d = 0. This is a contradiction. Therefore, {yn}
is a Cauchy sequence in the modular space Xωs and hence the sequence {yn} is a Cauchy
sequence in Xωp .
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Theorem 1. Suppose P ,Q,R,S : Xωp → Xωp to be four self-mappings defined on a complete
partial modular space satisfying (1) and (3). Then, poc(P ,S) 6= ∅ and poc(Q,R) 6= ∅. Further,
if the pairs (P ,S) and (Q,R) are weakly compatible in Xωp , then P ,Q,R and S have a unique
common fixed point in Xωp .

Proof. By Lemma 5, {yn} is a Cauchy sequence in the partial modular space Xωp . Since
Xωp is complete, {yn} converges in Xωp . Then, there exists z ∈ Xωp such that

lim
n→+∞

ω
p
λ(yn, z) = lim

n→+∞
ω

p
λ(yn, xn) = ω

p
λ(z, z), ∀λ > 0.

By Lemma 3 and from (9), we obtain

lim
n→+∞

ω
p
λ(yn, z) = 0 and ω

p
λ(z, z) = 0, ∀λ > 0. (25)

Since Xωp is complete, the subsequences {Px2n}, {Qx2n+1}, {Rx2n+1} and {Sx2n+2},
∀n ∈ N∪ {0} converge to z ∈ Xωp . Now, we show that poc(P ,S) 6= ∅ and poc(Q,R) 6= ∅.
Since {Sx2n+2} converges to z ∈ Xωp , there exists u ∈ Xωp such that z = Su. We claim
that Pu = Su. Using (3), we obtain

ψ(ω
p
λ(Pu, y2n+1)) =ψ(ω

p
λ(Pu,Rx2n+1)) (26)

≤F (ψ(M(u, x2n+1)), ϕ(M(u, x2n+1))),

where

M(u, x2n+1) = max{ωp
λ(Su,Qx2n+1), ω

p
λ(Su,Pu), ω

p
λ(Qx2n+1,Rx2n+1),

1
2
[ω

p
2λ(Qx2n+1,Pu) + ω

p
2λ(Su,Rx2n+1)]}

= max{ωp
λ(z, y2n), ω

p
λ(z,Pu), ω

p
λ(y2n, y2n+1),

1
2
[ω

p
2λ(y2n,Pu) + ω

p
2λ(z, y2n+1)]}

and

ω
p
2λ(y2n,Pu) ≤ ω

p
λ(y2n, z) + ω

p
λ(z,Pu)−ω

p
λ(z, z).

Taking the limit as n → +∞ on (26), and then using (9), (25) and (27), and by the
definition of (ψ, ϕ,F ), we obtain

ψ(ω
p
λ(Pu, z)) ≤ lim

n→+∞
F (ψ(M(u, x2n+1)), ϕ(M(u, x2n+1))),

where

lim
n→+∞

M(u, x2n+1) = max{ωp
λ(z,Pu),

1
2

lim
n→+∞

ω
p
2λ(y2n,Pu)}

and

lim
n→+∞

ω
p
2λ(y2n,Pu) ≤ lim

n→+∞
[ω

p
λ(y2n, z) + ω

p
λ(z,Pu)−ω

p
λ(z, z)] (27)

≤ω
p
λ(z,Pu).
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Therefore,

ψ(ω
p
λ(Pu, z)) ≤ lim

n→+∞
F (ψ(M(u, x2n+1)), ϕ(M(u, x2n+1)))

≤ lim
n→+∞

F (ψ(ωp
λ(z,Pu)), ϕ(ω

p
λ(z,Pu)))

≤ψ(ω
p
λ(z,Pu)).

It follows that

F (ψ(ωp
λ(z,Pu)), ϕ(ω

p
λ(z,Pu))) =ψ(ω

p
λ(z,Pu)),

so ψ(ω
p
λ(z,Pu)) = 0 or ϕ(ω

p
λ(z,Pu)); then, ω

p
λ(z,Pu) = 0 and hence Pu = Su = z, i.e.,

poc(P ,S) 6= ∅.
Since PXωp ⊂ QXωp and u ∈ poc(P ,S), i.e., Pu = Su = z, then there exists

v ∈ QXωp such that Pu = Qv = z. Now, we show that Rv = Qv. For this, from (3), we
obtain

ψ(ω
p
λ(z,Rv)) = ψ(ω

p
λ(Pu,Rv)) ≤ F (ψ(M(u, v)), ϕ(M(u, v))), (28)

where

Mu, v) = max{ωp
λ(Su,Qv), ω

p
λ(Su,Pu), ω

p
λ(Qv,Rv),

1
2
[ω

p
2λ(Qv,Pu) + ω

p
2λ(Su,Rv)]}

= max{ωp
λ(z, z), ω

p
λ(z, z), ω

p
λ(z,Rv),

1
2
[ω

p
2λ(z, z) + ω

p
2λ(z,Rv)]}.

Then, (28) becomes

ψ(ω
p
λ(z,Rv)) ≤ F (ψ(ωp

λ(z,Rv)), ϕ(ω
p
λ(z,Rv))) ≤ ψ(ω

p
λ(z,Rv)).

Therefore,

F (ψ(ωp
λ(z,Rv)), ϕ(ω

p
λ(z,Rv))) = ψ(ω

p
λ(z,Rv)),

yielding ψ(ω
p
λ(z,Rv)) = 0 or ϕ(ω

p
λ(z,Rv)) = 0; then, ω

p
λ(z,Rv) = 0 and henceRv = z =

Qv. Thus, poc(R,Q) 6= ∅.
Since (P ,S) and (R,Q) are weakly compatible, then Pz = PSu = SPu = Sz and

Rz = RQv = QRv = Qz. Now, we claim that the pairs (P ,S) and (R,Q) have a unique
common point of coincidence. Suppose, if possible, that there exist r, r∗ ∈ Xωp , r 6= r∗ such
that Pz = Sz = r andRz = Qz = r∗.

From (3), we obtain

ψ(ω
p
λ(r, r∗)) = ψ(ω

p
λ(Pz,Rz)) ≤ F (ψ(M(z, z)), ϕ(M(z, z)))

where

M(z, z) = max{ωp
λ(Sz,Qz), ω

p
λ(Sz,Pz), ω

p
λ(Qz,Rz),

1
2
[ω

p
2λ(Qz,Pz) + ω

p
2λ(Sz,Rz)]}

= max{ωp
λ(r, r∗), ω

p
λ(r, r), ω

p
λ(r
∗, r∗),

1
2
[ω

p
2λ(r

∗, r) + ω
p
2λ(r, r∗)]}.
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From the above inequality, we obtain

ψ(ω
p
λ(r, r∗)) ≤ F (ψ(ωp

λ(r
∗, r)), ϕ(ω

p
λ(r
∗, r))) ≤ ψ(ω

p
λ(r
∗, r))

It follows that

F (ψ(ωp
λ(r
∗, r)), ϕ(ω

p
λ(r
∗, r))) = ψ(ω

p
λ(r
∗, r))

giving ψ(ω
p
λ(r
∗, r)) = 0 or ϕ(ω

p
λ(r
∗, r)) = 0. Then, ω

p
λ(r
∗, r) = 0 and hence r = r∗. This is a

contradiction. Therefore, by Lemma 4, the pairs (P ,S) and (R,Q) have a unique common
fixed point in Xωp .

Example 13. Let X = [0, ∞) and define ω
p
λ(x, y) = e−λ|x− y|+ |x|+ |y|; then, ωp is a partial

modular metric on X. Moreover, we can verify that Xωp is a complete partial modular space. Let
P ,Q,R,S : Xωp → Xωp be self-mappings defined by

Px =
1
2

x, Qx =
1
3

x, Sx = x and Rx =
1
6

x, ∀x ∈ Xωp .

Clearly, PXωp ⊂ QXωp and RXωp ⊂ SXωp . Moreover, the pairs (P ,S) and (Q,R) are
weakly compatible. Setting ψ(r) = ϕ(r) = kr and F (s, t) = k2s, where k = 1

2 . Then, the triplet
(ψ, ϕ,F ) is monotonically increasing. Now, ∀x, y ∈ Xωp and ∀λ > 0, and we have

ω
p
λ(Px,Ry) = e−λ|1

2
x− 1

6
y|+ |1

2
x|+ |1

6
y|

=
1
2

(
e−λ|x− 1

3
y|+ |x|+ |1

3
y|
)

=
1
2

(
e−λ|Sx−Qy|+ |Sx|+ |Qy|

)
≤ 1

2
M(x, y).

Therefore,

ψ(ω
p
λ(Px,Ry)) = kω

p
λ(Px,Ry) ≤ k2M(x, y)

≤ F (ψ(M(x, y)), ϕ(M(x, y))), ∀x, y ∈ Xωp and ∀λ > 0.

Thus, all the conditions of Theorem 1 are satisfied and 0 is the unique fixed point of P ,Q,R
and S in Xωp .

The following theorem is the direct consequence of Theorem 1, which is a counterpart
of Banach’s contraction in metric space.

Theorem 2. Let ωp be a partial modular metric on a non-empty set X and Xωp be a complete
partial modular metric space. Suppose P : Xωp → Xωp to be a self-mapping satisfying

ω
p
λ(Px,Py) ≤ kω

p
λ(x, y), ∀ x, y ∈ Xωp and ∀λ > 0,

where 0 ≤ k < 1; then, P has a unique fixed point in Xωp .

4. Application

In this section, inspired by Pant et al. [6], we establish the existence of a solution of a
system of Volterra-type integral equations.

Consider a set of Volterra-type integral equations

x(t) = q(t) +
∫ t

0
Ki(t, s, x(t))ds, (29)
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where t ∈ [0, k] = I ⊂ R, Ki : [0, k]× [0, k]×R → R, i = {1, 2, 3, 4} and q : [0, k] → R are
continuous functions.

Let X = C(I,R) be the space of real continuous functions defined on I. Define ωp on
X by

ω
p
λ(x, y) = max

t∈[0,k]

[
e−λ|x(t)− y(t)|+ |x(t)|+ |y(t)|

]
, ∀λ > 0.

Then, Xωp is a complete modular space. SupposeHi : Xωp → Xωp to be a self-mapping
defined by

Hix(t) = q(t) +
∫ t

0
Ki(t, s, x(t))ds, ∀x ∈ Xωp and ∀t ∈ I, i = {1, 2, 3, 4}.

Clearly, x(t) is a solution of (29) if and only if it is a common fixed point of Hi for
i = {1, 2, 3, 4}.

Theorem 3. Under the above conditions, assume that the following hypotheses hold:

(h1): For any x ∈ Xωp , there exist u, v ∈ Xωp such that

H1x = H3u, H2x = H4v;

(h2): For any t ∈ I, there exist u, v ∈ Xωp such that

H1H4u(t) = H4H1u(t), if H1u(t) = H4u(t)

and
H2H3v(t) = H3H2v(t), if H2v(t) = H3v(t);

(h3): There exists a continuous function f : I × I → R+ such that

|K1(t, s, x(s))−K3(t, s, y(s))| ≤ f (t, s)
[
|H4x(s)−H2y(s)|+ eλ(|H4x(s)|

+ |H2y(s)|)− 2eλ(|H1x(s)|+ |H3y(s)|)
]

∀ λ > 0 and ∀x, y ∈ Xωp , where t, s ∈ I;
(h4): maxt∈[0,k]

∫ t
0 f (t, s)ds ≤ 1

2 .

Then, the system (29) of integral equations has a unique common solution in Xωp .

Proof. From (h1),H1Xωp ⊆ H3Xωp andH2Xωp ⊆ H4Xωp .
From (h2), the pairs (H1,H4) and (H2,H3) are weakly compatible. Now, from (h3),

we have

ω
p
λ(H1x,H3y) = max

t∈[0,k]

[
e−λ|H1x(t)−H3y(t)|+ |H1x(t)|+ |H3y(t)|

]
≤ max

t∈[0,k]

[
e−λ

∫ t

0
|K1(t, s, r(s))−K3(t, s, r(s))|ds + |H1x(t)|+ |H3y(t)|

]
≤e−λ max

t∈[0,k]

∫ t

0
f (t, s)ds

[
|H4x−H2y|+ eλ(|H4x|+ |H2y|)

− 2eλ(|H1x|+ |H3y|)
]
+
(
|H1x|+ |H3y|

)
≤1

2

[
e−λ|H4x−H2y|+ |H4x|+ |H2y|

]
=

1
2

ω
p
λ(H4x,H2y)

≤1
2
M(x, y),
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where

M(x, y) =max
{

ω
p
λ(H4x,H2y), ω

p
λ(H4x,H1x), ω

p
λ(H2y,H3y),

ω
p
2λ(H2x,H1x) + ω

p
2λ(H4x,H3y)

2

}
.

Setting ψ(t) = ϕ(t) = t and F (s, t) = 1
2 t, then the triplet (ψ, ϕ,F ) is monotonically

increasing. Therefore,

ω
p
λ(H1x,H3y) ≤ F (ψ(M(x, y)), ϕ(M(x, y))), ∀x, y ∈ Xωp and ∀λ > 0.

Thus, all the conditions of Theorem 1 are satisfied, and hence the system (29) has a
unique solution in Xωp .

5. Conclusions

We propose a refinement of the notion of the partial modular metric to eliminate the
occurrence of discrepancies in the non-zero self-distance and triangular inequality. Using
the altering distance functions, a common fixed-point theorem for four self-mappings via
the C− class function is proven in such space. In addition, we apply our results to establish
the existence of a solution for a system of Volterra integral equations as an application.
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