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Abstract: In this note, a new equilibrium version of Ekeland’s variational principle is presented. It is
a modification and promotion of previous results. Subsequently, the principle is applied to discuss
the equilibrium points for binary functions and the fixed points for nonlinear mappings.
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1. Introduction

Ekeland’s variational principle (abbrev. EVP), which is considered to be the basis of
modern calculus of variations, was presented in 1974 (see, for instance [1,2]). It is widely
used in many fields, such as differential equations, optimization, fixed point theory, etc. It
is precisely the wide application of this theorem that it has attracted the attention of a large
number of scholars, and has been promoted from all directions. For example, Zhong [3]
extended the form of EVP in metric space; we rewrite the result as follows.

Theorem 1 (EVP of Zhong-type [3]). Let (X, d) be a complete metric space and xo € X fixed. The
function f : X — R U {+oo} is bounded from below, lower semi-continuous, and not identically
—+o00.

If g : [0, +00) — [0, +00) is a continuous non-decreasing function such satisfying

+oo 1 p
/0 71+g(r) 7= 400,

then, for any € > 0,y € M such that

f(y) < inf f(x)+e¢

xeX

and, for any A > 0, there exists z € X satisfying

f(z) < f(y)
d(z,x9) <74rg

and
I3

1+ g(d(xo,2)))

£) 2 £2) - 5 d(xz) VxeM
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where rg = d(xo,y) and 7 is such that

T+r9 1
/ = dr>A
1o 1+ 8(7’)

Oettli and Théra [4] and Blum and Oettli [5] investigated the equilibrium versions of
EVP. In [6], Bianchi et al. presented equilibrium versions of EVP as follows
Let X be an Euclidean space, C C X be a closed setand f : C x C — R.

Theorem 2 ([6]). Assume the following assumptions are satisfied:

(i) f(x,-) is lower bounded and lower semicontinuous, for every x € C;
(ii) f(t,t) =0, foreveryt € C;
(iti) f(z,x) < f(z,t)+ f(t, x) for every x,t,z € C.

Then, for every € > 0 and for every xo € C, there exists x € C such that

(@)  f(x0,%)+¢|lxo—%| <O;
(b) f(x,x)+e|lx—x|| >0, VxeCx#7x.

Farkas and Molnar [7] improved the conclusion in [6], and obtained a Zhong-type
variational principle for bi-functions as follows:

Theorem 3 ([7]). Let (X,d) be a complete metric space, C C X be a closed set, and f : C x C —
R be a mapping. Let g : [0, +00) — (0, 400) be a continuous nondecreasing function such that

/0+°° g(18) &=

Let xo € C be fixed. Assume that the following assumptions be satisfied:

(i) f(x,-) is bounded from below and lower semicontinuous, for every x € C;
(i) f(z,z) =0, forevery z € C;
(iii) f(z,x) < f(z,t) + f(t x) for every x,t,z € C;

Then, for every e > 0 and y € C for which we have
inf f(y,z) > —¢ 1)
zeC

and for every A > 0, there exists x, such that

(@) d(xo,xe) <r+7

(b)  f(xe, x0) + Wd(xg, xp) <0;

(c)  fl(xex)+ md(x, xXe) > 0Vx € C,x # x¢;

where ro = d(xo,y) and 7 are chosen such that

V(]-‘r? 1
/ > A
o 1+ g(?’)

However, when proving (a), there are some errors in [7].
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In the process of proving {d(xo, x,) < rp + 7}(14) , they presented the following inequal-

ity,
kil d(Xn, Xn11) < & d(xo, Xui1) — d(xo, xu)
n=1 1+ g(d<x0/ anrl)) o n=1 1+ g(d(x0, xn+l))
k=1 rd(x0,%011) 1
> / dr
d(x()rxn) 1 + g(r)

n=1

/'d(xﬂka) 1 p
= ——ar
Jd(xox) 1+g(r)

But in fact, by the continuity and monotonicity of ¢ and the definition of W(x,), we
have d(xg, xn) < d(x0, x,+1), then for d(xp, x,) < r < d(x0, Xy 41),

1 1
>
1+g(r) = 1+g(d(xo, xnt1))
Hence,
k-1 /'d(xO/anrl) 1 d > / Xo JCn+1 1 i
——ar r
n=1 d(x0,%n) 1+ g(i’) - d(xo,%n) 1+ g(d(x()r xn+l))

_ 2 xOI xn+l d(x(]/ xn)
= 1+ g(d(x0,xp41))

7

which contradicts their conclusion.

In this note, we aim at modifying the result of [7], and establish a new equilibrium
form of the Ekeland’s variational principle for bi-function. Then, the conclusions are used
to discuss the equilibrium point problem and fixed point problem. Some recent advances
in Ekeland’s variational principles and applications can be seen in [8-19] and references
therein.

This paper is organized as follows: In Section 2, we state a new version of Ekeland’s
variational principle for bi-functions. In Section 3, as applications of the main result, we
discuss a equilibrium problem and a fixed point problem.

2. A New Equilibrium Version of EVP

In this section, we establish a new equilibrium version of EVP.

Theorem 4. Let (X,d) be a complete metric space, C C X be a closed set, xg € C fixed, and
g :[0,400) — (0,+00) be a continuous nondecreasing function such that

/ 71 ds =m (0 m 00)
S , < < +4o00).
0 g(s)

If f : C x C — R satisfies:

(i) f(x,-) is bounded from below and lower semi-continuous, Vx € C;
(i) f(y,y)=0,VyeC;
(iii) f(x,z) < f(x,y)+ f(y,z), Vx,y,z € C.

Then, for any e > 0,0 < a < m fulfilling

lllf XU,Z —NE 2

(@) f(xo,xe) + émal(xo, xe) <0
(b)  fxe,x)+ md(xg,x) >0Vx e C,x # xg;
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() d(xo,xe) <1,
where | satisfies

Proof. Let

£
8(d(xo, x))
In the same manner as the proof of Theorem 2.1 in [7], we can construct a sequence {x; }5>_, € C

such that

(1) xpa1 € T(xn), T(xy41) C T(xp),n=0,1,2,--+;
(2) diamT(x,) — 0.

T(x) = {y € C\B(xo,d(xo, x))|f (x0, X) + d(xo, x) < 0}.

Due to the completeness of X and the closeness of C, there is a unique x, € C such that

lim x, = x¢, ﬁ T(xn) = {x:}.

n—oo

n=0
As x. € T(xg), we have
€
X0, Xe) + —=——<d(x0, x¢) < 0.
Fl0 )+ g ) 10

This verifies assertion (a).
Due to x, € T(xy),n=0,1,2,- -, we obtain T(x;) C T(x,),n =0,1,2,---. Hence

[e9)

T(xe) € () T(xn).
n=0
and T(x;) = {x¢}.
Therefore, the assertion

€

—————d(xe,x) >0, Vx € C,x £ x¢,
S, x0) ") 7

(0) f(xe x) +

holds.
In what follows, let us verify conclusion (c).

As x4 € T(xn)/

€
- < — ...
f(xn/ x}’H—l) + g(d(xo, xﬂ))d(xn/ xn+1) ~ 0/ (n O/ 1/ 2/ )
Hence,
Y x50 + Y~ d(x,41)
Xi, X + DTV Xi, Xj S O'
]':()f jr A+l = g(d(X(), X])) jrrj+1
Noting that
n
f(xj,xj11) = f(x0,xn11), ®)
j=0
we obtain
n e n
Y = d(xj,x41) < — 2f(xj/xj+1) < —f(x0, xp41) < ag,

& 5(d(x, ) &
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which means
ad 1

L e, ) ") <

We assert d(xo, x¢) < I. Contrarily, assume d(xo, x¢) > I.
Take {n;} as a subsequence of {n} such that {d(xo,x,,)} is monotone increasing,
converges to d(xp, x¢) and

d(xo,xk) < d(xo,xnl.il) (k =m1+1,n_1+2,--,n— 1),

then

nifl nl-fl

d (X, Xi41) > d(xp, Xks1) A(Xn;_y Xn;)

k=n; 4 g(d(XOr xk)) - k=n;_; g(d(x()r xni_l)) a g(d(xo’ x”i—l))

d(xo,xnl.)fd(xo,xni_l) > /d(XO,xni) Lds
8(d(xo, xn;_,)) d(xo, ;) &(5)

which implies

2 d (X, Xp11) /d(xolxs) 1 I 1
a > —5 > —ds>/—ds:zx,
Losron)) ~h 507 56
a contradiction.
This completes the proof of conclusion (c). O

If there exists ¢ : X — R™ such that f(x,y) = ¢(y) — ¢(x), we have the following
corollary.

Corollary 1. Let (X, d) be a complete metric space, C C X be a closed set, xo € C fixed and ¢ :
C — R be a bounded from below and lower semi-continuous mapping, g : [0, +00) — (0, +o0)
be a continuous nondecreasing function such that

/m i (0 < m < +oo)
——ds =m, (0 <m < 400
o g(s)

Ifand e > 0,0 < o < m satisfy
< inf ¢ + ag,
#(x0) < sec P

then there exists x. such that

() ¢(xe) < @(x0);
(b)  (x) > @(xe) — Wd(x,xg) Vx € C with x # x¢;

X0,Xe) )
(c) d(xg,xe) <I;

where | satisfies
|
/ ——ds =«
0 &(s)
Remark 1. Corollary 1 can be seen as an extension of Theorem 2.1 in [8].

3. Applications

As applications of Theorem 4, we first discuss the existence of equilibrium point for a
bi-function.
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By an equilibrium problem (abbrev. EP), we understand the problem of finding
% € X such that f(x,x) >0 ,Vx € C.
where C is a given subset of a metric space X and f : C x C — R is a given bi-function.

Theorem 5. Let (X, d) be a complete metric space, C C X be a compact set. Assume f : C x C —
R satisfies

(i) f(x,-) is bounded from below and lower semi-continuous, for every x € C;
(i) f(z,z) =0, foreveryz € C;

(iii) f(z,x) < f(z,t)+ f(t, x) for every x,t,z € C;

(iv) f(-,y) is upper semi-continuous, for every y € C.

Then, the equilibrium problem (EP) has a solution.

Proof. Let g(s) = 1. It is a continuous nondecreasing function such and
foo q
/ ——ds = +o0
0o 8(s)
Let xo € C be fixed, for every ¢, = 1 and « = n(b — 1), where b = inf,c¢ f(x0,2).

Then, by Theorem 4 (b), there exists x;,, € C such that

fxn, x)+ %d(xn,x) >(0,VxeC

Due to compactness of C, there is a subsequence {x;, } of {x,} which is convergent,
i.e., there exists ¥ € C, such that
lim x,, = %.
k—o0
Hence, we have
- . 1
f(%,x) > lim sup[f(xy,, x) + n—d(xnk,x)] >0,VxeC
k

k—o0

This implies that X is a solution to the equilibrium problem (EP). [

Then, we establish the following Caristi type fixed point theorem.

Theorem 6. Let (X,d) be a complete metric space, xo € X fixed, and ¢ : X — RT bea
bounded from below and lower semicontinuous mapping, g : [0, +0c0) — (0, +00) be a continuous
nondecreasing function such that
+oo ]
/ ——ds=m
Jo 8(s)

where m € RT J{+o0}.

If a mapping K : X — X satisfies: for some ¢ > 0,

ed(x,K(x))
8(d(xo, x))

then K has a fixed point in X.

< 9(x) — p(K(x)) Vx € X, @

Proof. Let f(x,y) = ¢(y) — ¢(x),C = X. By the proof of Theorem 4, for each ¢ > 0, there
exists a sequence {xy },en C X and x; € X, such that x, — x, as n — oo and

€
p(x) > @(xe) — md(x/ Xe) Vx€C,x#xe ®)
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In what follows, we will prove that x; is a fixed point of K.
Conversely, suppose that x; # K(x¢). Let x = K(x,) and substitute it into (5), we find

€
P(K(xe)) > @(xe) — md(K(xS),xg). (6)
Taking x. instead of x in (4), we have that
ed(xe, K(x¢))
Sd(x0, %)) < ¢(xe) — @(K(xe)) @)
Combing the inequalities (6) with (7), we know
ed(xe, K(x¢)) ed (xe, K(xe))

< ¢(xe) = o(K(xe)) <

8(d(xo, xe)) 8(d(xo, xe))

which is a contradiction.
Thus x, = K(x;), i.e., x is a fixed point of K. [J
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