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Abstract: In this paper, we study a dynamically consistent numerical method for the approximation
of a nonlinear integro-differential equation modeling an epidemic with age of infection. The discrete
scheme is based on direct quadrature methods with Gregory convolution weights and preserves,
with no restrictive conditions on the step-length of integration h, some of the essential properties of
the continuous system. In particular, the numerical solution is positive and bounded and, in cases
of interest in applications, it is monotone. We prove an order of convergence theorem and show by
numerical experiments that the discrete final size tends to its continuous equivalent as h tends to zero.

Keywords: epidemic models; Volterra integro-differential equations; direct quadrature methods;
numerical models; dynamical consistency

1. Introduction

Epidemic models based on nonlinear integral and integro-differential equations [1–6]
allow to include the contribution of time since becoming infected to the total infectivity.
This property makes these (age-of-infection) models suitable to describe diseases such
as smallpox [7], cholera [8], SARS [9], COVID-19 [10–12] and AIDS [13,14]. Numerical
simulations support the comprehension of the phenomenon and provide a tool for its quan-
titative description. Therefore, attention should be paid to set up a numerical framework
that allows to supply real-time and reliable answers. We consider the integro-differential
equation representing the Kermack and McKendrick age-of-infection epidemic model:

S′(t) = βS(t)
∫ ∞

0
S′(t− s)A(s) ds, (1)

for which we refer to [5,15] and references therein. Here, S(t) is the number of susceptibles
at time t, β represents the rate of effective contacts and A(s) ≥ 0 is the mean infectivity of
members of the population with infection age s ( A ∈ L1(R+)). Equation (1) represents a
special nonlinear Volterra integral equation and we refer to [16,17] for the theory about
these problems. From the numerical point of view, there is a growing interest in the de-
velopment and analysis of methods for the approximation of the solution to integral and
integro-differential equations of Volterra type (see, for example, [16,18] and references cited
therein). Recently, great attention is paid to the construction of methods that reflect and
preserve the essential properties of the problem and that efficiently integrate the memory
term (see, for example, [19,20]). In particular, for epidemic models, non-standard discretiza-
tion methods allow the design of numerical models that qualitatively and quantitatively
behave like the reference problem [21–25]. In [26], a non-standard discretization is used
to integrate problem (1). Such a scheme is explicit, it preserves positivity of solutions,
boundedness and the final size relation for the epidemic, and therefore it assumes the role
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of a discrete model. On the other hand, the method is only linearly convergent, and this
can be a disadvantage when you have to integrate over long times, balancing accuracy
and computational cost. Our aim here is to develop a higher order method. For numerical
solutions obtained by direct discretizations of (1), results that guarantee the unconditional
dynamic consistency properties of non-standard schemes are not straightforward. These
considerations motivated us to use a different approach. The idea is to exploit the expo-
nential form of the evolution operator in (1) and integrate it by direct quadrature methods
of any order. The derived discrete equation has the advantage of automatically ensuring
the positivity of the solution and, at the same time, allowing an asymptotic analysis that
leads to results consistent with the continuous model. This paper is organized as follows:
In Section 2, we report the main facts about the age-of-infection Model (1) as developed
in [15,27]. Then, in Section 3, we formulate the numerical method, we study the conver-
gence and prove the positivity and boundedness of the numerical solution, for any value of
the stepsize. Furthermore, we analyze the asymptotic dynamics of the numerical model by
deriving the numerical final size relation. In Section 4, we obtain additional properties of
the numerical solution in cases of infectivity functions of interest in applications. Finally,
numerical experiments are reported in Section 5, to show the theoretical results obtained.
Some remarks, in Section 6, conclude the paper.

2. The Continuous Model

We refer to [15,27] for a complete description of Model (1). Here, we mention the main
features that will be useful in the rest of the paper. In the following, we assume that the
population has a constant size N and that∫ ∞

t
S′(t− s)A(s) ds = (S0 − N) A(t), (2)

where S0 = S(0) ≤ N (see, for example, [28]). The basic reproduction number is defined as

R0 = βN
∫ ∞

0
A(s) ds. (3)

We want to point out that, for the solution S(t) of (1), it holds:

1. S : R→ R+ is such that t1 ≤ t2 =⇒ S(t1) ≥ S(t2);
2. limt→+∞ S(t) = S∞ ∈ (0, S0];
3. S∞ is the unique solution of the final size relation.

log
(

S0

S∞

)
= R0

(
1− S∞

N

)
. (4)

Our starting point is the following equation

S(t) = S0 exp
(
−β

∫ t

0
A(t− s)(N − S(s)) ds

)
, (5)

which is equivalent to (1) with (2). This equivalence is obtained by using the identity∫ x

0
A(s)S′(x− s) ds =

∂

∂x

(∫ x

0
A(s)S(x− s) ds

)
− A(x)S0,

into Equation (1) with (2). It comes out that

S′(x)
S(x)

= β

(
−((N − S0) A(x) + A(x)S0) +

∂

∂x

(∫ x

0
A(s)S(x− s) ds

))
.

Then, integration in [0, t], and straightforward calculations lead to the form (5).
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3. The Numerical Model

Let h > 0 and {tn}n≥0 be a uniform mesh such that tn = nh. The direct discretization
of (5) by direct quadrature (DQ) methods with Gregory convolution weights (see, for
example, [18]) reads

Sn = S0 exp

(
−hβ

(
n0−1

∑
j=0

wnj A(tn−j)(N − Sj) +
n

∑
j=n0

ωn−j A(tn−j)(N − Sj)

))
, (6)

where Sn ≈ S(tn), n ≥ n0 ≥ 1, and wnj and ωj are the non-negative quadrature weights.
The starting values S0, S1, . . . , Sn0−1 are given. When n0 = 1, ω0 = 0 and ωj = 1, the
numerical method above corresponds to the discrete-time Kermack–McKendrick model
introduced by Diekmann in [29]. This motivates us to deepen the analysis of the dynamic
behavior of (6) since, as it will be clear later in this section, from a numerical point of view
it possesses good convergence properties and, in many cases, is easy to implement.

3.1. Basic Properties

At each step and for any fixed h > 0, Equation (6) implicitly defines Sn as the solution
of the nonlinear equation Fn(x; h) = 0, where

Fn(x; h) = x− S0 exp(−hβω0 A(0)(N − x))

· exp

(
−hβ

(
n0−1

∑
j=0

wnj A(tn−j)(N − Sj) +
n−1

∑
j=n0

ωn−j A(tn−j)(N − Sj)

))
.

(7)

The nonlinear function (7) is concave andFn(0; h) < 0. If we assume that S0, . . . , Sn−1 ∈
[0, N], then Fn(N; h) > 0. Thus, F has exactly one root in [0, N]. Furthermore, this root is
less than S0. The application of this result leads to state the following theorem.

Theorem 1. Let {Sn}n≥0 be the solution to the discrete Equation (6). Assume that 0 < Sj ≤ N
for j = 0, . . . , n0 − 1, then for each h > 0:

1. The sequence {Sn}n≥0 is positive;
2. The sequence {Sn}n≥0 is bounded from above by S0.

3.2. Convergence

From now on, we assume that the quadrature weights in (6) satisfy (see, for example, [18]
(p. 79, Theorem 2.6.10))

sup
n≥0

max
0≤j<n0

wnj ≤W < +∞ and sup
n≥0

ωn ≤ Ω < +∞. (8)

Consider T > 0 and t ∈ [0, T], and let h = T/M, with M > 0. Define, for n = 0, . . . , M,

δ(h; tn) = exp
(
−β

∫ tn

0
A(tn − s)(N − S(s)) ds

)
− exp

(
−hβ

(
n0−1

∑
j=0

wnj A(tn−j)(N − S(tj)) +
n

∑
j=n0

ωn−j A(tn−j)(N − S(tj))

))
.

(9)

δ(h; tn) is the local error for (6). It is easy to prove that p = n0 + 1 is the largest integer
so that

max
0≤n≤M

|δ(h; tn)| ≤ chp. (10)

The following convergence result holds:
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Theorem 2. Consider the approximate solution Sn, n = 0, . . . , M, of (5) obtained by (6), with
h = T/M, and M > 0. Let the given function A(t) be sufficiently smooth and assume that (10)
holds and:

• the starting errors ηj(h) = S(tj)− Sj, for 0 ≤ j < n0 − 1, satisfy

|ηj(h)| = O(hp−1); (11)

• the weights wnj and ωn, j = 0, . . . , n0 − 1, n = 0, . . . , M, satisfy (8).

Then the method (6) is convergent of order p.

Proof. For n = n0, . . . , M,

S(tn)− Sn

S0
= δ(h; tn)

+ exp

(
−hβ

(
n0−1

∑
j=0

wnj A(tn−j)(N − S(tj)) +
n

∑
j=n0

ωn−j A(tn−j)(N − S(tj))

))

− exp

(
−hβ

(
n0−1

∑
j=0

wnj A(tn−j)(N − Sj) +
n

∑
j=n0

ωn−j A(tn−j)(N − Sj)

))
,

(12)

where δ(h; tn) is the local truncation error defined in (9). Let e(h; tn) = S(tn)− Sn, be the
global error. Using standard manipulations and choosing h < 1

βω0 A(0)S0
, from (12) we have

|e(h; tn)| ≤
S0|δ(h; tn)|

1− hβω0 A(0)S0
+ h

S0β max
0≤t≤T

A(t) ·max{W, Ω}

1− hβω0 A(0)S0

n−1

∑
j=0
|ej(h; tn)|, n = n0, . . . , M.

The Gronwall discrete inequality (see, for example, [30] (p. 101)) yields

|e(h; tn)| ≤
1

1− hβω0 A(0)S0
· exp

 βS0T max
0≤t≤tn

A(t) ·max{W, Ω}

1− hβω0 A(0)S0


·
(

S0 max
n0≤n≤M

|δ(h; tn)|+ hS0β max
0≤t≤T

A(t) ·max{W, Ω}
n0−1

∑
j=0
|ηj(h)|

)
.

Since the local error δ(h; tn) and the starting errors ηj(h) satisfy (10) and (11), respec-
tively, it follows that

max
n=n0,...,M

|e(h; tn)| ≤ Chp,

with C positive constant not depending on h.

3.3. The Numerical Final Size

In this section, we assume that

∀h > 0, ∃ S∞(h) ∈ (0, S0] : S∞(h) = lim
n→+∞

Sn(h). (13)

Moreover, we also assume that h ∑∞
n=0 ωn A(tn) < +∞ (true if A′(t) ∈ L1(R+), see [31]

(Lem.1), or if A(t) is ultimately monotonic, see [32] (p. 208)). We define the numerical basic
reproduction number

R0(h) = hβN
+∞

∑
n=0

ωn A(tn),

as the direct discretization (see [18]) of (3). In the Theorem below, we obtain a relation
between S∞(h) and R0(h) which represents the discrete version of (4).
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Theorem 3. Let A(t) in (5) be sufficiently smooth and let {Sn}n≥0 be the solution to the discrete
Equation (6). If the starting values Sj ≤ S0, for j = 0, . . . , n0 − 1, are positive and (8) and (13)
hold, then for each h > 0

log
(

S0

S∞(h)

)
= R0(h)

(
1− S∞(h)

N

)
. (14)

Proof. We rewrite (6) as

log
(

S0

Sn

)
= hβ

(
n0−1

∑
j=0

wnj A(tn−j)(N − Sj) +
n

∑
j=n0

ωn−j A(tn−j)(N − Sj)

)
, n = n0, . . . , (15)

then

log
(

Sn−1

Sn

)
=βh

(
n

∑
j=n0+1

ωn−j A(tn−j)(Sj−1 − Sj) + ωn−n0 A(tn−n0)(N − Sn0)

)

+ βh
n0−1

∑
j=0

(
wnj A(tn−j)− wn−1j A(tn−j−1)

)
(N − Sj).

Summing for n ranging from n0 + 1 to +∞, we obtain

log
(

Sn0

S∞(h)

)
= h(N − Sn0)β

+∞

∑
n=1

ωn A(tn) + hβ
+∞

∑
n=n0+1

n

∑
j=n0+1

ωn−j A(tn−j)(Sj−1 − Sj)

+ hβ
n0−1

∑
j=0

(
+∞

∑
n=n0+1

(wnj A(tn−j)− wn−1,j A(tn−1−j))

)
(N − Sj)

= hβ

(
(N − S∞(h))

+∞

∑
n=0

ωn A(tn)− (N − Sn0)ω0 A(t0)−
n0−1

∑
j=0

wn0 j A(tn0−j)(N − Sj)

)
.

(16)

Consider Equation (15) with n = n0,

log
(

S0

Sn0

)
= hβ

(
n0−1

∑
j=0

wn0 j A(tn0−j)(N − Sj) + ω0 A(0)(N − Sn0)

)
.

Then, taking into account (16), it is

log
(

S0

S∞(h)

)
= (N − S∞(h))hβ

+∞

∑
n=0

ωn A(tn).

Thus (14) can be interpreted as the discrete counterpart of (4) and, just like (4) (see [28]),
it possesses a unique solution in (0, S0).

4. Trapezoidal Discretization in Some Realistic Cases

In this section, we consider particular choices for A(t) in (5) which appear in appli-
cations (see, for example, [7], [27] (sec. 2.1), [11,33]). Indeed, we focus on cases where the
infectivity function A(t) is identically zero on an initial time interval,

A(t) = 0, for t ≤ τ, with τ ≥ 0. (17)

The condition A(0) = 0 makes the numerical scheme (6) explicit, simplifying its
analysis and reducing the computational cost at each step. We choose to approximate
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this type of model using the trapezoidal DQ method. In this case, the numerical solution
not only agrees with the basic properties described in Theorem 1, without restrictions on
the stepsize, but it is also monotone, and therefore retains the asymptotic dynamic of the
analytical solution. The resulting explicit scheme has the form,

Sn = S0 · exp

(
−h

2
β

(
A(tn)(N − S0) + 2

n−1

∑
j=1

A(tn−j)(N − Sj)

))
, (18)

for n > 0, with n0 = 1, for which we state the following theorem.

Theorem 4. Let {Sn}n≥0 be the solution to the discrete Equation (18). Let S0 > 0 then, for each
h > 0, the sequence {Sn}n≥0 is non-increasing.

Proof. Theorem 1 assures non-negativity and boundedness of the sequence. Here, we
prove that it is also non-increasing by induction, starting from

S1 = S0 exp
(
−h

2
βA(t1)(N − S0)

)
≤ S0.

Consider n > 1 and assume that the assertion is true for each j ≤ n− 1. Since we have

log
(

Sn−1

Sn

)
=

h
2

β(A(tn−1)(N + S0 − 2S1))

+
h
2

β

(
2

n−1

∑
j=2

A(tn−j)(Sj−1 − Sj) + A(tn)(N − S0)

)
≥ 0,

it is Sn−1 ≥ Sn.

Theorem 4 assures that the solution {Sn(h)}n≥0 to the discrete Equation (18) is non-
increasing for each positive value of h and then it admits a finite limit S∞(h), as n goes to
+∞. Hence, condition (13) holds for each h > 0, and the solution of Equation (14) is indeed
the numerical final size S∞(h).

For the sake of comparison, we consider the reformulation of problem (1) given in [15]

S(t) = S0 − β
∫ t

0
S(s)ϕ(s) ds,

ϕ(t) = (N − S0)A(t) + β
∫ t

0
S(s)ϕ(s)A(t− s) ds,

(19)

and compare the behavior of the numerical solutions obtained by (18) and the following
trapezoidal discretization of (19)

Sn = S0 − hβ
n−1

∑
j=1

Sj ϕj −
h
2

βSn ϕn,

ϕn = (N − S0)A(tn) + hβ
n−1

∑
j=1

A(tn−j)Sj ϕj,

(20)

for n > 0. Both methods are convergent of order 2. However, in (20), positiveness and
monotonicity of the solution can be proved only under the following constraint on the
discretization stepsize, h < 2/(βN · sup A(t)), leading to a severe limitation in case of large
values of the population size N.
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5. Numerical Experiments

In this section, we report some numerical examples in order to show experimentally the
theoretical results proved in Sections 3 and 4. For our experiments, we choose illustrative
test equations and we use method (6). Our first example consists of problem (5) with

A(t) =
1.5

σ
√

2π
e−

(t−µ)2

2σ2 , σ = 0.6, µ = 0.4, N = 102, S0 = 90, β = 10−3, (21)

for t ∈ [0, 1]. Here, we have integrated problem (21) by DQ method with trapezoidal, first
and second Gregory weights (the orders of convergence are 2, 3 and 4, respectively). Since
A(t) does not meet condition (17), the methods are implicit and require at each step the
resolution of a nonlinear equation for which a fixed-point iteration process is used. Table 1
and Figure 1 show the numerical error behavior for different values of the stepsize h. The
numerical errors

En = Sn − S̄n,

are computed against the reference solution S̄n, obtained by second Gregory rule with
h = 10−6. For the sake of comparison, we also report the errors obtained by integrating (21)
with the first order non-standard finite difference (NSFD) method used in [26]. It is clear
that the experimental order of convergence of DQ methods is coherent with the theoretical
one predicted in Theorem 2.

Figure 2 represents the work precision diagram of the number of function evaluations
with respect to the accuracy of the numerical solutions by the four methods considered
here. It shows better performances in higher order methods. Indeed, even though we are
comparing an explicit method with implicit ones, we see that, at the same computational
cost, the accuracy of DQ methods is higher than NSFD. In addition, for given accuracies,
even low ones, the NSFD scheme requires much more effort.

Table 1. Error values and experimental order of convergence for examples (5)–(21).

NSFD in [26] h ‖En‖2 Experimental Order

10−1 2.478× 10 −2 -
10−2 2.322× 10 −3 1.028
10−3 2.308× 10 −4 1.003
10−4 2.307× 10 −5 1.000

Quadrature rule in (6) h ‖En‖2 Experimental order

Trapezoidal Rule 10−1 3.341× 10 −3 -
10−2 3.326× 10 −5 2.002
10−3 3.326× 10 −7 2.000
10−4 3.326× 10 −9 2.000

First Gregory Rule 10−1 4.377× 10 −4 -
10−2 4.082× 10 −7 3.030
10−3 4.052× 10−10 3.003
10−4 3.941× 10−13 3.012

Second Gregory Rule 10−1 1.976× 10 −4 -
10−2 6.785× 10 −9 4.464
10−3 6.857× 10−13 3.995

In order to show the long time behavior of the numerical solution, we consider
problem (5) with:

A(t) = 2t e−t, T = 80, N = 105, S0 = 9× 104, β = 10−5. (22)

In Figure 3, the behavior of the numerical solution, computed by (6) and second
Gregory weights, with h = 10−3, is reported. In this case, the theoretical value for the
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final state, obtained by solving the nonlinear Equation (4) by the MATLAB routine fzero
(see [34]), is S∞ = 1717.
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Figure 1. Problems (5)–(21): norm of the errors (solid lines) with respect to the stepsize h.
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Figure 2. Problems (5)–(21): work precision diagram.

We introduce the truncated numerical basic reproduction number R̃0(h) and the
truncated numerical final size S̃∞(h; T) as follows

M = T/h, R̃0(h) = βNh
M

∑
n=0

ωn A(tn), S̃∞(h) = SM , (23)
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and define the residual on the numerical final size relation (14) as

r(h; T) =
∣∣∣∣log

(
S0

S̃∞(h)

)
− R̃0(h)

(
1− S̃∞(h)

N

)∣∣∣∣.
In this case, since (17) holds, Theorem 4 guarantees the existence of limn→+∞ Sn when

the DQ method has trapezoidal weights. What is more, from our tests we observe that,
for fixed h > 0, the value of S̃∞(h) converges to a finite limit as T grows for any choice
of the quadrature weights. Here, we have used T = 80 for computing S̃∞(h), and the
effectiveness of this choice is confirmed by the values of r(h; T) in Table 2. In particular,
Table 2 shows, for different values of h, the relative errors for the approximation of R0 and
S∞ by (23), as well as the corresponding numerical final size residuals.

Numerical results represent a validation of Theorem 3 but also give evidence of
unproven theoretical properties. Indeed, it is clear from Table 2 that, for h → 0, the
numerical final size converges to the continuous one, with the same order p ≥ 1 of the
quadrature rule employed in (6).

0 5 10 15 20 25 30

0

0.2

0.4

0.6

0.8

0 5 10 15 20 25 30

0

2

4

6

8

10
4

Figure 3. Problems (5)–(22): infectivity kernel function (first panel) and zoom on [0, 30] of the
numerical solution (second panel).

Table 2. Long time solution for problems (5)–(22): numerical truncated R0 and final size.

Quad. Rule in (6) h Rel. Err. on R̃0(h; T) Rel. Err. on S̃∞(h; T) r(h; T)

Trap. Rule 10−1 8.330× 10 −4 2.104× 10 −3 3.975× 10−14

10−2 8.333× 10 −6 2.103× 10 −5 3.863× 10−14

10−3 8.333× 10 −8 2.103× 10 −7 4.174× 10−14

I Greg. Rule 10−1 7.889× 10 −5 1.991× 10 −4 3.819× 10−14

10−2 8.288× 10 −8 2.091× 10 −7 3.797× 10−14

10−3 8.329× 10−11 2.102× 10−10 3.886× 10−14

II Greg. Rule 10−1 7.130× 10 −6 1.799× 10 −5 3.819× 10−14

10−2 7.834× 10−10 1.977× 10 −9 3.819× 10−14

10−3 7.905× 10−14 2.581× 10−13 3.864× 10−14
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Here, we consider, referring to [33], a kernel function suitable for modeling influenza

t1 = 0.4 days,

t2 = 2.8 days,

t3 = 3.8 days,

t4 = 7.4 days,

A(t) =


1
TI

t−t1
t2−t1

i f t1 ≤ t ≤ t2,
1
TI

i f t2 ≤ t ≤ t3,
1
TI

t4−t
t4−t3

i f t3 ≤ t ≤ t4,

0 elsewhere,

(24)

based on the assumptions that no member of the population is infectious before t1 days or
after t4 days post-exposure and maximum infectivity occurs between t2 and t3 days after
exposure. The latent period TL and the infectious period TI are

TL =
t1 + t2

2
= 1.6 days, TI =

t4 + t3 − t2 − t1

2
= 4.0 days.

We integrate problems (5)–(24) with

T = 10, N = 105, S0 = 9× 104, β = 10−2,

by methods (18) and (20), respectively. The results, reported in Figure 4, have been obtained
with two different values of the stepsize. We remind that, according to Theorem 4, the
numerical solution computed by the trapezoidal scheme (18) is positive and non-increasing,
regardless of the stepsize h. Conversely, we observe in Figure 4 that the numerical solution
computed by means of the direct trapezoidal scheme (20), with h = 0.5, is increasing or
even negative in some points.

0 5 10

-2

0

2

4

6
10

5

0 5 10

0

5

10
10

4

0 5 10

0

5

10
10

4

0 5 10

0

5

10
10

4

Figure 4. Problems (5)–(24): numerical solution computed by (20) (blue line) and by (18) (green line)
for different values of the stepsize.

6. Conclusions

We have introduced a numerical method specially designed for age-of-infection epi-
demic models represented by integro-differential equations of the type (1), reformulated as
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an integral equation in exponential form. The proposed method discretizes the integral
term by DQ methods with Gregory convolution weights, from which it inherits the order
of convergence. We show that the numerical solution is positive and bounded, which are
crucial properties taking into account the biophysical meaning of variables. In some cases
of realistic infectivity functions (for example, incorporating a non-zero finite incubation
period and a finite infectious period), we prove that the proposed scheme, based on the
trapezoidal method, also retains the monotonicity of the solution. In general situations, we
provide numerical evidence of this behavior. A comprehensive analysis allows us to state
that the numerical solution is dynamically consistent with the continuous one. We intro-
duce a discretization of the basic reproduction number and prove that the numerical final
size satisfies a nonlinear equation which is the discrete counterpart of the continuous final
size relation. Numerical simulations show convergence, with respect to h, of the numerical
final size to the continuous one, at a rate that reflects the order of the employed quadrature
rule. A numerical comparison clearly shows that the numerical approach described here
outperforms the first order dynamic-preserving non-standard explicit scheme introduced
in [26]. This fact is advantageous in long-time integrations.
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