Pólya–Szegö Integral Inequalities Using the Caputo–Fabrizio Approach
Abstract
:1. Introduction
2. Preliminaries
3. Fractional Pólya–Szegö Inequality
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pólya, G.; Szegö, G. Aufgaben und Lehrsatze aus der Analysis, Die Grundlehren der mathmatischen Wissenschaften; Springer: Berlin/Heidelberg, Germany, 1925; Volume 19. [Google Scholar]
- Dargomir, S.S.; Pearce, C.E. Selected Topics in Hermit-Hadamard Inequality; Victoria University: Melbourne, Autralia, 2000; Available online: http://rgmia.vu.edu.au/amonographs/hermite-hadmard.html (accessed on 10 October 2021).
- Chebyshev, P.L. Sur les expressions approximatives des integrales definies par les autres prise entre les memes limites. Proc. Math. Soc. Charkov. 1882, 2, 93–98. [Google Scholar]
- Grüss, G. über das maximum des absoluten betrages von . Math. Z. 1935, 39, 215–226. [Google Scholar]
- Anastassiou, G.A. Fractional Differentiation Inequalities; Springer Publishing Company: New York, NY, USA, 2009. [Google Scholar]
- Anastassiou, G.A.; Hooshmandasl, M.R.; Ghasemi, A.; Moftakharzadeh, F. Montgomery identities for fractional integrals and related fractional inequalities. J. Inequal. Pure Appl. Math. 2009, 10, 97. [Google Scholar]
- Belarbi, S.; Dahmani, Z. On some new fractional integral inequality. J. Inequal. Pure Appl. Math. 2009, 10, 86. [Google Scholar]
- Dahmani, Z. New inequalities in fractional integrals. Int. Nonlinear Sci. 2010, 4, 493–497. [Google Scholar]
- Dahmani, Z. Some results associate with fractional integrals involving the extended chebyshev. Acta Univ. Apulensis Math. Inform. 2011, 27, 217–224. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: New York, NY, USA, 1999. [Google Scholar]
- Somko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integral and Derivative Theory and Application; Gordon and Breach: Yverdon-les-Bains, Switzerland, 1993. [Google Scholar]
- Sahoo, S.K.; Tariq, M.; Ahmad, H.; Kodamasingh, B.; Shaikh, A.A.; Botmart, T.; El-Shorbagy, M.A. Some novel fractional integral inequalities over a new class of generalized convex function. Fractal Fract. 2022, 6, 42. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Ahmad, H.; Tariq, M.; Kodamasingh, B.; Aydi, H.; De La Sen, M. hermite–hadamard type inequalities involving k-fractional operator for ( , m)-convex cunctions. Symmetry 2021, 13, 1686. [Google Scholar] [CrossRef]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; Wiley: New York, NY, USA, 1993. [Google Scholar]
- Baleanu, D.; Machado, J.A.T.; Luo, C.J. Fractional Dynamic and Control; Springer: Berlin/Heidelberg, Germany, 2012; pp. 159–171. [Google Scholar]
- Chinchane, V.L.; Pachpatte, D.B. A note on some integral inequalities via hadamard integral. J. Fract. Calc. Appl. 2013, 4, 125–129. [Google Scholar]
- Nale, A.B.; Panchal, S.K.; Chinchane, V.L.; Al-Bayatti, H.M.Y. Fractional integral inequalities using marichev-saigo-maeda fractional integral operator. Progr. Fract. Differ. Appl. 2021, 7, 185. [Google Scholar]
- Chinchane, V.L.; Pachpatte, D.B. A note on fractional integral inequalities involving convex functions using saigo fractional integral. Indian J. Math. 2019, 61, 27–39. [Google Scholar]
- Kiryakova, V. On two saigo’s fractional integral operator in the class of univalent functions. Fract. Calc. Appl. Anal. 2006, 9, 159–176. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Application of Fractional Differential Equations; Elsevier: Amersterdam, The Netherlands, 2006. [Google Scholar]
- Katugampola, U.N. A new approch to generalized fractional derivatives. Bull. Math. Anal. Appl. 2014, 6, 1–15. [Google Scholar]
- Ahmad, H.; Tariq, M.; Sahoo, S.K.; Askar, S.; Abouelregal, A.E.; Khedher, K.M. Refinements of ostrowski type integral inequalities involving atangana–baleanu fractional integral operator. Symmetry 2021, 13, 2059. [Google Scholar] [CrossRef]
- Deniz, E.; Akdemir, A.O.; YüKsel, E. New extensions of chebyshev-pólya-szegö type inequalities via conformable integrals. AIMS Math. 2020, 5, 956–965. [Google Scholar] [CrossRef]
- Jain, S.; Agarwal, P.; Ahmad, B.; Al-Omari, S.K.Q. Certain recent fractional inequalities associated with the hypergeometric operators. J. King Saud-Univ.-Sci. 2016, 28, 82–86. [Google Scholar] [CrossRef] [Green Version]
- Rahman, G.; Nisar, K.S.; Abdeljawad, T.; Samraiz, M. Some new tempered fractional pólya-szegö and chebyshev-type inequalities with respect to another function. J. Math. 2020, 2020, 9858671. [Google Scholar] [CrossRef]
- Rashid, S.; Jarad, F.; Kalsoom, H.; Chu, Y.M. On pólya–szegö and čebyšev type inequalities via generalized k-fractional integrals. Adv. Differ. Equ. 2020, 125. [Google Scholar] [CrossRef]
- Caputo, M.; Fabrizio, M. A new defination of fractional derivative without singular kernel. Progr. Fract. Differ. Appl. 2015, 1, 73–85. [Google Scholar]
- Caputo, M.; Fabrizio, M. Applications of new time and spatial fractional derivative with exponential kernels. Progr. Fract. Differ. Appl. 2016, 2, 7–8. [Google Scholar] [CrossRef]
- Al-Refai, M.; Jarrah, A.M. Fundamental results on weighted caputo-fabrizo fractional derivative. Chaos Solitons Fractals 2019, 126, 7–11. [Google Scholar] [CrossRef]
- Wang, X.; Saleem, M.S.; Aslam, K.N.; Wu, X.; Zhou, T. On caputo-fabrizio fractional integral inequalities of hermite-hadamard type for modified-convex functions. J. Math. 2020, 2020, 8829140. [Google Scholar] [CrossRef]
- Chinchane, V.L.; Nale, A.B.; Panchal, S.K.; Chesneau, C. On some fractional integral inequalities involving caputo–fabrizio integral operator. Axioms 2021, 10, 255. [Google Scholar] [CrossRef]
- Tariq, M.; Ahmad, H.; Shaikh, A.G.; Sahoo, S.K.; Khedher, K.M.; Gia, T.N. New fractional integral inequalities for preinvex functions involving caputo-fabrizio operator. AIMS Math. 2022, 7, 3440–3455. [Google Scholar] [CrossRef]
- Butt, S.I.; Klaricic, B.M.; Pecaric, D.; Pecaric, J. Jensen-grüss inequality and its’ applications for the zipf-mandelbrot law. Math. Methods Appl. Sci. 2021, 44, 1664–1673. [Google Scholar] [CrossRef]
- Butt, S.I.; Akdemir, A.O.; Nadeem, M.; Raza, M.A. Grüss type inequalities via generalized fractional operators. Math. Methods Appl. Sci. 2021, 44, 12559–12574. [Google Scholar] [CrossRef]
- Nchama, G.A.M.; Mecias, A.L.; Richard, M.R. The caputo-fabrizio fractional integral to generate some new inequalities. Inf. Sci. Lett. 2019, 2, 73–80. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nale, A.B.; Chinchane, V.L.; Panchal, S.K.; Chesneau, C. Pólya–Szegö Integral Inequalities Using the Caputo–Fabrizio Approach. Axioms 2022, 11, 79. https://doi.org/10.3390/axioms11020079
Nale AB, Chinchane VL, Panchal SK, Chesneau C. Pólya–Szegö Integral Inequalities Using the Caputo–Fabrizio Approach. Axioms. 2022; 11(2):79. https://doi.org/10.3390/axioms11020079
Chicago/Turabian StyleNale, Asha B., Vaijanath L. Chinchane, Satish K. Panchal, and Christophe Chesneau. 2022. "Pólya–Szegö Integral Inequalities Using the Caputo–Fabrizio Approach" Axioms 11, no. 2: 79. https://doi.org/10.3390/axioms11020079
APA StyleNale, A. B., Chinchane, V. L., Panchal, S. K., & Chesneau, C. (2022). Pólya–Szegö Integral Inequalities Using the Caputo–Fabrizio Approach. Axioms, 11(2), 79. https://doi.org/10.3390/axioms11020079