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Abstract: In this work, we investigate the validity of axioms such as Onsager Reciprocal Relations
(ORR) for heat transfer in irreversible thermodynamics close to equilibrium. We show that the
ORR for this case could be directly derived by introducing the widely accepted concept of heat
transfer coefficients into the entropy production rate and by assuming that the thermal conductivity
coefficients are uniquely defined. It is believed that this work can not only be used for pedagogical
purposes but may also be generalized to other processes beyond heat transfer, thus leading to a
generalized framework for transport phenomena and irreversible thermodynamics.
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1. Introduction

The field of irreversible thermodynamics close to equilibrium is a powerful tool for the
macroscopic description of processes. One of the most important principles for irreversible
thermodynamics close to equilibrium is Onsager Reciprocal Relations (ORR). This principle
states that in the absence of magnetic fields and assuming linearly independent fluxes (J)
or thermodynamic forces (X) (Linearity Axiom: J = L.X), the matrix of phenomenological
coefficients (L) in the flux–force relations is symmetric (ORR: Lij = Lji) [1–8].

Onsager derived these relations for the first time in 1931 [9,10]. The starting point
for developing the theory was the heat transfer experiments of Voigt and Curie [5,6] in an
anisotropic solid. Onsager used the principle of microscopic reversibility by applying the
invariance of the equations of motion for the atoms and molecules with respect to time
reversal (the transformation t→−t). This means that the mechanical equations of motion
(classical as well as quantum mechanical) of the particles are symmetrical with respect to
time. In other words, the particles retrace their former paths if all the velocities are reversed.
Onsager also made a principal decision: the transition from molecular reversibility to
microscopic reversibility can be made. It is important to remember that Onsager did not
use a particular molecular model. Therefore, the results and limitations of the theory are
valid for all materials and the theory can be related to continuum theory [3]. Casimir further
developed this theory [11].

Although there is experimental evidence for the validity of ORR [12,13], doubts about
the proof of this principle have been raised in the literature [14,15].

For example, in Rational Thermodynamics [13], Truesdell remarks that “Onsager’s and
Casimir’s claim that their assertions follow from the principle of microscopic reversibility
which has been accepted with little question . . . the reversibility theorem and Poincare’s
recurrence theorem make irreversible behavior impossible for dynamical systems in a clas-
sical sense. Something must be added to the dynamics of conservative systems, something
which is not consistent with it, in order to get irreversibility at all” [16].
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Apart from Euclidean space and engineering problems, ORR also plays an important
role in cosmology problems such as the relativistic framework [17]. To be more specific,
a recent paper by Parker and Jeynes [17] also identified this apparent paradox by using a
relativistic entropic Hamiltonian–Lagrangian approach to study the entropy production of
spiral galaxies in hyperbolic space time.

Today, ORR are considered by most authors in the field to be an axiom [1,3–7,18]. In
our previous work, we examined the theoretical grounds of ORR for multi-component
diffusion close to equilibrium [19], for coupled heat and mass transfer in an isotropic
fluid [20], as well as for multi-component diffusion far from equilibrium in the extended
thermodynamics framework [21]. The aim of this work is to examine the validity of
ORR for heat transfer in an anisotropic solid in the absence of elasticity, mass transfer, or
chemical reactions.

2. Theoretical Section and Results

The starting point of this analysis is to write the entropy production rate per unit
volume (σ) for heat transfer in an anisotropic solid in the absence of elasticity, mass transfer,
or chemical reactions. We note that in an anisotropic solid, the flow of heat Jq may not be
in the direction of the temperature gradient; a temperature gradient in one direction can
cause the heat to flow in another direction. The entropy production is as follows [5,6]:

σ =
3

∑
ι=1

3

∑
j=1

Jqi
∂

∂xj

(
1
T

)
δi = −

3

∑
ι=1

3

∑
j=1

Jqi
1

T2
∂T
∂xj

δi (1)

in which xi are the Cartesian coordinates, T is temperature, and δi is the unit vector in the
i-th direction. By further applying the linearity axiom, the phenomenological laws for this
system are as follows:

Jqi =
3

∑
j=1

Lij
∂

∂xj

(
1
T

)
δi =

3

∑
j=1

(
−

Lij

T2

)
∂T
∂xj

δi (2)

For anisotropic solids, the heat conductivity K is a tensor of the second rank. The
Fourier law of heat conduction is then written as follows:

Jqi = −
3

∑
j=1

Kij
∂T
∂xj

δi (3)

Comparison of (2) and (3) and application of ORR leads to symmetrical relations
Lij = Lii or Kij = Kji.

In order to investigate the theoretical grounds of ORR, the local heat transfer coeffi-
cients (hloc) close to equilibrium are introduced:

−Kij
∂T
∂xj

= hloc,ij(T− T0) or − ∂T
∂xj

=
hloc,ij

Kij
(T− T0); i, j = 1, 2, 3 (4)

In this way, the temperature gradient is replaced by the temperature difference [22].
This idea can be found in many textbooks [1,23,24] as the definition of the local heat transfer
coefficients close to equilibrium (hloc,ij). T0 is a constant absolute temperature measured at
a given point. The value of the local heat transfer coefficient hloc,ij depends not only on the
value of the reference temperature T0, but also on its position.

The following equation is directly derived from Equation (4):

hloc,ij

Kij

∂T
∂xj

=
hloc,11

K11

∂T
∂x1

or
∂T
∂xj

=
a11

aij

∂T
∂x1

, aij=
hloc,ij

Kij
i = 2, 3; j = 1, 2, 3 (5)



Axioms 2022, 11, 104 3 of 6

By combining the Fourier law of heat conduction (Equation (3)) with the defini-
tion of local heat transfer coefficients (Equation (4)), the following equation could be
directly obtained:

Jqi =
3

∑
j=1

hloc,ij(T− T0)δior
Jqiδi

3
∑

j=1
hloc,ij

= (T− T0) (6)

By introducing the above Equations (5) and (6) into Equation (1), one can write the
entropy production rate per unit volume in terms of the local heat transfer coefficients
as follows:

σ = −
3
∑

j=1

3
∑

ι=1
Jqi

1
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∂T
∂xj

δi = −
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3
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3
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∑
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hloc,1j
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∂x1

+

3
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j=1
hloc,2j

3
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∂T
∂x2

+ ∂T
∂x3

 1
T2

∣∣∣Jq3

∣∣∣

(7)

The transformation of entropy production rate by introducing linearly dependent
thermodynamic forces or fluxes is not a new idea; the origin of this idea can be found in
the pioneering work of Lorimer [25,26] for multi-component diffusion close to equilibrium.
However, the linearly dependent thermodynamic forces or fluxes for heat transfer in
anisotropic media in this work are defined with the aid of heat transfer coefficients.

The next step is to apply to the above transformed entropy production equation the
Linearity Axiom, by also taking into account that K′ij = L′ij/T2:

Jq1 = −K′11

1 +

3
∑

j=1
hloc,2j

3
∑

j=1
hloc,1j

a11

a12
+

3
∑

j=1
hloc,3j

3
∑

j=1
hloc,1j

a11

a13

 ∂T
∂x1

δ1

Jq2 = −K′22

1 +

3
∑

j=1
hloc,1j

3
∑

j=1
hloc,2j

a22

a21
+

3
∑

j=1
hloc,3j

3
∑

j=1
hloc,2j

a22

a23

 ∂T
∂x2

δ2 (8)

Jq3 = −K′33

1 +

3
∑

j=1
hloc,1j

3
∑

j=1
hloc,3j

a33

a31
+

3
∑

j=1
hloc,2j

3
∑

j=1
hloc,3j

a33

a32

 ∂T
∂x3

δ3

If Equation (5) is introduced into Equation (3), then the Fourier law is written
as follows:
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Jq1 = −K11

(
1 +

K12

K11

a11

a12
+

K13

K11

a11

a13

)
∂T
∂x1

δ1

Jq2 = −K22

(
1 +

K21

K22

a22

a21
+

K23

K22

a22
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)
∂T
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δ2 (9)

Jq3 = −K33

(
1 +

K31

K33

a33

a31
+

K32

K33

a33

a32

)
∂T
∂x3

δ3

By assuming that the thermal conductivity coefficients are uniquely defined (K′ij = Kij)
and by comparing Equation (8) with Equation (9), one can directly obtain the following:

K12

3

∑
j=1

hloc,1j = K11

3

∑
j=1

hloc,2j; K13

3

∑
j=1

hloc,1j = K11

3

∑
j=1

hloc,3j

K21

3

∑
j=1

hloc,2j = K22

3

∑
j=1

hloc,1j; K23

3

∑
j=1

hloc,2j = K22

3

∑
j=1

hloc,3j

K31

3

∑
j=1

hloc,3j = K33

3

∑
j=1

hloc,1j; K32

3

∑
j=1

hloc,3j = K33

3

∑
j=1

hloc,2j (10)

Let us now derive Jq1 in terms of Jq2 by further using Equations (3) and (10):

Jq1 = −

3
∑

j=1
hloc,1j

3
∑

j=1
hloc,2j

(
K21

∂T
∂x1

+ K22
∂T
∂x2

+ K23
∂T
∂x3

)
δ1 =

= −K11
K12

(
K21

∂T
∂x1

+ K22
∂T
∂x2

+ K23
∂T
∂x3

)
δ1

By further comparing the above equation with the Fourier law (Equation (3)), one
can directly obtain K21 = K12. Following similar arguments, one can directly obtain the
remaining ORR for anisotropic heat transfer: K31 = K13, K23 = K32. Please note that using
uniquely defined phenomenological coefficients is not a new idea [19–21]; the origin of this
idea can also be found in the pioneering works of Lorimer [25,26] for the phenomenological
coefficients and frames of reference for transport processes. There are also similarities of
this work to our previous work on the validity of ORR in multi-component diffusion. In
both the cases, symmetry occurs due to the existence of a reference quantity such as a
constant and uniform velocity (Galilean Invariance) for multi-component diffusion [19–21],
or a reference temperature as in this work. However, the Galilean Invariance applied to the
multi-component diffusion case is related to the quasi equilibrium postulate.

The main advantage of this approach is its simplicity without resorting to the tools of
Statistical Mechanics. The major task of this work is to develop pedagogical methods for
ORR, for which the authors have tried to use the simplest analytical way using mathematical
formalism. Future work in this area could also include the generalization of this work to far
from equilibrium thermodynamics, such as Extended Thermodynamics [18] or the inclusion
of chemical reactions in thermodynamics close to equilibrium. The further examination of
the Linearity Axiom is also a challenge.

3. Conclusions

In this work, the validity of ORR for heat transfer in an anisotropic solid close to
equilibrium was re-examined. The ORR for this case was re-derived with the aid of heat
transfer coefficients and by assuming uniquely defined thermal conductivity coefficients.
This work eliminates any doubt about ORR for heat transfer close to equilibrium. This work
could be further used for pedagogical purposes due to its simplicity, or even to develop a
new framework for the axioms of irreversible thermodynamics.
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Nomenclature

A thermodynamic parameter
hloc close to equilibrium local heat transfer coefficients
J flux
K thermal conductivity coefficient
L phenomenological coefficients relating fluxes with thermodynamic driving forces
T absolute temperature
T0 reference absolute temperature
T time
xj space coordinate
X thermodynamic driving force
Greek Letters
Σ entropy production rate per unit volume
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