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1. Introduction

Extensions and splitting extensions of associative algebras play a very important role
and have found many-sided applications (see, for example, refs. [1–5] and references
therein). Studies of their structure are grounded on cohomology theory. In particular, great
attention is paid to algebras with group identities. On the other hand, cohomology theory
of associative algebras was investigated by Hochschild and other authors [6–8], but it is
not applicable to nonassociative algebras. Cohomology theory of group algebras is an im-
portant and great part of algebraic topology. Nonassociative algebras with some identities
in them, such as Cayley–Dickson algebras and their generalizations are wide spread not
only in algebra but also in many-sided applications in physics, noncommutative geometry,
quantum field theory, PDEs, and other sciences (see [9–18] and references therein). For ex-
ample, the Klein–Gordon hyperbolic PDE of the second order with constant coefficients was
solved by Dirac with the help of complexified quaternions [19]. Cayley–Dickson algebras
were used for decompositions of higher-order PDEs into lower-order PDEs, which subse-
quently permitted integrating and analyzing them [15]. PDEs or their systems frequently
possess groups of their symmetries [8]. Group algebras appearing over C in conjunction
with Cayley–Dickson algebras lead to extensions that are generalized Cayley–Dickson
algebras or even more general metagroup algebras. In their turn operator algebras over
Cayley–Dickson algebras also induce the metagroup algebras. Besides algebras over R or
C, there are such algebras over other fields, that is important in non-archimedean quantum
mechanics and quantum field theory. Analysis of PDEs and operators over Cayley–Dickson
algebras provide generalized Cayley–Dickson algebras or metagroup algebras acting on
modules of functions.

It is worth mentioning that in the 20th century it was demonstrated that a noncom-
mutative geometry exists if there exists a corresponding quasi-group [20–22]. On the other
hand, metagroups are quasigroups with some weak relations.

An extensive area of investigations of PDEs intersects with cohomologies and de-
formed cohomologies [8]. Therefore, it is important to develop this area over octonions,
Cayley–Dickson algebras, and more general nonassociative algebras with metagroup re-
lations. Examples of nonassociative algebras, modules, and homological complexes with
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metagroup relations are given in [12,13,23]. In these works, it is shown that generalized
Cayley–Dickson algebras are particular cases of metagroup algebras. For related with them
digital Hopf spaces cohomologies were investigated in [24].

In [14], smashed and twisted wreath products of metagroups or groups were studied.
It permitted constructing wide families of metagroups even starting from groups. It
also demonstrates that meta groups appear naturally in algebra and metagroup algebras
compose an enormous class of nonassociative algebras.

This article is devoted to extensions and splitting extensions of nonassociative alge-
bras. For this purpose cohomology theory on them was developed in [12]. In its turn, it
demanded to impose some mild conditions on algebras to develop cohomology theory
on them.

A class of nonassociative algebras is investigated with mild relations induced from
metagroup structures. Modules over nonassociative metagroup algebras are studied. For a
class of modules over nonassociative algebras their extensions, splitting extensions, and
ideals are scrutinized in Section 3.

For this purpose tensor products of modules and induced modules over nonasso-
ciative metagroup algebras are investigated in Section 2. Smashly graded modules and
algebras are studied. The smash gradation is considered over metagroups. The consid-
ered tensor products take into account smash nonassociative structures (see Theorem 1,
Proposition 1, Remark 1). Moreover, a developed cohomology theory on them is used.
Algebras satisfying these conditions are described (see Theorem 2). In Propositions 2 and 3
and Theorems 3 and 5, tensor products of morphisms are studied. The exactness of mor-
phisms is investigated in Theorems 4 and 7 and Corollary 3. Generic morphisms are
scrutinized in Theorem 6. Isomorphisms of such nonassociative algebras are studied in
Proposition 4 and Corollary 6. Their meta-isomorphisms are investigated in Proposition 5
and Theorem 8.

The exactness of isomorphisms related with extensions and metagroup algebras is
studied in Lemma 6 and Propositions 6 and 7 (see also Definitions 1 and 6). Extensions
of smashly graded modules and algebras are investigated in Theorems 9 and 10 and
Proposition 8.

Necessary definitions are provided in Appendix A (see also Formulas (A1)–(A19)).
All main results of this paper are obtained for the first time. They can be used for

further studies of nonassociative algebras, their cohomologies, algebraic geometry, PDEs,
their applications in the sciences, etc.

2. Modules over Nonassociative Algebras with Metagroup Relations

Definition 1. Let T be a commutative associative unital ring, G be a metagroup and A = T [G] be
a metagroup algebra. Let also B be a G-graded unital right A-module (see Definitions A2 and A3).
Suppose in addition that

(1) there exists a mapping B× B 3 (x, y) 7→ xy ∈ B such that
x(y + z) = xy + xz and (y + z)x = yx + zx and (bx)y = b(xy) and (xb)y = x(by) and

(xy)b = x(yb)
for all x, y, z in B, b ∈ T ;

(2) (xgyh)zs = t3(g, h, s)xg(yhzs) and xgyh ∈ Bgh
for every g, h, s in G, xg ∈ Bg, yh ∈ Bh, zs ∈ Bs.

Then we call B a smashly G-graded algebra over A (or a smashly G-graded A-algebra). For
short it will be written “an A-algebra” instead of “a smashly G-graded A-algebra”. The algebra B
is called unital if and only if

(3) B has a unit element 1 = 1B such that 1Bx = x and x1B = x for each x ∈ B.
Suppose that X is a G1-graded left A1-module and Y is a G2-graded left A2-module, Aj = T [Gj]

is a metagroup algebra for each j ∈ {1, 2, 3, . . . }. Suppose also that f : X → Y is a map such that
f is

(4) a left T -homomorphism and f (Xg) ⊆ Yf1(g) for each g ∈ G1, where f1 : G1 → G2 is a
homomorphism of metagroups:
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(5) f1(gh) = f1(g) f1(h) and f1(g \ h) = f1(g) \ f1(h) and
f1(g/h) = f1(g)/ f1(h) for every g and h in G.
The map f : X → Y satisfying conditions (4) and (5) will be called a (G1, G2)-graded left

T -homomorphism of the left modules X and Y. If T is specified, it may be said a homomorphism
instead of a T -homomorphism. Symmetrically is defined a (G3, G4)-graded right homomorphism
of a right A3-module X and a right A4-module Y. For a (A1, A3)-bimodule X and a (A2, A4)-
bimodule Y if a map f : X → Y is (G1, G2)-graded left and (G3, G4)-graded right homomorphism,
then f will be called a ((G1, G2), (G3, G4))-graded homomorphism of bimodules X and Y.

Assume that X is a left A1-module and Y is a left A2-module and f : X → Y is a map, where
Aj = T [Gj] for each j, such that

(6) f : X → Y is a left T homomorphism and f (ax + by) = f1(a) f (x) + f1(b) f (y), where
(7) f1 is a homomorphism from A1 into A2, that is
f1 : A1 → A2 and f1 : G1 → G2 and f1 : T [N(G1)]→ T [N(G2)] and
f1(ab) = f1(a) f1(b) and f1(g \ h) = f1(g) \ f1(h) and
f1(g/h) = f1(g)/ f1(h) and f1(pa + bs) = p f1(a) + f1(b)s

for every g and h in G1, a and b in A1, p and s in T , where Gj is considered embedded into T [Gj]
as Gj1T identifying g1T with g for simplicity of the notation, where 1T is the unit element of the
ring T , g ∈ Gj.

If f satisfies conditions (6) and (7), then f will be called an (A1, A2)-generic left homo-
morphism of left modules X and Y. For right modules an (A1, A2)-generic right homomorphism
is defined analogously. If X is an (A1, A3)-bimodule and Y is an (A2, A4)-bimodule and f is
an (A1, A2)-generic left and (A3, A4)-generic right homomorphism, then f will be called an
((A1, A2), (A3, A4))-generic homomorphism of bimodules X and Y.

If additionally the homomorphism f1 is bijective and surjective in (7) and f−1
1 : A2 → A1 is

the homomorphism, then f1 is called an isomorphism of A1 with A2 (or automorphism if A1 = A2).
In particular, if G1 = G2, then “(G1, G1)-graded” or “(A1, A1)-generic” will be shortened to

“G1-graded” or “A1-generic” correspondingly, etc. If f1 is an automorphism of G1 (or of A1 corre-
spondingly), then a G1-graded (or an A1-generic) left homomorphism from X into Y will be called
G1-exact (or A1-exact correspondingly). Similarly G3-exact or A3-exact right homomorphisms of
right modules and (G1, G3)-exact or (A1, A3)-exact homomorphisms of bimodules are defined.

If X and Y are A-algebras and f is a G-graded (or G-exact or A-generic or A-exact) ho-
momorphism from X into Y considered as A-bimodules and in addition the following condition
is satisfied

(8) f (vx) = f (v) f (x) for each x and v in X,
then f will be called a G-graded (or G-exact or A-generic or A-exact correspondingly) homomor-
phism of the A-algebras.

We consider the Cartesian product X × Y of A-bimodules X and Y. Let X ×A Y be an A-
bimodule generated from X×Y using finite additions of elements (x, y) ∈ X×Y and the left and
right multiplications on elements a ∈ A such that

(9) (x, y) + (x1, y1) = (x + x1, y + y1) and
(10) a(x, y) = (ax, ay) and (x, y)a = (xa, ya) and
(11) g(Xe, Ye) = (Xg, Yg) and (Xe, Ye)g = (Xg, Yg) (see also (A16)) for each x and x1 in

X, y, and y1 in Y, a ∈ A, g ∈ G.
Suppose that X, Y and Z are A-bimodules.
(12) Let Λ : X×Y → Z be a T [C(G)]-bilinear map. Let also Λ satisfy the following identities:
(13) Λ(xgbh, ys) = t3(g, h, s)Λ(xg, bhys) and Λ(cx, y) = cΛ(x, y) and
Λ(x, yc) = Λ(x, y)c for each c ∈ N(G), x ∈ X, y ∈ Y, g and h and s in G. If Λ fulfills

conditions (12) and (13), then it will be said that the map Λ is G-balanced.

Definition 2. Let X and Y be A-bimodules (see Definitions A3 and 1), where A = T [G] is the
metagroup algebra. Let C be an A-bimodule supplied with a T [C(G)]-bilinear map ξ : X×Y → C
denoted by ξ(x, y) = x⊗ y for each x ∈ X and y ∈ Y such that

(14) C is generated by a set {x⊗ y : x ∈ X, y ∈ Y} and
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(15) if Λ : X × Y → Z is a G-balanced map of A-bimodules X, Y, and Z, and for each
fixed x ∈ X the map Λ(x, ·) : Y → Z and for each fixed y ∈ Y the map Λ(·, y) : X → Z are
G-graded homomorphisms of A-bimodules, then there exists a G-graded homomorphism ψ : C → Z
of A-bimodules such that ψ(x⊗ y) = Λ(x, y) for each x ∈ X and y ∈ Y.

If conditions (14) and (15) are satisfied, then the A-bimodule C is called a tensor product of X
with Y over A and denoted by X⊗A Y.

Remark 1. Definition 2 implies the following identities in X⊗A Y:
(16) (cx + dx1)⊗ y = c(x⊗ y) + d(x1 ⊗ y);
(17) x⊗ (yc + y1d) = (x⊗ y)c + (x⊗ y1)d;
(18) (xgbh)⊗ ys = t3(g, h, s)xg ⊗ (bhys);
(19) (bhxg)⊗ ys = t3(h, g, s)bh(xg ⊗ ys);
(20) (xg ⊗ ys)bh = t3(g, s, h)xg ⊗ (ysbh);
(21) γ(x⊗ y) = (x⊗ y)γ;
(22) x⊗ 0 = 0 and 0⊗ y = 0

for each x and x1 in X; y and y1 in Y; c and d in T [N(G)], g and h and s in G, bh ∈ Ah,
xg ∈ Xg, ys ∈ Ys, γ ∈ T [C(G)].

If p : G → H is a homomorphism of metagroups, then p(G) is a submetagroup in H such that
p(N(G)) ⊆ N(p(G)) and p(Com(G)) ⊆ Com(p(G)), hence p(C(G)) ⊆ C(p(G)).

We remind the reader that a submetagroup Q in G is called normal if it satisfies the following
conditions: gQ = Qg, (hg)Q = h(gQ), (hQ)g = h(Qg) and Q(hg) = (Qh)g for each g and h
in G. There exists a quotient metagroup G/·/Q consisting of classes gQ in G with g ∈ G, since

[((gQ)(hQ))(sQ)]/[(gQ)((hQ)(sQ))] = ([(gh)s]/[g(hs)])Q ∈ C(G/·/Q)
for each g, h, and s in G. Moreover, there exists a quotient homomorphism πG,Q from G onto
G/·/Q. In particular, p−1(eH) =: Ker(p) is a normal submetagroup in G, where eH denotes the
unit element in H, such that the image p(G) is isomorphic with G/·/Ker(p).

As usually idX denotes the identity homomorphism on X, idX(x) = x for each x ∈ X. Note
that there are natural embeddings of G and T in A = T [G] as G1 and eT correspondingly, where
1T = 1 is a unit of the ring T and e = eG is a unit of the metagroup G. In particular, there may be
a case when G and T are contained in a nonassociative ring R such that G ∩ T 6= ∅. This may
induce algebraic identities in the metagroup algebra.

Lemma 1. Let X, Y, Z, and A be as in Definition 2. Let also φ and θ be G-graded homomorphisms
from X ⊗A Y into Z such that φ(x⊗ y) = θ(x⊗ y) for each x ∈ X and y ∈ Y. Then φ and θ
coincide on X⊗A Y.

Proof. Certainly ker(φ− θ) is a submodule in X ⊗A Y. From conditions (14) and (15) it
follows that φ = θ.

Corollary 1. The homomorphism ξ is uniquely defined by condition (15).

Corollary 2. If C = X ⊗A Y and C′ = X⊗′AY are two tensor products of X and Y over A (see
Definition 2), then there exists a unique G-graded isomorphism φ : C → C′ such that

(23) φ(x⊗ y) = x⊗′ y for each x ∈ X and y ∈ Y, where x⊗ y ∈ C and x⊗′ y ∈ C′.

Proof. An existence of φ satisfying condition (23) follows from identities (16)–(22). Sim-
ilarly, there exists a G-graded homomorphism η : C′ → C such that η(x⊗′y) = x⊗ y for
each x ∈ X and y ∈ Y. In view of Lemma 1 φη = id and ηφ = id, where id denotes the
identity map.

Theorem 1. Assume that X and Y are A-bimodules, where A = T [G] is a metagroup algebra.
Then the tensor product X⊗A Y exists and it is an A-bimodule.

Proof. We consider an A-bisubmodule H in the A-bimodule K := X×A Y (see Definition 1).
Let H be generated by elements of the following types:
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(24) (cx + dx1, y)− c(x, y)− d(x1, y);
(25) (x, yc + y1d)− (x, y)c− (x, y1)d;
(26) (xgbh, ys)− (t3(g, h, s)xg, bhys);
(27) (bhxg, ys)− t3(h, g, s)bh(xg, ys);
(28) (xg, ys)bh − t3(g, s, h)(xg, ysbh)
(29) γ(x, y)− (x, y)γ;
(30) (x, 0) and (0, y)

for each x and x1 in X; y and y1 in Y; c and d in T [N(G)], g and h and s in G, bh ∈ Ah,
xg ∈ Xg, ys ∈ Ys, γ ∈ T [C(G)].

There exists the quotient module Q := K/·/H of K by H, since K and H have a
structure of commutative groups relative to the addition. One can put x⊗ y = (x, y) + H.
Note that all pairs x⊗ y generate the quotient module Q, because all pairs x× y generate
K. Let Λ : X × Y → Z be a G-balanced map of A-bimodules X, Y and Z such that for
each fixed x ∈ X the map Λ(x, ·) : Y → Z and for each fixed y ∈ Y the map Λ(·, y) :
X → Z are G-graded homomorphisms (see Definition 1). Evidently there exists a T [C(G)]-
bilinear extension η of Λ on K, η : K → Z. From the properties of the map Λ it follows
that all elements of the types (24)–(30) belong to the kernel ker(η) of η. This induces a
homomorphism ψ : Q → Z such that ψ((x ⊗ y)) = ψ((x, y) + H) = η((x, y)) = Λ(x, y)
for each x ∈ X and y ∈ Y.

Proposition 1. Let X1, X2, Y1, and Y2 be A-bimodules, where A = T [G] is a metagroup al-
gebra. Let φ : X1 → X2 and ψ : Y1 → Y2 be their G-graded homomorphisms such that
φ1(g) = ψ1(θ1(g)) for each g ∈ G, where θ1 is an automorphism of G. Then there exists a unique
G-graded homomorphism

(31) φ⊗ ψ : X1 ⊗A Y1 → X2 ⊗A Y2 such that (φ⊗ ψ)(x⊗ y) = φ(x)⊗ ψ(y)
for each x ∈ X1 and y ∈ Y1. Moreover, the following identities are accomplished:
(32) φ⊗ (ψa + ξb) = (φ⊗ ψ)a + (φ⊗ ξ)b,
(33) (aφ + bν)⊗ ψ = a(φ⊗ ψ) + b(ν⊗ ψ)

for each a and b in T [N(G)], G-graded homomorphisms ν : X1 → X2, ξ : Y1 → Y2 such that
φ1(g) = ξ1(θ1(g)) and ν1(g) = ψ1(θ1(g)) for each g ∈ G;

(34) (φa)⊗ ψ = φ⊗ (aψ), for each a in T [N(G)];
(35) (γφ)⊗ ψ = φ⊗ (ψγ) for each γ ∈ T [C(G)];
(36) idX1 ⊗ idY1 = idX1⊗AY1 ;
(37) (µ⊗ η)(φ⊗ ψ) = (µφ)⊗ (ηψ)

for each G-graded homomorphisms µ : X2 → X3, η : Y2 → Y3 of A-bimodules with µ1(g) = η1(θ2(g))
for each g ∈ G, where θ2 is an automorphism of G;

(38) φ⊗ 0 = 0 and 0⊗ ψ = 0.

Proof. The homomorphisms φ and ψ are G-graded. Therefore,
(39) (φ⊗ ψ)(xg ⊗ yh) ∈ X1,φ1(g) ⊗T Y1,ψ1(h)

for each g and h in G, xg ∈ X1,g, yh ∈ Y1,h. On the other hand, by the conditions of this
proposition φ1 and ψ1 are homomorphisms from G into G such that φ1(g) = ψ1(θ1(g)) for
each g ∈ G. Therefore, from (A16) it follows that

(40) X1,φ1(g) ⊗T Y1,ψ1(h) is isomorphic as the T -bimodule with
X1,s ⊗T Y1,v for each s in G and v = s \ ψ1(θ1(g)h).
Thus the properties (39) and (40) and Definition 2 of X1 ⊗A Y1 imply that there exists

a unique G-graded homomorphism (φ⊗ ψ). Identities (32)–(37) follow from Lemma 1,
Theorem 1 and (16)–(22).

Theorem 2. Assume that X and Y are A-bimodules, where A = T [G] is a metagroup algebra.
Assume also that P is a quotient metagroup P := G/·/S of a metagroup G by a subgroup S such
that S ⊆ C(G) and Xg 6= Xe and Yg 6= Ye for each g ∈ G− S. Then there exist T [S]-bimodules
Xσ

g such that X considered as a T [S]-bimodule is isomorphic with the direct sum
⊕

g∈P Xσ
g and

(X⊗A Y)σ
r is isomorphic with

⊕
h∈P,s∈P, hs=r(Xσ

h ⊗T [S] Yσ
s ) for each r ∈ P.
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Proof. Notice that S is a normal commutative subgroup in G, because S is contained in
C(G). On the other hand, t3(γ1a, γ2b, γ3c) = t3(a, b, c) ∈ C(G) for each a, b, and c in G, γj
in C(G), j ∈ {1, 2, 3}. Therefore, the quotient P of G by S is a metagroup, where elements of
P are classes bS, b ∈ G. We denote by θ a quotient map from G onto P such that θ(b) = bS
for each b ∈ G.

Apparently T [S] is an algebra over the ring T and T [S] also has a structure of an
associative commutative unital ring, because S is a commutative group and T is the
commutative associative unital ring, 1T [S] = 1T eG (see Definitions A1 and A2). We put
Xσ

g = ∑a∈θ−1(g) Xa (see also Definition A3). This implies that Xσ
g is a T [S]-bimodule for

each g ∈ P, since θ−1(g) = S, while Xa is the T -bimodule. From Xg 6= Xe for each
g ∈ G− S and (A16)–(A19) it follows that for each g 6= h in P the intersection Xσ

g ∩ Xσ
h

is null. Therefore X, considered as the T [S]-bimodule, is isomorphic with the direct sum⊕
g∈P Xσ

g of T [S]-bimodules. From Theorem 1 and Remark 1 it follows that T [S]-bimodules
(X⊗A Y)σ

r and
⊕

h∈P,s∈P, hs=r(Xσ
h ⊗T [S] Yσ

s ) are isomorphic for each r ∈ P.

Proposition 2. If the conditions of Proposition 1 are satisfied, φ and ψ are G-exact, then φ⊗ ψ is
G-exact.

Proof. Since φ1 : G → G is an automorphism and φ1(g) = ψ1(θ1(g)) for each g ∈ G, then
(41) φ1 × ψ1 : G× G → G× G is an automorphism of the direct product G× G of the

metagroup G.
From Theorem 1 and Definition A3 we deduce that
(42) (Xj ⊗A Yj)g is isomorphic as the T -bimodule with
∑h∈G, s=h\g Xj,h ⊗T Yj,s for each j.
Thus (41), (42), conditions (A16), (A17), (14), and (15) induce a bijective surjective

map (φ⊗ ψ)1 : G → G. Since φ1 × ψ1 : G× G → G× G is an automorphism and φ and
ψ also possess properties of T -homomorphisms, then (φ⊗ ψ)1 is an automorphism of G.
From this and Proposition 1 it follows that φ⊗ ψ is a G-exact homomorphism.

Proposition 3. Assume that X1, X2, Y1, and Y2 are A-bimodules, where A = T [G] is a metagroup
algebra. Assume also that P is a quotient metagroup P := G/·/S of a metagroup G by a subgroup
S such that S ⊆ C(G) and Xk,g 6= Xk,e and Yk,g 6= Yk,e for each g ∈ G− S, k ∈ {1, 2}. Assume
also that φ : X1 → X2 and ψ : Y1 → Y2 are their P-graded T [S]-homomorphisms such that
φ1(g) = ψ1(θ1(g)) for each g ∈ P, where θ1 is an automorphism of P. Then a unique P-graded
T [S]-homomorphism exists

(43) φ⊗ ψ : X1 ⊗A Y1 → X2 ⊗A Y2 such that (φ⊗ ψ)(x⊗ y) = φ(x)⊗ ψ(y)
for each x ∈ X1 and y ∈ Y1. Moreover, if φ and ψ are P-exact, then φ⊗ ψ is P-exact.

Proof. In view of Theorem 2 X1, X2, Y1, Y2 also have structures of P-graded T [S]-bimodules.
Note that T [S]Xσ

1,p = Xσ
1,p for each p ∈ P, since T [S] is a commutative associative unital

ring. Therefore Theorem 1, Proposition 1 and 2 and Remark 1 imply the assertion of this
proposition.

Theorem 3. Let X, Y, X1, and Y1 be A-bimodules, where A = T [G] is a metagroup algebra. Then
there exist A-exact T -isomorphisms

η : X⊗A (Y⊕Y1)→ (X⊗A Y)⊕ (X⊗A Y1) of A-bimodules and
ρ : (X⊕ X1)⊗A Y → (X⊗A Y)⊕ (X1 ⊗A Y) of A-bimodules

such that
(44) η(x⊗ (y, y1)) = (x⊗ y, x⊗ y1) and
ρ((x, x1)⊗ y) = (x⊗ y, x1 ⊗ y) for each x ∈ X, x1 ∈ X1, y ∈ Y and y1 ∈ Y1;

there exists a G-exact T -isomorphism
ν : (X⊗A X1)⊗A Y → X⊗A (X1 ⊗A Y) of A-bimodules such that
(45) ν((xg ⊗ x1,h)⊗ ys) = t3(g, h, s)xg ⊗ (x1,h ⊗ ys) for each g, h, and s in G, xg ∈ Xg,

x1,h ∈ X1,h and ys ∈ Ys;
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(46) for each g and h in G there exists an isomorphism of T -bimodules µg,h : Xg ⊗T Yh →
Yg ⊗T Xh;

(47) there are A-exact T -isomorphisms
X⊗A A ∼= X and A⊗A X ∼= X of A-bimodules.

Proof. Note that X⊗A (Y1⊕Y2) and (X⊗A Y1)⊕ (X⊗A Y2) are isomorphic as T -bimodules,
because the ring T is associative and commutative. On the other hand, η((bxe)⊗ (y, y1)) =
b(xe ⊗ y, xe ⊗ y1) and η(x ⊗ ((ye, y1,e)b)) = (x ⊗ ye, x ⊗ y1,e)b for each b ∈ A, x ∈ X,
xe ∈ Xe, y ∈ Y, ye ∈ Ye, y1 ∈ Y1 and y1,e ∈ Y1,e. In view of Proposition 1 X⊗A (Y1 ⊕Y2)
and (X⊗A Y1)⊕ (X⊗A Y2) are isomorphic as A-bimodules. Using Definition A3, condi-
tions (14) and (15) it is sufficient to take in (6) and (7) a homomorphism η1(a) = a for
each a ∈ A, since (bxe)⊗ (y, y1) = b(xe ⊗ (y, y1)) and x⊗ ((ye, y1,e)b) = (x⊗ (ye, y1,e))b
and (xeg)⊗ (y, y1) = xe ⊗ (gy, gy1) and x⊗ (gye, gy1,e) = (xg)⊗ (ye, y1,e) for each g ∈ G.
Thus the isomorphism η is A-exact. Symmetrically it is proved that the isomorphism ρ is
A-exact.

Since T ⊂ T [C(G)] ⊂ A, then (X⊗A X1)⊗A Y and X⊗A (X1 ⊗A Y) are isomorphic
as T -bimodules. Note that (42) implies

(48) ((X⊗A X1)⊗A Y)v = ∑g∈G, h∈G(Xg ⊗T X1,h)⊗T Y(gh)\v
for each v in G. We put ν1(g) = g for each g ∈ G. Therefore, the latter formula and (48)

induce a G-exact isomorphism ν satisfying (45).
Assertion (46) follows from (A16)–(A19) and the conditions of this proposition, since

Xe ⊗T Ye and Ye ⊗T Xe are isomorphic T -bimodules.
There exists a left and right T -linear homomorphism ξ from X ⊗A A onto X such

that ξ(x ⊗ a) = xa for each x ∈ X and a ∈ A, since A is the unital algebra and x1 = x
for each x ∈ X, because for unital rings modules are supposed to be unital according to
Definition A3. On the other side, there exists a homomorphism ω : X → X ⊗A A such
that ω(x) = x⊗ 1 for each x ∈ X. Therefore, ω(ξ(x⊗ a)) = (xa)⊗ 1 = x⊗ a by (18) and
ξ(ω(x)) = x for each x ∈ X and a ∈ A. It is sufficient to put ξ1(a) = a and ω1(a) = a for
each a ∈ A. Thus ξ is A-exact. Similarly there exists an A-exact isomorphism A⊗A X ∼= X
of A-bimodules.

Theorem 4. Assume that X1, X2, X3, and Y are A-bimodules, where A = T [G] is a metagroup
algebra. Assume also that X1 −→f 1 X2 −→f 2 X3 → 0 is an exact sequence with G-graded homomorphisms

f 1 and f 2. Then a sequence X1
⊗

A Y −→
s1 X2

⊗
A Y −→

s2 X3
⊗

A Y → 0 is exact with G-graded

homomorphisms s1 and s2 such that sj|Xj
⊗
T Ye = f j ⊗ idYe and sj

1 = f j
1, where j ∈ {1, 2},

idYe(ye) = ye for each ye ∈ Ye.

Proof. Apparently the formulas sj|Xj
⊗
T Ye = f j ⊗ idYe , sj

1 = f j
1, (A16)–(A19), (4), (5) and

(16)–(21) induce G-graded homomorphisms sj : Xj
⊗

A Y → Xj+1
⊗

A Y, where j ∈ {1, 2}.
Notice that s2(X2

⊗
A Y) contains all tensors of rank 1, that is x3 ⊗ y with x3 ∈ X3 and

y ∈ Y. Then f 1
1 (G) is a submetagroup in G isomorphic with G/·/Ker( f 1

1 ) (see Remark 1).
Evidently f 2 ◦ f 1 = 0 implies s2 ◦ s1 = 0, consequently, Im(s1) ⊆ Ker(s2). Therefore we get

Ker( f 2)
⊗

A Y = Im( f 1)
⊗

A Y ⊆ Im( f 1 ⊗ idY),
where Im( f 1) = f 1(X1), Ker( f 2) = ( f 2)−1(0). For X2

⊗
A Y considered as the T -

bimodule there exists a natural projection π of X2
⊗

A Y onto a quotient T -bimodule
V := (X2

⊗
A Y)/Im(s1), because Im(s1) is a T -bimodule contained in X2

⊗
A Y. Therefore

the map Φ(x3, y) := π(( f 2)−1x3 ⊗ y) is T -bilinear from X3 ×Y into V, where x3 ∈ X3 and
y ∈ Y. This induces a homomorphism µ from X3

⊗
A Y onto V considered as T -bimodules

such that µ(x3⊗ y) = π((( f 2)−1x3)⊗ y), hence µ( f 2(x2)⊗ y) = π(x2⊗ y) for each x2 ∈ X2
and y ∈ Y. In view of Lemma 1 µ ◦ s2 = π. Therefore Ker(s2) ⊆ Ker(π) = Im(s1). Thus
Ker(s2) = Im(s1).
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Corollary 3. Suppose that X1, X2, X3, and Y are A-bimodules, where A = T [G] is a metagroup
algebra. Suppose also that 0 → X1 −→f 1 X2 −→f 2 X3 → 0 is a splitting exact sequence with G-exact

homomorphisms f 1 and f 2. Then a sequence
0 → X1

⊗
A Y −→

s1 X2
⊗

A Y −→
s2 X3

⊗
A Y → 0 is exact with G-exact homomorphisms s1 and

s2 such that s1 = f 1 ⊗ idY and s2 = f 2 ⊗ idY.

Proof. There exists a homomorphism ν : X2 → X1 such that ν ◦ f 1 = idX1 , because
the sequence 0 → X1 −→f 1 X2 −→f 2 X3 → 0 splits. Therefore, the homomorphism ν is also

G-exact such that ν1 = ( f 1
1 )
−1, since the homomorphism f j is G-exact for each j. In

view of Theorem 4 the sequence X1
⊗

A Y −→
s1 X2

⊗
A Y −→

s2 X3
⊗

A Y → 0 is exact with G-

exact homomorphisms s1 and s2 and (ν ⊗ idY)( f 1 ⊗ idY) = idX1
⊗

A Y, consequently, s1

is injective.

Theorem 5. Let X and Y be A-algebras, where A = T [G] is a metagroup algebra. Then on the
A-bimodule X

⊗
A Y there exists a multiplication satisfying the following conditions:

(49) (ax1 ⊗ y1)(x2 ⊗ y2b) = a(x1x2)⊗ (y1y2)b
for each x1 and x2 in X, y1 and y2 in Y, a and b in T [N(G)];

(50) ((x1,g1 ⊗ y1,h1)(x2,g2 ⊗ y2,h2))(x3,g3 ⊗ y3,h3) =
t3(g1, g2, g3)(x1,g1 ⊗ y1,h1)((x2,g2 ⊗ y2,h2)(x3,g3 ⊗ y3,h3))t3(h1, h2, h3)

for each xj,gj ∈ Xgj , yj,hj
∈ Yhj

, gj and hj in G, j ∈ {1, 2, 3};
(51) 1X ⊗ 1Y = 1X⊗AY for unital algebras X and Y.

Proof. By virtue of Proposition 1 (aLx1,g1
⊗ Ly1,h1

)(x2 ⊗ y2b) = a(x1,g1 x2)⊗ (y1,h1 y2)b for
each x1,g1 ∈ Xg1 and x2 in X, y1,h1 ∈ Yh1 and y2 in Y, a and b in T [N(G)], where
Lx1 x2 = x1x2, aLx1 = (aIX)Lx1 , Lx1 a = Lx1(aIX), IXx1 = x1 for each x1 ∈ X. Evi-
dently, Lax1+x2b = aLx1 + Lx2 b for each x1 and x2 in X, a and b in T [N(G)]. Therefore
aLx1,g1

⊗ Ly1,h1
is a G-graded endomorphism of X

⊗
A Y. This induces a T -bilinear map

X × Y 3 (x1, y1) 7→ Lx1 ⊗ Ly1 ∈ HomT (U, U), where HomT (V, W) denotes the family of
all T -bilinear homomorphisms from V into W, where V and W are T -bimodules, U is
X

⊗
A Y considered as the T -bimodule. Thus there exists a T -bilinear homomorphism of

T -bimodules f : U → HomT (U, U) such that f (x1 ⊗ y1) = Lx1 ⊗ Ly1 for each x1 ∈ X and
y1 ∈ Y. We define a map µ : U ×U → U by the following formula µ(u, v) = f (u)(v) for
each u and v in U. The construction of µ and identities (16)–(22) imply that µ is T -bilinear
and satisfies (49) and (50). Thus µ is the multiplication on X

⊗
A Y. From Lemma 1 it

follows that 1X ⊗ 1Y is the unit element in X
⊗

A Y, if X and Y are unital algebras.

Corollary 4. Let W, X, and Y be A-algebras, where A = T [G] is a metagroup algebra. Then
(52) the A-algebra (W ⊕ X)

⊗
A Y is isomorphic with

(W
⊗

A Y)⊕ (X
⊗

A Y);
(53) (wg ⊗ xh)⊗ ys = t3(g, h, s)wg ⊗ (xh ⊗ ys) for every wg ∈Wg, xh ∈ Xh, ys ∈ Ys, g,

h, and s in G;
(54) the T -algebra We

⊗
T Xe is isomorphic with Xe

⊗
T We;

(55) the A-algebras W
⊗

A A and A
⊗

A W are isomorphic with W.

Proof. This follows from Theorems 3 and 5 and Lemma 1.

Lemma 2. Suppose that X and Y are unital A-algebras, where A = T [G] is a metagroup algebra.
Suppose also that fX : X → X

⊗
A Y and fY : Y → X

⊗
A Y are maps such that fX(x) = x⊗ 1Y

and fY(y) = 1X ⊗ y for each x ∈ X and y ∈ Y. Then fX and fY are A-homomorphisms such that
fX(X) ∪ fY(Y) generates X

⊗
A Y and fX(x) fY(y) = fY(y) fX(x) for each x ∈ X and y ∈ Y.

Particularly, if T = F is a field, then fX and fY are injective.
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Proof. From (49) and (50) it follows that fX and fY are A-homomorphisms such that
fX(x) fY(y) = x ⊗ y and fY(y) fX(x) = x ⊗ y for each x ∈ X and y ∈ Y, since fX(ax) =
(ax)⊗ 1Y = a(x⊗ 1Y) and fX(xa) = (xa)⊗ 1Y = x⊗ (1Ya) = (x⊗ 1Y)a for each x ∈ X and
a ∈ A. Therefore fX(X) ∪ fY(Y) generates X

⊗
A Y, because the set {x⊗ y : x ∈ X, y ∈ Y}

generates the tensor product X
⊗

A Y of algebras X and Y over A.
If T = F is a field, then the restriction of fX on Xe is injective, fX : Xe → Xe

⊗
F Ye. On

the other hand, Xe
⊗

F Ye ⊂ X
⊗

A Y and fX(∑g∈G xg) = ∑g∈G fX(xg) for each x = ∑g∈G xg
in X, where xg ∈ Xg for each g ∈ G. For each g ∈ G the F-bimodule Xg is F-isomorphic
with Xeg, consequently, the homomorphism fX : X → X

⊗
A Y is injective.

Definition 3. Assume that X is an A-algebra and B ⊆ X, where A = T [G] is a metagroup
algebra. We put

(56) ComX(B) := {x ∈ X : ∀b ∈ B, xb = bx};
(57) NX,l(B) := {x ∈ X : ∀b ∈ B, ∀c ∈ B, (xb)c = x(bc)};
(58) NX,m(B) := {x ∈ X : ∀b ∈ B, ∀c ∈ B, (bx)c = b(xc)};
(59) NX,r(B) := {x ∈ X : ∀b ∈ B, ∀c ∈ B, (bc)x = b(cx)};
(60) NX(B) := NX,l(B) ∩ NX,m(B) ∩ NX,r(B) and
(61) CX(B) := ComX(B) ∩ NX(B).
Then ComX(B), NX(B), and CX(B) are called a commutant, a nucleus and a centralizer

correspondingly of the algebra X relative to a subset B in X. Instead of ComX(X), NX(X), or CX(X)
it will be also written shortly Com(X), N(X), or C(X) correspondingly. We put Be = B ∩ Xe and
BC := B ∩ XC, where XC = ∑g∈C(G) Xg.

Lemma 3. Let X and Y be A-algebras, where A = T [G] is a metagroup algebra. Let also Y ⊆ X,
B ⊆ X, D ⊆ X and E ⊂ X such that Be A ⊆ B ⊆ Be

⊗
T A and De A ⊆ D ⊆ De

⊗
T A. Then

(62) CX(B) is a T -subalgebra in X;
(63) NX(B) is a T [N(G)]-subalgebra in X;
(64) if D ⊆ B, then CX(B) ⊆ CX(D) and NX(B) ⊆ NX(D);
(65) BC ⊆ CX(D) if and only if DC ⊆ CX(B);
(66) Y ∩ CX(Y) = CY(Y);
(67) ComX(E) = X if and only if E ⊆ ComX(X);
(68) if E ⊆ NX(X), then NX(E) = X and
(69) if E ⊆ CX(X), then CX(E) = X.

Proof. From Formulas (1), (60), (61), and (A13)–(A19), it follows that a1x1 + a2x2 ∈ CX(B)
and a1(x1x2) ∈ CX(B) for each x1 and x2 in CX(B), a1 and a2 in T , since Be A ⊆ B ⊆
Be

⊗
T A. This implies (62).
If x1 and x2 in NX(B), a1 and a2 in T [N(G)], then a1x1 + a2x2, a1(x1x2) and x1a1 +

x2a2, (x1x2)a1 belong to NX(B) by Formulas (57)–(60), (A2)–(A5) and Definition A2, since
Be A ⊆ B ⊆ Be

⊗
T A and De A ⊆ D ⊆ De

⊗
T A. This implies (63). Then (64) evidently

follows from (60) and (61).
Let BC ⊆ CX(D). If b ∈ BC, then there exist g1,. . . ,gn in C(G) such that b = bg1+. . .+bgn ,

since Be A ⊆ B ⊆ Be
⊗
T A, where bgi ∈ Bgi for each i, Bg := B ∩ Xg. Therefore bc = cb,

b(cd) = (bc)d, (cb)d = c(bd) and (cd)b = c(db) for each c and d in D. From Be A ⊆ B ⊆
Be

⊗
T A and De A ⊆ D ⊆ De

⊗
T A it follows that

spanT BCD = spanT BDC and spanT DCB = spanT DBC,
where spanT S denotes the family of all elements v1s1+. . .+vmsm in X with sj ∈ S and
vj ∈ T for each j; BD := {bd : b ∈ B, d ∈ D}. This together with (A16)–(A19) and
(1) implies that DC ⊆ CX(B). Symmetrically, DC ⊆ CX(B) implies BC ⊆ CX(D) and
hence (65).

From (56)–(60) it follows that Y ∩ ComX(Y) = ComY(Y) and Y ∩ NX(Y) = NY(Y),
consequently, Y ∩ CX(Y) = CY(Y) giving (66).

The equality ComX(E) = X is equivalent to ax = xa for each x ∈ X and a ∈ E. That is
ComX(E) = X⇔ E ⊆ ComX(X). Thus assertion (67) is proven.
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Then (68) follows from (57)–(60). Finally (61), (67), and (68) imply (69).

Theorem 6. Let W, X, and Y be A-algebras, where A = T [G] is a metagroup algebra. Let
ξ : X → W and η : Y → W be left and right A-generic homomorphisms correspondingly such
that η(Ye) ⊆ N(W), ξ(Xe) ⊆ N(W), and η(Ye) ⊆ ComN(W)(ξ(Xe)). Then there exists a
unique homomorphism ν : X

⊗
A Y → W such that ν : X

⊗
T Ye → W and ν : Xe

⊗
T Y → W

are left and right A-generic homomorphisms of a left and right A-modules correspondingly and
ν(x⊗ y) = ξ(x)η(y) for each x ∈ X and y ∈ Y.

Proof. From the conditions of this proposition and Definition 1 it follows that
ξ((ab)xe) = ξ1(a)ξ1(b)ξ(xe) = ξ1(a)ξ(bxe) and
η(ye(ab)) = η(ye)η1(a)η1(b) = η(yea)η1(b)
for each a and b in A, xe ∈ Xe, ye ∈ Ye, consequently,
ξ((ab)xe)η(ye) = ξ1(a)ξ1(b)ξ(xe)η(ye) = ξ1(a)ξ(bxe)η(ye) and
ξ(xe)η(ye(ab)) = ξ(xe)η(ye)η1(a)η1(b) = ξ(xe)η(yea)η1(b).
Then we put ν(x⊗ y) = ξ(x)η(y) for each x ∈ X and y ∈ Y. Therefore, we infer that
ν((ab)(xe ⊗ ye)) = ξ1(a)ν((bxe)⊗ ye) and
ν((xe ⊗ ye)(ab)) = ν(xe ⊗ (yea))η1(b)
for each a and b in A, xe ∈ Xe, ye ∈ Ye. Then we deduce that
ν(((ab)x1,e ⊗ y1,e)(x2,e ⊗ y2,e)) = ξ1(a)ξ1(b)ν((x1,e ⊗ y1,e)(x2,e ⊗ y2,e)) =
ξ1(a)ξ1(b)ν(x1,ex2,e ⊗ y1,ey2,e) =
ξ1(a)ν((bx1,ex2,e)⊗ y1,ey2,e) and
ν((x1,e ⊗ y1,e)(x2,e ⊗ y2,e(ab))) =
ν((x1,e ⊗ y1,e)(x2,e ⊗ y2,e))η1(a)η1(b) = ν(x1,ex2,e ⊗ (y1,ey2,ea))η1(b).
From T -linearity of homomorphisms ξ and η it follows that ν is also T -linear. The

latter together with the identities given above lead to the conclusion that ν : X
⊗
T Ye →W

and ν : Xe
⊗
T Y → W are left and right A-generic homomorphisms of a left and right

A-modules correspondingly.

Corollary 5. Let V, W, X, and Y be A-algebras, where A = T [G] is a metagroup algebra. Let
ξ : X → V and η : Y → W be left and right A-generic homomorphisms correspondingly such
that ξ(Xe) ⊆ N(V), η(Ye) ⊆ N(W). Then there exists a left and right A-generic homomorphism
ξ ⊗ η : X

⊗
A Y → V

⊗
A W. If T = F is field and homomorphisms ξ and η are injective, then

the homomorphism ξ ⊗ η is also injective.

Proof. Note that there exists an isomorphism of T -algebras:

N(V
⊗

A
W) ' ∑

g∈G, h∈G, gh∈N(G)

(Vg
⊗
T

Wh).

Therefore N(V)
⊗
T N(W) is contained in N(V

⊗
A W). This inclusion together with

Lemma 2 and Theorems 5, 6 imply the assertion of this corollary.

Proposition 4. Assume that W, X, and Y are A-algebras, where A = F[G] is a metagroup algebra
over a field F. Then there exists an isomorphism of A-algebras W ' (X

⊗
A Y) if and only if the

following conditions are fulfilled:
(70) W contains A-subalgebras U and V such that there exist A-exact isomorphisms ξ : X →

U and η : Y → V;
(71) Ve ⊆ ComN(W)(Ue);
(72) there exist bases {ui : i ∈ Ω} and {vj : j ∈ Υ} of the F-algebras Ue and Ve such that

{(sui)((s \ e)vj) : i ∈ Ω, j ∈ Υ, s ∈ S} is a basis of We, where Ω and Υ are sets, where S is a
coset of representatives of classes q(G ∩ F) in G, q ∈ G.

If We is finite dimensional over F, then condition (72) can be substituted with:
(73) We as the F-algebra is generated by Ue ∪ Ve and dimFWe = dimFUe dimFVe card

(G/·/(F ∩ G)), where dimFUe denotes a dimension of Ue over the field F.
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Proof. In view of Lemma 2 conditions (70)–(73) are necessary (see also Remark 1). Vice
versa if conditions (70) and (71) are satisfied, then there exists a homomorphism of A-
algebras ν : X

⊗
A Y → W such that ν(x ⊗ y) = ξ(x)η(y) for each x ∈ X and y ∈ Y by

Theorem 6. From condition (72) and Lemma 2 it follows that ν is an isomorphism.
If dimFWe < ℵ0 and condition (73) is fulfilled, then ν is surjective, since ν(X

⊗
A Y) is

a A-subalgebra in W containing U ∪V. By the conditions of this proposition
G =

⋃
s∈S s(G ∩ F) such that s(G ∩ F) ∩ q(G ∩ F) = ∅

for each s 6= q in S. Notice that
dimFWe = dimFUe dimFVe card(G/ · /(F ∩ G)) =
dimF(Xe

⊗
F Ye) card(G/ · /(F ∩ G)) = dimF(X

⊗
A Y)e and W = ∑g∈G Wg

with Wg = ∑s∈G(Xs
⊗

F Ys\g), where Wg is isomorphic with Weg and with gWe as the
F-algebra. By virtue of Lemma 2 the homomorphism ν is injective.

Corollary 6. Let G1 and G2 be two metagroups and F be a field such that card(Gj/·/(F ∩Gj)) <
ℵ0 for each j ∈ {1, 2}. Let G = G1 × G2 be the direct product of metagroups and let X and Y be
associative algebras over F. Then a metagroup algebra A = F[G] is isomorphic with A1

⊗
F A2,

where Aj = F[Gj] for each j ∈ {1, 2}. Moreover, (X
⊗

F A)
⊗

F Y and (X
⊗

F A1)
⊗

F(A2
⊗

F Y)
can be supplied with A-exact F-isomorphic structures of A-algebras.

Proof. Since ab = ba for each a ∈ G1 and b ∈ G2, then A1,e ⊆ ComN(A)(A2,e). The union
A1 ∪ A2 generates A as the F-algebra. In view of Proposition 4, A and A1

⊗
F A2 are

isomorphic as the F-algebras. We put (a1, b1)((x⊗ (a2, b2))⊗ y) = (x⊗ (a1a2, b1b2))⊗ y
and ((x⊗ (a2, b2))⊗ y)(a1, b1) = (x⊗ (a2a1, b2b1))⊗ y and (a1, b1)((x⊗ a2)⊗ (b2 ⊗ y)) =
(x⊗ (a1a2))⊗ ((b1b2)⊗ y) and ((x⊗ a2)⊗ (b2 ⊗ y))(a1, b1) = (x⊗ (a2a1))⊗ ((b2b1)⊗ y)
for each aj ∈ A1 and bj ∈ A2, j ∈ {1, 2}, x ∈ X and y ∈ Y. By F-linearity we extend the lat-
ter formulas from (aj, bj) ∈ A on any a ∈ A, because A and A1

⊗
F A2 are isomorphic as the

F-algebras. This supplies (X
⊗

F A)
⊗

F Y and (X
⊗

F A1)
⊗

F(A2
⊗

F Y) with A-algebras
structures, which are A-exact isomorphic by Theorem 3, Proposition 4, and Corollary 4.

Lemma 4. Let X and Y be A-algebras, U be a right X-module, and V be a right Y-module, let also
U and V be A-bimodules, where A = T [G] is a metagroup algebra. Then U

⊗
A V can be supplied

with a structure of a right X
⊗

A Y-module such that
(74) (u⊗ v)(xa⊗ yb) = (ux)a⊗ (vy)b for each u ∈ U, v ∈ V, x ∈ X, y ∈ Y, a and b

in N(A);
(75) ((ug1 ⊗ vh1)(x2,g2 ⊗ y2,h2))(x3,g3 ⊗ y3,h3) =
(ug1 ⊗ vh1)((x2,g2 ⊗ y2,h2)(x3,g3t3(g1, g2, g3)⊗ y3,h3t3(h1, h2, h3))
for each ug1 ∈ Ug1 , vh1 ∈ Vh1 , xj,gj ∈ Xgj , yj,hj

∈ Yhj
, gj and hj in G, j ∈ {1, 2, 3};

(76) if the algebras X and Y are unital and the modules U and V are unital, then the right
X

⊗
A Y-module U

⊗
A V is also unital.

Proof. By virtue of Theorem 5 X
⊗

A Y is a A-algebra. In view of Proposition 1 (RaRx ⊗
RbRy)(u ⊗ v) = (ux)a ⊗ (vy)b for each u ∈ U, v ∈ V, x ∈ X, y ∈ Y, a and b in
N(A), where Rxu = ux, RaRxu = (ux)a = u(xa) = Rxau for each u ∈ U, x ∈ X,
a ∈ N(A). This implies that Rax1+x2b = Rx1 Ra + RbRx2 for each x1 and x2 in X, a and b in
N(A). Therefore RaRx1,g1

⊗ Ry1,h1
is a G-graded T -endomorphism of U

⊗
A V as the right

A-module. This provides a T -bilinear map X×Y 3 (x1, y1) 7→ Rx1 ⊗ Ry1 ∈ HomT (W, W),
where W = U

⊗
A V. Therefore there exists a T -bilinear homomorphism of T -bimodules

f : W → HomT (W, W) such that f (x1 ⊗ y1) = Rx1 ⊗ Ry1 for each x1 ∈ X and y1 ∈ Y. The
latter property and Proposition 4 give (74).

From Proposition 1 it follows that W is the A-bimodule. Then identity (75) follows
from (74) and Remark 1. Thus identities (74) and (75) supply W with a right X

⊗
A Y-

module structure.
By virtue of Theorem 5 1X ⊗ 1Y is the unit element in X

⊗
A Y, if X and Y are unital

algebras. Therefore if modules U and V are unital, then W is also unital.
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Theorem 7. Let X1, X2, Y1, and Y2 be A-bimodules and X1, X2 be right D-modules, Y1 and Y2
be right B-modules, where B and D are A-algebras, A = T [G] is a metagroup algebra, T is a
commutative associative unital ring. Then

(77) if ξ ∈ HomD(X1, X2) and η ∈ HomB(Y1, Y2), then
ξ ⊗ η ∈ HomD

⊗
A B(X1

⊗
A Y1, X2 ⊗A Y2),

where HomD(X1, X2) denotes a T -bimodule of all right D-homomorphism from X1 into X2 of
right D-modules;

(78) a map (ξ, η) 7→ ξ ⊗ η induces a T -homomorphism of T -bimodules:
ω : HomD(X1, X2)

⊗
T HomB(Y1, Y2)→ HomD

⊗
A B(X1

⊗
A Y1, X2 ⊗A Y2);

(79) ω : ED(X1)
⊗
T EB(Y1)→ ED

⊗
A B(X1

⊗
A Y1) is a T -homomorphism of T -algebras,

where ED(X1) := HomD(X1, X1) and
(80) if D is unital, then each ξ ∈ HomD(X1, X2) is A-exact.

Proof. Let ξ ∈ HomD(X1, X2) and η ∈ HomB(Y1, Y2). Then
(ξ ⊗ η)((x⊗ y)(d⊗ b)) = ξ(xd)⊗ η(yb)
= (ξ(x)d)⊗ (η(y)b) = ((ξ ⊗ η)(x⊗ y))(d⊗ b)

for each x ∈ X1, y ∈ Y1, d ∈ D, b ∈ B. From Lemmas 1 and 4 it follows that ξ ⊗ η ∈
HomD

⊗
A B(X1

⊗
A Y1, X2 ⊗A Y2).

The map (ξ, η) 7→ ξ ⊗ η is T -bilinear. In view of Proposition 1 the T -homomorphism
ω exists.

Let ξ j ∈ ED(X1) and ηj ∈ EB(Y1) for each j ∈ {1, 2}. Let also (ξ j ⊗′ ηj) denotes a
tensor of rank 1 in ED(X1)

⊗
T EB(Y1). Then the assertion (79) follows from Theorem 5

and (78), since
ω((ξ1 ⊗′ η1)(ξ2 ⊗′ η2)) = ω(ξ1ξ2 ⊗′ η1η2) = (ξ1ξ2 ⊗ η1η2) = (ξ1 ⊗ η1)(ξ2 ⊗ η2) =

ω(ξ1 ⊗′ η1)ω(ξ2 ⊗′ η2).
Note that if the algebra D is unital, then there exists an embedding of A into D as A1D,

where 1D is a unit element in D. Therefore in this case each ξ ∈ HomD(X1, X2) is A-exact
by (6), (7), (A16).

Lemma 5. Let B and D be unital A-algebras, where A = T [G] is a metagroup algebra, T is a
commutative associative unital ring. Let also X be a right B-module and Y be a (B, D)-bimodule.
Then their tensor product X

⊗
B Y is a right D-module such that

(81) (xg ⊗ yh)ds = xg ⊗ (yh(t3(g, h, s)ds)) for each xg ∈ Xg, yh ∈ Yh, ds ∈ Ds, g, h, and
s in G.

Proof. We put Φd(x, y) = x ⊗ (yd) for each x ∈ X, y ∈ Y, d ∈ D. The latter formula
defines a map Φd : X×Y → X

⊗
B Y. This map is T [C(G)]-bilinear and

(82) Φds(xgbq, yh) = (xgbq)⊗ (yhds) =
xg ⊗ ((bqyh)[t3(g, q, hs)/t3(q, h, s)]ds) = Φz(xg, (bqyh)) with
z = [t3(g, q, hs)/t3(q, h, s)]ds for each xg ∈ Xg, yh ∈ Yh, bq ∈ Bq, ds ∈ Ds, g, h, q and

s in G. Then we deduce that
(83) Φdα+ f β = Φdα + Φ f β and
(84) x⊗ ((yhds) fq) = x⊗ (yh(t3(h, s, q)ds fq))

for each α and β in T [C(G)], d and f in D, x ∈ X, yh ∈ Yh, ds ∈ Ds, fq ∈ Dq, h, s, q
in G. Note that (X

⊗
B Y)v is a T -bimodule generated by sums of elements of the form

(xgbq)⊗ yh with xg ∈ Xg, bq ∈ Bq, yh ∈ Yh, g, q, and h in G such that (gq)h = v, where
v ∈ G. Thus Formulas (81)–(84) supply X

⊗
B Y with a structure of a right D-module.

On the other hand, the metagroup algebra A has embeddings A1B in B and A1D in D,
where 1B denotes the unit element in B. Hence the tensor product X

⊗
B Y is G-graded by

Theorem 1.

Remark 2. Similarly to Lemma 5, if X is a (B, D)-bimodule and Y is a left D-module, then
X

⊗
D Y is a left B-module. Then if X is a (B, D)-bimodule and Y is a (D, J)-module, where B, D

and J are unital A-algebras, then X
⊗

D Y is a (B, J)-bimodule such that
(85) ((brxg)⊗ yh)js = t3(r, g, h)t3(r, gh, s)t3(g, h, s)br(xg ⊗ (yh js))
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for each br ∈ Br, xg ∈ Xg, yh ∈ Yh, js ∈ Js, r, g, h, and s in G. Moreover, if a ∈ T [N(G)], x ∈ X,
y ∈ Y, then

(86) a(x⊗ y) = (ax)⊗ y and (x⊗ y)a = x⊗ (ya).
In particular, if D is a subalgebra in B, then B can be considered as a (D, B)-bimodule. For a

right D-module X then X
⊗

D B is a right B-module, which is called a module induced from X and
it is denoted by XB.

Definition 4. Assume that B is a unital A-algebra, where A = T [G] is a metagroup algebra,
T is a commutative associative unital ring. If X and Y are right B-modules and isomorphic as
right T [C(G)]-modules and such that Xe

⊗
T T [C(G)] and Ye

⊗
T T [C(G)] are isomorphic right

T [C(G)]-modules, then we say that X and Y are meta-isomorphic. A meta-isomorphism for left or
two-sided D-modules is similarly defined.

Proposition 5. Suppose that B and D are unital A-algebras, where A = T [G] is a metagroup
algebra over a commutative associative unital ring T . Suppose also that X is a right B-module, Y is
a (B, D)-bimodule, Z is a left D-module such that X, Y and Z also have structures of A-bimodules.
Then (X

⊗
B Y)

⊗
D Z and X

⊗
B(Y

⊗
D Z) are A-bimodules which are meta-isomorphic.

Proof. By virtue of Lemma 5 and Remark 2 (X
⊗

B Y)
⊗

D Z and X
⊗

B(Y
⊗

D Z) are A-
bimodules. From identities (85), (86) and the inclusion t3(g, h, s) ∈ C(G) for each g, h,
and s in G it follows that (X

⊗
B Y)

⊗
D Z and X

⊗
B(Y

⊗
D Z) are isomorphic as T [C(G)]-

bimodules, also ((X
⊗

B Y)
⊗

D Z)
⊗
T T [C(G)] and (X

⊗
B(Y

⊗
D Z))

⊗
T T [C(G)] are iso-

morphic T [C(G)]-bimodules.

Theorem 8. Let B, C, and D be unital A-algebras, let D be a subalgebra in B and B be a subalgebra
in C, where A = T [G] is a metagroup algebra, T is an associative commutative unital ring. Let
also X and Y be right D-modules. Then

(87) (X⊕Y)B and XB ⊕YB are isomorphic as right B-modules;
(88) (XB)C and XC are meta-isomorphic right C-modules and
(89) XD is a right D-module meta-isomorphic with X.

Proof. Assertion (87) follows from Lemma 5 and the proof is similar to that of Theorem 3
and Corollary 4, since (x⊕ (yd))b = (xb)⊕ ((yd)b) and ((xd)⊕ y)b = ((xd)b)⊕ (yb) for
each x ∈ X, y ∈ Y, d ∈ D and b ∈ B.

In view of Proposition 5 and Remark 2
(90) (xg ⊗ bh)⊗ cs = xg ⊗ (bh ⊗ cs)t3(g, h, s) and (xg ⊗ (bhdr))⊗ cs = xg ⊗ ((bhdr)⊗

cs)t3(g, hr, s) for each xg ∈ Xg, bh ∈ Bh, dr ∈ Dr, cs ∈ Cs, g, h, r, s in G. Consider the map
w : bh ⊗ cs 7→ 1⊗ (bhcs) ∈ 1⊗ Chs, consequently,

w((agbh)⊗ cs) = 1⊗ ((agbh)cs) = 1⊗ (ag(bhcs)t3(g, h, s)) = w(ag ⊗ (bhcst3(g, h, s)))
for each ag ∈ Bg, bh ∈ Bh, cs ∈ Cs, g, h, and s in G. Therefore B ⊗B C is meta-
isomorphic with C, because the algebras B and C are unital (see Definition 4). The latter
meta-isomorphism and identities (90) imply assertion (88). Then x⊗ (dv) = (x(dv))⊗ 1
for each x ∈ X, d and v in D; (xg ⊗ dh)⊗ vs = xg ⊗ (dh ⊗ vs)t3(g, h, s) for each xg ∈ Xg,
dh ∈ Dh, vs ∈ Ds, g, h and s in G. On the other hand, (x1)d = x(1d) = xd for each x ∈ X
and d ∈ D. Thus XD is a right D-module meta-isomorphic with X.

3. Extensions of Nonassociative Algebras with Metagroup Relations

Definition 5. Let B and D be A-algebras, where A = T [G] is a metagroup algebra and T is
a commutative associative unital ring. Let also f : B → D be an A-exact homomorphism (see
Definition 1). For a right D-module X we put xgbh := ξ(xg) f (bh) for each xg ∈ Xg and bh ∈ Bh,
g and h in G, where ξ(xg) := ((xg)/g) f1(g), (xg)/g = xe with xeg = xg, xe ∈ Xe, because
Xg = Xeg. This provides on X a structure of a right B-module denoted by XB, because f1 : G → G
is an automorphism of the metagroup G. In particular, if B is a subalgebra in D and f is an
embedding, then the correspondence X → XB is called a restriction functor.
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Lemma 6. Let B, C, and D be unital A-algebras and let D be a subalgebra in B, where A = T [G]
is a metagroup algebra and T is a commutative associative unital ring. Let also X be a right
D-module and Y be a right B-module. Then there exist A-exact homomorphisms νX : X → (XB)D
of right D-modules and µY : (YD)

B → Y of right B-modules such that
(91) νX(x) = x⊗ 1B for each x ∈ X and
(92) µY(y⊗ 1B) = y for each y ∈ Y.
Moreover, if X is a (C, D)-bimodule, then νX is an A-exact homomorphism of left C-modules;

if Y is a (C, B)-bimodule, then µY is an A-exact homomorphism of left C-modules.

Proof. The A-algebras B, C, and D are unital, consequently, there are natural embeddings
of A into them A ↪→ A1B, etc. Evidently formula (91) defines a homomorphism of T -
modules. Then νX(xd) = (xd) ⊗ 1B = x ⊗ d = (x ⊗ 1B)d = νX(x)d for each x ∈ X
and d ∈ D by Lemma 5 and Theorem 8. Thus νX is an A-exact homomorphism of right
D-modules.

For a (C, D)-bimodule X formula (91) means that νX is an A-exact homomorphism of
left C-modules.

Let η : YD × B → Y be a mapping such that η(y, b) = yb for each y ∈ Y and b ∈ B.
Apparently the mapping η is T -bilinear and G-balanced (see Definition 1). Therefore there
exists a homomorphism of T -modules µY : YD

⊗
D B→ Y such that µY(y⊗ b) = yb for each

y ∈ Y and b ∈ B. By virtue of Lemma 5 and Remark 2 µY is an A-exact homomorphism of
right B-modules. If Y is a (C, B)-bimodule, then evidently µY is an A-exact homomorphism
of left C-modules, since µY,1|A1C = id|A1C .

Definition 6. Let X be a (B, B)-bimodule, where B is an A-algebra, A = T [G] (see
Definitions A3 and A5). Let X× X 3 (u, v) 7→ uv ∈ X be a mapping such that

(93) u(v + w) = uv + uw and (v + w)u = vu + wu and (bu)v = b(uv) and (ub)v =
u(bv) and (uv)b = u(vb)
for all u, v, w in X, b ∈ T ;

(94) (ugvh)ws = t3(g, h, s)ug(vhws) and ugvh ∈ Xgh and
(95) (xsvh)ug = t3(s, h, g)xs(vhug) and (ugxs)vh = t3(g, s, h)ug(xsvh) and
(ugvh)xs = t3(g, h, s)ug(vhxs) and ugxs ∈ Xgs and xsug ∈ Xsg and
(96) (xsyh)ug = t3(s, h, g)xs(yhug) and
(ugxs)yh = t3(g, s, h)ug(xsyh) and
(yhug)xs = t3(h, g, s)yh(ugxs)

for every g, h, s in G, ug ∈ Xg, vh ∈ Xh, ws ∈ Xs, xs ∈ Bs, yh ∈ Bh. Then X will be called a
multiplicative two-sided B-module.

We use the following notation for left ordered products: {u1}l(1) = u1, {u1u2}l(2) =
u1u2, {u1 . . . uk+1}l(k+1) = {u1 . . . uk}l(k)uk+1 for each k ≥ 2 and u1, . . . , uk+1 in X. If
{u1 . . . uk}l(k) = 0 for each u1, . . . , uk in X, where k ≥ 2, then the multiplicative two-sided
B-module X will be called k-nilpotent.

If M and X are two multiplicative two-sided B-modules and φ : M → X is an additive
mapping φ(u + v) = φ(u) + φ(v) which is left T -homogeneous φ(bu) = bφ(u) or right T -
homogeneous φ(ub) = φ(u)b for each b ∈ T , u and v in M, then φ is called left T -linear or right
T -linear respectively. If φ is left and right T -linear, then it is called T -linear. If φ is T -linear and
φ(ugvh) = ζ(g, h)φ(ug)φ(vh) with ζ(g, h) ∈ T [C(G)]− {0} for each g and h in G, ug ∈ Mg,
vh ∈ Mh, then φ will be called a metahomomorphism.

Remark 3. A multiplication in a multiplicative two-sided B-module X induces a homomorphism
µ ∈ HomT (X⊗B X, X) satisfying the following conditions:

(97) µ(u⊗ (v + w)) = µ(u⊗ v) + µ(u⊗ w) and
µ((v + w)⊗ u) = µ(v⊗ u) + µ(w⊗ u) and
µ((bu)⊗ v) = bµ(u⊗ v) and µ((ub)⊗ v) = µ(u⊗ (bv)) and
µ(u⊗ (vb)) = µ(u⊗ v)b for all u, v, w in X, b ∈ T ;
(98) µ(µ(ug ⊗ vh)⊗ ws) = µ((t3(g, h, s)ug)⊗ µ(vh ⊗ ws)) and
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(99) µ((xsvh)⊗ ug) = µ((t3(s, h, g)xs)(vh ⊗ ug)) and
µ((ugxs)⊗ vh) = µ((t3(g, s, h)ug)⊗ (xsvh)) and
µ((ug ⊗ vh)xs) = µ((t3(g, h, s)ug)⊗ (vhxs))

for every g, h, s in G, ug ∈ Xg, vh ∈ Xh, ws ∈ Xs, xs ∈ Bs.
Vice versa, each homomorphism satisfying conditions (97)–(99) induces on the two-sided

B-module X a multiplicative structure. As Be := B⊗T Bop usually denotes the enveloping algebra
of B, Bop notates the opposite algebra of B.

Next we take an A-algebra C and its A-subalgebra B and an ideal X in C, where A = T [G]
is a metagroup algebra. Then a multiplication in C provides a structure of a two-sided B-module
X× B 3 (u, b) 7→ ub, B× X 3 (b, u) 7→ bu and a multiplication (X× X) 3 (u, v) 7→ uv ∈ X
in X for each u and v in X, b ∈ B. This construction makes of X a multiplicative two-sided
B-module.

Proposition 6. Assume that X is a multiplicative two-sided B-module with B being a unital
A-algebra, where A = T [G] is a metagroup algebra. Put X

⊎
B to be X⊕ B as an A-module and

define a multiplication in it by:
(100) (w, b)(v, a) = (wv + bv + wa, ba) for each w, v in X, a and b in B. Then
(101) X

⊎
B is the A-algebra with a unit element (0, 1);

(102) B′ := {(0, b) : b ∈ B} is a subalgebra in X
⊎

B and a mapping (0, b) 7→ b is an
A-exact isomorphism of A-algebras B′ with B;

(103) X′ := {(w, 0) : w ∈ X} is an ideal in X
⊎

B and a mapping (w, 0) 7→ w is an A-exact
isomorphism of multiplicative two-sided B-modules X′ with X;

(104) X
⊎

B = X′ ⊕ B′.

Proof. Since B is the A-algebra and 1 ∈ B (see Definition 6), then X also has a structure
of a two-sided A-module. Evidently, A is embedded into X

⊎
B as (0, A). Therefore, the

multiplication rule (100) shows X
⊎

B is the A-algebra with the unit element (0, 1). Then
from (100) and (101) assertions (102) and (103) evidently follow, since (0, b)(0, a) = (0, ba);
(w, 0)(v, a) = (wv + wa, 0) ∈ X′ and (w, b)(v, 0) = (wv + bv, 0) ∈ X′ for each w, v in X and
a, b in B. The assertion (104) follows from (100), (102), and (103).

Proposition 7. Let C be an A-algebra and let B be its unital A-subalgebra, where A = T [G] is a
metagroup algebra. Let X be an ideal in C and C = X⊕ B as two-sided A-modules. Then X is a
multiplicative two-sided B-module relative to operations induced from C and C = X

⊎
B.

Proof. From the conditions of this lemma and Remark 3 it follows that X is a multiplica-
tive two-sided B-module. A mapping p : (w, b) 7→ w + b for each w ∈ X and b ∈ B
provides an isomorphism between two-sided A-modules X

⊎
B and C. Indeed, C = X⊕ B

and p((w, b)(v, a)) = p(wv + bv + wa, ba) = wv + bv + wa + ba = (w + b)(v + a) =
p(w, b)p(v, a) for each w and v in X, a and b in B. Then p((wg, bg)(vh, ah)) = (wg +
bg)(vh + ah) = p(wg, bg)p(vh, ah) for each wg ∈ Xg, vh ∈ Xh, bg ∈ Bg, ah ∈ Bh, g, and h
belonging to G. Therefore this mapping p is an isomorphism of C with X

⊎
B.

Definition 7. If the conditions of Proposition 7 are satisfied, then C is called a splitting extension
of X with the help of B.

If an algebra C over a metagroup algebra A = F[G] is such that Ce is finite dimensional over a
field F, then it will be said that C is finite dimensional over A, where e is a unit element in G.

Remark 4. A direct sum X⊕ B of two A-algebras may usually be not a splitting extension, because
B may usually be not a subalgebra in X⊕ B, since 1X⊕B 6= 1B if X 6= 0.

Proposition 8. Let C be an A-algebra finite dimensional over A, where A = F[G] is a metagroup
algebra over a field F.

(105) If B = C/J(C) is separable, then a radical J(C) is a nilpotent multiplicative two-sided
B-module and C is isomorphic with J(C)

⊎
B.
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(106) If B is a semisimple A-algebra, X is a nilpotent multiplicative two-sided A-module and
C = X

⊎
B, then X is isomorphic with a radical J(C) and B is isomorphic with C/J(C).

Proof. This follows from Theorem 3 in [13] and Propositions 6 and 7 above.

Theorem 9. Let B and D be two unital A-algebras such that B and D also have structure of
separable algebras over a field F, where A = F[G] is a metagroup algebra. Let X and M be a
multiplicative two-sided B-module and D-module respectively.

(i). If X
⊎

B is isomorphic with M
⊎

D as F-algebras and two-sided A-modules, then there exists
an A-exact isomorphism of A-algebras θ : B→ D and an A-exact isomorphism of two-sided
A-modules ψ : X → M such that
(107) ψ(uy) = ψ(u)ψ(y),
(108) ψ(bu) = θ(b)ψ(u),
(109) ψ(ub) = ψ(u)θ(b),
(110) (ψ(vg)ψ(uh))ψ(ys) = t3(g, h, s)ψ(vg)(ψ(uh)ψ(ys)) and
(111) (θ(ag)θ(bh))θ(cs) = t3(g, h, s)θ(ag)(θ(bh)θ(cs))
for each u and y in X and b ∈ B; g, h, and s in G; vg ∈ Xg, uh ∈ Xh, ys ∈ Xs; ag ∈ Bg,
bh ∈ Bh, cs ∈ Bs.

(ii). If θ : B → D is an A-exact isomorphism of A-algebras and ψ : X → M is an A-exact
isomorphism of two-sided A-modules such that conditions (107)–(111) are satisfied, then
X

⊎
B is A-exact isomorphic with M

⊎
D.

Proof. (i). The metagroup algebra A is embedded into the unital A-algebras B and D
as A1B and A1D correspondingly, where 1B is the unit element in B. Let f : X

⊎
B →

M
⊎

D be an isomorphism of X
⊎

B with M
⊎

D as F-algebras and A-exact as two-sided
A-modules. By virtue of Proposition 8 f (X) = f (J(X

⊎
B)) = J(M

⊎
D) = M and

M
⊎

D = J(M
⊎

D)⊕ f (B). In view of Proposition 8 (1− w)D = f (A)(1− w) for some
w ∈ M such that (1− w) has a left inverse (1− w)l and a right inverse (1− w)r, that is
(1− w)l(1− w) = 1 and (1− w)(1− w)r = 1.

On the other hand, we have
X

⊎
B = ∑g∈G(X

⊎
B)g

(see Definition A3). Note that Xe and Me is a multiplicative two-sided Be-module and
De-module respectively, since X, M, B and D are G-graded, Be and De are F-algebras,
Xe and Me are F-bimodules. From Definition 6 it follows that Xe, Me, Be, and De are
associative relative to the multiplication and addition. In view of Proposition 7 (X

⊎
B)e

is isomorphic with (M
⊎

D)e as F-algebras. From Proposition 8 it follows that that there
exists v ∈ Me with left and right invertible 1− v such that (1− v)De = fe(Be)(1− v),
where fe : (X

⊎
B)e → (M

⊎
D)e denotes an isomorphism of the F-algebras. From

f (gu) = g f (u) and f (ug) = f (u)g for each u ∈ (X
⊎

B)e and g ∈ G it follows that
fe is the restriction of f on (X

⊎
B)e. Since v ∈ Me, then the left and right inverses

of 1 − v coincide, because Me is the associative multiplicative two-sided Be-module.
Therefore ((1 − v)−1g)(1 − v) = (1 − v)−1(g(1 − v)) for each g ∈ G. We put H =
(1 − v)−1G(1 − v) := {h : h = (1 − v)−1g(1 − v), g ∈ G}. Hence H and G are iso-
morphic metagroups. This implies that (1− v)D(1− v)−1 is isomorphic with f (B) as the
F-algebras and two-sided A-modules, since

f ((agbh)cs) = ( f (ag) f (bh)) f (cs) = t3(g, h, s) f (ag)( f (bh) f (cs)) = t3(g, h, s) f (ag(bhcs))
for each ag ∈ Bg, bh ∈ Bh, cs ∈ Bs and g, h, s in G. Hence there exists and isomorphism
φ : X

⊎
B → M

⊎
D as F-algebras and as two-sided A-modules, φ is A-exact such that

(1− v)D(1− v)−1 = φ(B), because v ∈ Me and e ∈ C(G) ⊆ C(A).
We put a morphism θ : B → D as algebras over F and two-sided A-modules to be

(1− v)θ(b) = φ(b)(1− v) for each b ∈ B. Let a morphism ψ : X → M as F-linear spaces
and two-sided A-modules be given by the following equality (1− v)ψ(u) = φ(u)(1− v)
for each u ∈ X. Then (1− v)(X

⊎
B)e and (X

⊎
B)e are isomorphic as F-linear spaces, since

(1− v)−1[(1− v)(X
⊎

B)e] = [(1− v)−1(1− v)](X
⊎

B)e.
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Therefore (1− v)(X
⊎

B) and X
⊎

B are isomorphic as F-linear spaces and as two-
sided A-modules they are A-exact isomorphic, since [(1− v)(X

⊎
B)e]g = (1− v)(X

⊎
B)g

for each g ∈ G, because t3(h, e, g) = e for each h and g in G. Hence ψ is the isomorphism of
X and M as F-linear spaces and as two-sided A-modules ψ is A-exact. Then

(1− v)ψ(uy) = (φ(u)φ(y))(1− v) and
(1− v)(ψ(u)ψ(y)) = (1− v)(ψ(u)(1− v)−1((1− v)ψ(y))) = (φ(u)φ(y))(1− v)

for each u and y in X. This implies Identity (107). Then from
θ(αa + βb) = α(1− v)−1φ(a)(1− v) + β(1− v)−1φ(b)(1− v) and
θ(ab) = (1 − v)−1(φ(a)φ(b))(1 − v) = ((1 − v)−1φ(a)(1 − v))((1 − v)−1φ(b)(1 −

v)) = θ(a)θ(b)
for each a and b in B and α and β in F it follows that θ : B→ D is the isomorphism of them
as the F-algebras and as two-sided A-modules the isomorphism θ is A-exact, because φ is
A-exact and v ∈ Me. Then

ψ(bu) = (1− v)−1φ(bu)(1− v) = ((1− v)−1φ(b)(1− v))((1− v)−1φ(u)(1− v))
for each b ∈ B and u ∈ X, consequently, Identity (108) is satisfied. Similarly is verified
Identity (109).

For each vg, uh, ys, ag, bh, cs satisfying the conditions of this theorem we infer that
(ψ(vg)ψ(uh))ψ(ys) = [((1− v)−1φ(vg)(1− v))((1− v)−1φ(uh)(1− v))]
((1− v)−1φ(ys)(1− v)) = (1− v)−1φ((vguh)ys)(1− v)
= t3(g, h, s)((1− v)−1φ(vg)(1− v))[((1− v)−1φ(uh)(1− v))
((1− v)−1φ(ys)(1− v))] = t3(g, h, s)ψ(vg)(ψ(uh)ψ(ys)) and
(θ(ag)θ(bh))θ(cs) = [((1− v)−1φ(ag)(1− v))((1− v)−1φ(bh)(1− v))]
((1− v)−1φ(cs)(1− v)) = (1− v)−1φ((agbh)cs)(1− v) =
t3(g, h, s)((1− v)−1φ(ag)(1− v))[((1− v)−1φ(bh)(1− v))
((1− v)−1φ(cs)(1− v))] = t3(g, h, s)θ(ag)(θ(bh)θ(cs)),
since v ∈ Me. Thus identities (110) and (111) are satisfied.
(ii). Vice versa if θ : B→ D is an A-exact isomorphism of A-algebras and ψ : X → M

is an A-exact isomorphism of two-sided A-modules such that conditions (107)–(111) are
satisfied, then φ(u

⊎
b) = ψ(u)

⊎
θ(b) for each u ∈ X and b ∈ B provides an A-exact

isomorphism of the A-algebras X
⊎

B and M
⊎

D.

Theorem 10. Assume that B and D are A-algebras, where A = T [G] is a metagroup algebra,
T is an associative commutative unital ring. Assume also that D is a subalgebra of B. Then the
following conditions are equivalent:

(112) B = D⊕Y, where Y is a (D, D)-bisubmodule in B,
(113) for each A-algebra C and each (C, D)-bimodule X a homomorphism νX : X → (XB)D

is a splitting injective A-exact homomorphism of (C, D)-bimodules.

Proof. (112)⇒ (113). From (112) it follows that there exists an A-exact homomorphism
f : B → D such that f |D = idD, where idD(d) = d for each d ∈ D. Therefore a mapping
p : X × B → X such that p(x, b) = x f (b) for each x ∈ X and b ∈ B is A-exact and G-
balanced (see Definition 1). Thus there exists a homomorphism w : XB → X such that
w(x⊗ b) = x f (b) for each x ∈ X and b ∈ B. Evidently w is an A-exact homomorphism of
left D-modules and an A-exact homomorphism of right D-modules, since f is the A-exact
homomorphism of right D-modules. On the other hand, 1B = 1D ∈ D, consequently,
wνX(x) = w(x⊗ 1B) = x1B = x for each x ∈ X (see Lemma 6). This means that νX is an
A-exact splitting injective homomorphism.

Vice versa (113) implies (112) by taking in particular C = D and X = D considered
as (D, D)-bimodules.

4. Conclusions

In this article new specific tensor products of nonassociative algebras and modules
induced over nonassociative algebras with metagroup relations are investigated (see also
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Formulas (1)–(113) above). In particular, their splitting extensions also are scrutinized.
Their radicals and separability are studied. For this purpose, their cohomologies are used.

The obtained results can be used for further studies of the structure of nonassocia-
tive algebras, modules, and homological complexes over them, their tensor products,
ideals, extensions, homomorphisms. On the other side, smashed twisted products and
smashed twisted wreath products of metagroups or groups were described in [14]. They
also provide tools for the construction of a wide class of nonassociative algebras, mod-
ules, and homological complexes over them with metagroup relations. With the help
of the results presented above it also is possible to continue investigations of nonasso-
ciative generalized Cayley–Dickson algebras cohomologies, noncommutative geometry,
algebraic geometry, operator theory, spectral theory, PDEs, their applications in the sciences,
etc. [6,8,10,15,18,20,22,24–26]. It can also be applied in information technologies for the
classification of flows of information [27,28].
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Appendix A

For the convenience of readers we review definitions from previous works [12,13,20].
Though a reader familiar with them may skip these definitions.

Definition A1. Let G be a set with a single-valued binary operation (multiplication) G2 3
(a, b) 7→ ab ∈ G. Then we can define the following:

(A1) Com(G) := {a ∈ G : ∀b ∈ G, ab = ba};
(A2) Nl(G) := {a ∈ G : ∀b ∈ G, ∀c ∈ G, (ab)c = a(bc)};
(A3) Nm(G) := {a ∈ G : ∀b ∈ G, ∀c ∈ G, (ba)c = b(ac)};
(A4) Nr(G) := {a ∈ G : ∀b ∈ G, ∀c ∈ G, (bc)a = b(ca)};
(A5) N(G) := Nl(G) ∩ Nm(G) ∩ Nr(G);
(A6) C(G) := Com(G) ∩ N(G).
We will say that G is a metagroup if it satisfies conditions (A7)–(A11):
(A7) for each a and b in G there is a unique x ∈ G with ax = b and
(A8) a unique y ∈ G exists satisfying ya = b.
These elements are denoted by x = a \ b and y = b/a correspondingly.
(A9) There exists a neutral (i.e., unit) element eG ∈ G, which will be shortly denotes by e

instead of eG;
(A10) ∀a ∈ G, ∀b ∈ G, ∀c ∈ G one has (ab)c = t3(a, b, c)a(bc),

where t3(a, b, c) ∈ Ψ, Ψ ⊂ C(G);
(A11) Ψ is a subgroup of C(G).
If moreover the following is satisfied:
(A12) ∀a ∈ G, ∀b ∈ G, ab = t2(a, b)ba, where t2(a, b) ∈ Ψ,

we will say that G is a central metagroup.

Definition A2. Let T be an associative unital ring and A a (T , T )-bimodule. Then A is said
to be a T -algebra if it is endowed with a map A× A → A which is right and left distributive
a(b + c) = ab + ac, (b + c)a = ba + ca and satisfies the following identities r(ab) = (ra)b,
(ar)b = a(rb), (ab)r = a(br), s(ra) = (sr)a, and (ar)s = a(rs) for any a, b, and c in A, r, and
s in T .

Let G be a metagroup. Let also the algebra A consist of all formal sums s1a1+. . .+snan,
where s1,. . . ,sn are in T and a1,. . . ,an belong to G, where n is an arbitrary natural number,
n ∈ N = {1, 2, 3, . . . }. Suppose that A satisfies the following conditions (A13)–(A15):

(A13) sa = as for each s ∈ T and a ∈ G;
(A14) s(ra) = (sr)a for each s and r in T , and a ∈ G;
(A15) r(ab) = (ra)b, (ar)b = a(rb), (ab)r = a(br) for each a and b in G, r ∈ T .
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Then A will be denoted by T [G] and called a metagroup algebra over T .
Henceforth, the ring T will be supposed commutative, if something other will not be specified.

Definition A3. Suppose thatR is a ring, which may be nonassociative relative to the multiplica-
tion. Suppose also that M is an additive commutative group. If there exists a mappingR×M→ M,
R×M 3 (a, m) 7→ am ∈ M such that a(m + k) = am + ak and (a + b)m = am + bm for each
a and b in R, m and k in M, then M will be called a generalized left R-module or shortly: left
R-module or left module overR.

IfR is a unital ring and 1m = m for each m ∈ M, then M is called a left unital module
overR, where 1 denotes the unit element in the ringR. Symmetrically is defined a right
R-module.

If M is a left and rightR-module, then it is called a two-sidedR-module or a (R,R)-
bimodule. If M is a leftR-module and a right S-module, then it is called a (R,S)-bimodule.
For the unital ring the module will be supposed unital, if something else will not be outlined.

A two-sided module M over R is called cyclic, if an element y ∈ M exists such that
M = R(yR) = {s(yp) : s, p ∈ R} and

M = (Ry)R = {(sy)p : s, p ∈ R}.
A non null module (left or right or two-sided) M overR is called simple if it does not

contain proper nontrivial (left or right or two-sided respectively) submodules overR. A
module (left or right or two-sided) M overR is called semisimple, if it is a direct sum of its
simple (left or right or two-sided respectively) submodules overR.

Take a metagroup algebra A = T [G] and a two-sided A-module M, where T is a
commutative associative unital ring (see Definition A2). Let M have the decomposition
M = ∑g∈G Mg as a two-sided T -module, where Mg is a two-sided T -module for each
g ∈ G, G is a metagroup, and let M satisfy the following conditions:

(A16) hMg = Mhg and Mgh = Mgh,
(A17) (bh)xg = b(hxg) and xg(bh) = (xgh)b and bxg = xgb,
(A18) (hs)xg = t3(h, s, g)h(sxg) and (hxg)s = t3(h, g, s)h(xgs) and
(xgh)s = t3(g, h, s)xg(hs);
(A19) (bc)x = b(cx), (bx)c = b(xc), (xb)c = x(bc)

for every h, g, s in G, b and c in T and xg ∈ Mg.
Then a two-sided A-module M satisfying the above conditions will be said to be

smashly G-graded. Shortly it will be said that M is G-graded. Henceforth for a nonzero
module with the nontrivial metagroup G we consider a nontrivial G-gradation for which
there exists g 6= e in G such that Mg 6= Me, if something other will not be specified. In
particular, if the sum is direct M =

⊕
g∈G Mg, then we will say that M is directly G-graded.

Similarly are defined G-graded left and right A-modules. Henceforward, it will
be said shortly “an A-module” instead of “a G-graded A-module”, if A = T [G] is the
metagroup algebra.

If P and N are left R-modules and a homomorphism γ : P → N is such that
γ(ax) = aγ(x) for each a ∈ R and x ∈ P, then γ is called a leftR-homomorphism. Right
R-homomorphisms for rightR-modules are defined analogously. For two-sidedRmod-
ules a left and rightR-homomorphism is called anR-homomorphism.

For left R-modules M and N by HomR(M, N) is denoted a family of all left R-
homomorphisms from M into N. A similar notation is used for a family of all
R-homomorphisms (or right R-homomorphisms) of two-sided R-modules (or right R-
modules correspondingly). If a ringR is specified it may be written shortly as a homomor-
phism instead of anR-homomorphism.
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