@ axioms

Article

On Some New Ostrowski—-Mercer-Type Inequalities for
Differentiable Functions

Ifra Bashir Sial 1, Nichaphat Patanarapeelert 2, Muhammad Aamir Ali 3>*©, Hiiseyin Budak *
and Thanin Sitthiwirattham 5*

check for
updates

Citation: Sial, LB.;
Patanarapeelert, N.; Ali, M. A,;
Budak, H.; Sitthiwirattham, T.

On Some New Ostrowski-Mercer-
Type Inequalities for Differentiable
Functions. Axioms 2022, 11, 132.
https:/ /dx.doi.org/10.3390/
axioms11030132

Academic Editor: Christophe

Chesneau

Received: 6 February 2022
Accepted: 8 March 2022
Published: 14 March 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://

creativecommons.org/licenses /by /
4.0/).

School of Mathematics Science, Jiangsu University, Zhenjiang 212114, China; ifrabashir92@gmail.com
Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology

North Bangkok, Bangkok 10800, Thailand; nichaphat.p@sci.kmutnb.ac.th

Jiangsu Key Laboratory for NSLSCS, School of Mathematical Sciences, Nanjing Normal University,

Nanjing 210023, China

Department of Mathematics, Faculty of Science and Arts, Diizce University, Diizce 86120, Turkey;
hsyn.budak@gmail.com

Mathematics Department, Faculty of Science and Technology, Suan Dusit University, Bangkok 10300, Thailand
*  Correspondence: mahrmuhammad.aamir@gmail.com (M.A.A.); thanin_sit@dusit.ac.th (T.S.)

Abstract: In this paper, we establish a new integral identity involving differentiable functions, and
then we use the newly established identity to prove some Ostrowski-Mercer-type inequalities for
differentiable convex functions. It is also demonstrated that the newly established inequalities are
generalizations of some of the Ostrowski inequalities established inside the literature. There are also
some applications to the special means of real numbers given.
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1. Introduction

The study of different forms of fundamental inequalities has been the subject of
great interest for well over a century. A variety of mathematicians, interested in both
pure and applied mathematics, have carried out studies regarding this topic. One of the
various mathematical basic discoveries of A. M. Ostrowski [1] is the following classical
integral inequality:

Theorem 1. REf. [1] Let f : [1,00) — R as a differentiable function on (1,00) and f € L{a, b],
where a,b € [1,00) witha < b. If |[f'(x)| < M, then we have following inequality:

IPAY a2
’f(x)—bia/abf(t)dt‘g(b]‘_/fa) Gogtb-n M

The Ostrowski inequality has applications in quadrature, the theory of probability
and optimization, stochastics, statistics, information and the theory of integral operators.
During the last few years, many researchers have obtained new results on Ostrowski-type
inequalities for bounded variation functions; see, for example, [2-6]. To date, a significant
number of research papers and books have been published on Ostrowski inequalities and
their numerous applications.

In the literature, the well-known Jensen inequality [7] states that if f is a convex
function on an interval containing points x1, xp, ..., X,;, then

J= =
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In convex functions theory, the Hermite-Hadamard inequality is very important and
was discovered by C. Hermite and ]. Hadamard independently (see also [8], and [9] (p.137))

where f : I — Ris a convex function over I and a,b € I with a < b. In the case of concave
mappings, the above inequality is reversed.

The following variant of the Jensen inequality, known as the Jensen-Mercer inequality,
was demonstrated by Mercer [10]:

Theorem 2. Ref. [10] states that if f is a convex function on [a, b], then the following inequality is
true:

f(a +b— i‘{)\ﬂ@) < f(ﬂ) +f(b) — i‘{/\]f(x]) 4)
j= j=
forall x; € [a,b] and A; € [0,1] with )E A =1
j=t

In [11], the idea of the Jensen—Mercer inequality is used by Kian and Moslehian, and
the following Hermite-Hadamard-Mercer inequality was demonstrated:

f<a+b—x;y> < yix/xyf(a—i—b—t)dt 5)
< fla+b—x)+f(a+b—y)
- 2
f(x)+£f(y)

< flay+ fo) - F LY

where f is a convex function on [4, b]. After that, in [12-14], the authors used the fractional
integral operators and proved some Hermite-Hadamard-Mercer-type inequalities for con-
vex functions. Niezgoda gave the generalized Mercer’s results for convex functions in [15].
In [16], Wang et al. used the well-known Riemann-Liouville fractional integrals and estab-
lished some new Hermite-Hadamard-Mercer-type inequalities. In [17], Butt et al. proved
some new Hermite-Hadamard-Mercer inequalities for harmonically convex functions
and in [18], the authors used h-convexity and proved some new Hermite-Hadamard-
Mercer inequalities for Caputo-Fabrizio fractional integrals. For generalized fractional
Hermite-Hadamard-Mercer inequalities, one can consult [19].

Inspired by these ongoing studies, we develop some new Ostrowski-type inequalities
by using the Jensen—Mercer inequalities for differentiable convex functions.

2. Ostrowski—Mercer Inequalities

New Ostrowski-Mercer inequalities are obtained for differentiable convex functions
in this section. For this, we first give a new integral identity that will serve as an auxiliary
to produce subsequent results for advancement.

Lemma 1. Let f : [a,b] — R be a differentiable function on (a,b). If f € L|a,b], then for all
x € [uq,up), ug, up € [a,b] and t € [0,1], the following equality is satisfied:

(x—ul)z/ol tf’(x+a—(tu1+(1—t)x))dt—(uz—x)zfol ' (x+b— (tuy+ (1— t)x))dt  (6)

X+a—1uy b
(x— ) f(x+a—uy)+ (1 — x)f(x+b—up) — U F(b)dt + f(t)dt].

a x+b—uy
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Proof. It is enough to remember that

I = (x—ul)z/oltf’(x—i-a—(tu1+(1—t)x))dt @)

—(up — x)? /01 tf'(x +b— (tug + (1 — t)x))dt
= (x— u1)211 — (up — x)zlz.

Using the integration by parts, we obtain the equalities

1
L = /Otf’(x+a—(tu1+(1—t)x))dt (8)
_ f(x+a—u1)_ 1 x+a—uy
R e ARGL
and
1
L = /Otf’(x+b—(tu2+(1—t)x))dt )
_ flxtb—u) 1 b
- ety / L0LE

We obtain the resulting equality (6) by placing the equalities (8) and (9) in (7). O

Remark 1. If we set uy = a and uy = b and in Lemma 1, then we obtain Lemma 1, as proved
in [20].

Theorem 3. We assume that the conditions of Lemma 1 hold. If the mapping |f'| is convex on
[a,b], then we have the following inequality

b

X+a—uq
(x—ul)f(xﬂ—ul)+(u2—x)f(x+b—u2)—Ua F(H)dt+

2= w220 ()] + 31 (@) 2| ()}
(= ) 2| £ (x)| + 3| (0)] = 2| (w2)]}]-

foa]| o

x+b—uy

IN

Proof. Taking the modulus in Lemma 1 and from the Jensen—Mercer inequality, we have
the inequality

b

(=) b=+ = v - = [ [ i [ soa]|

x+b—uy

1

< (x—u1)2/0 HF (x+a— (tug + (1— t)x))|dt
+(u2—x)2/01t|f’(x+b—(tu2+(1—t)x))|dt

< Gomwl? [P+ @] ol )|~ (@ -] (o)l

=02 [+ @) = 1 )] - (1= 0] )
= [ w2 )] + 30 @) 2] )]}
(2 = )P {2[f ()] +3]1 (0)] ~ 2 (w2)]}

which ends the proof. O
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<

<

IN

IN

IN

Corollary 1 (Ostrowski-Mercer Inequality). In Theorem 3, if we choose |f'(t)| < M for all
t € [a, b], then we have the following Ostrowski—-Mercer inequality

b

(¥ — 1) f(x +a— 1) + (12 — X) f(x + b — 11z) — [/am“l F(tdt+ f(t)dt] ’ 1)

X+b—uy

%((x —u)* + (uz — x)2>.

Proof. The result can be easily obtained using |f'(x +a — (tu; + (1 —t)x))| < M and
Iff(x+b—(tup+ (1 —t)x))| <M. O

Remark 2. If we consider uy = a and up = b in Corollary 1, then inequality (11) is reduced to (1).

Remark 3. If we consider uy = a and up = b in Theorem 3, then we obtain Theorem 3, established
in [20].

Theorem 4. We assume that the conditions of Lemma 1 hold. If the mapping | f'|7, g > 1 is convex
on [a, b], then we have the following inequality

b

X+a—uq
(x—u)f(x+a—up)+ (up —x)f(x+b—uy) — Ul f(t)dt + f(t)dt” (12)

x+b—uy

e (@ @ - )
2(1+p)*

==

+( =) (| @) +2|f ®)" - |/ (u2)]")
where%+%:1.

Proof. From Lemma 1 and Holder’s inequality, we have the inequality

b

X+a—uq
(x — ) f(x+a—up) + (12 — x) f(x + b — up) — Ua F(H)dt + f(t)dt” (13)

x+b—uy

(x—ulz/ tf (x+a— (tug + (1 —t)x))|dt

+(u2—x2/ tH ' (x+b— (tup + (1 — t)x))|dt

(x—u1)2(/0 tpdt> (/ |f'(x+a— (tug + (1 —t)x ]"dt)l
—l—(uz—x)z(/()ltpdt) (/ |f/(x+b—(tup+ (1 —t)x yth)l.

From the Jensen-Mercer inequality, we have the inequality

b

(x—up) f(x + 0 —1y) + (uz — ) f(x + b — uz) — [ [ e f(t)dt] \

X+b—up
1

e (v % (L e+ @ = ol - - t>!f’<x>!ﬂdt)}’

(1 x)2</01 tht)'l’ (/01 (F @ +1F®)] =t (w)| - (1 - t)yf'(x)w]dt) !

. [(x —u(|f)]7+2]f (@)] = | f )]
2(1+p)r

= =



Axioms 2022, 11,132 50f9

1
=017+ 2170 - )|
which finishes the proof. [

Corollary 2. In Theorem 4, if we choose |f'(t)| < M for all t € [a, b], then we have the following
Ostrowski—Mercer inequality

b

X+a—uq
(x—u)f(x+a—uy)+ (ua—2)f(x+b—up) — U Fb)dt+ f(t)dt} ‘

(i/ll) ((x —u1)* + (up — x)z)-
p

Proof. The result can be easily obtained by using |f'(x +a — (tu; + (1 —t)x))| < M
and |[f'(x+b—(tup+ (1—t)x))| <M. O

x+b—uy

<

==

Remark 4. If we consider uy = a, up = b and x = x in Corollary 2, then we obtain Theorem 3, as
proved in [21] for s = 1.

Remark 5. If we consider w1y = a, up = b and x = x in Theorem 4, then we have the
following inequality
' bfa/ fit dt‘
1 1 1
=@ @) + o=@l o).
2(b —a)(1+p)»

Theorem 5. We assume that the conditions of Lemma 1 hold. If the mapping | f'|7, g > 1 is convex
on [a,b], then we have the following inequality

b

X+a—iuq
(= ) flx+a— 1) + (g — ) f(x + b — ) — [ [ e f(t)dt] \ 14)

< ;[(x_ul)z(z|f'<x>|q+3|f'<;>|q—2|f'<u1>|q>ﬂ

X+b—up

a2t (AL QAL O —2|f’(u2)|>q}

Proof. From Lemma 1 and the well-known power mean inequality, we obtain the inequality

(=)= + =S v - = [ [ i [ soa]|
< (x—u1)2</01tdt>13] (/ Hf/(x+a— (tug + (1—t)x }th)
+(up — x)° (./0'1 tdt)lg] (/ tHf (x+b— (tup+ (1 —t)x “hit) 1.
From the Jensen—-Mercer inequality, we obtain
(x = ) f(x+a— 1) + (g = x)f(x + b —11z) - [ [ s ib f(t)dt] \
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IN

IN

IN

IN

<x—u1>2(/oltdt)l_(/olt\f |q+\f’(ﬂ)\q—f\f’(m)\q—(1—f)|f’(X)\qdf>;

+(u2—x)2< Oltdt)l q( T+ [f (b)) —t|f’(u2)|‘4—(1—t)|f’(x)|ﬂdt)q

{u—ulf(z'f'(x)q+3f’<3a>| —2|f’(u1)|q>"

1
2

+(up — x

1
) 21 (I + 31/ (0)| — 2|f(u2)| " ?
3

which finishes the proof. [

Remark 6. In Theorem 5, if we choose |f'(t)| < M for all t € [a,b], then we recapture the
inequality (11).

Remark 7. If we consider u1 = a and uy = b in Theorem 5, then we have the following inequality

00 52 [ o

U 2 (AP HIF @I o 2AF @+ @)
Jiai( )it )|

<
= 20b-a 3 3

Remark 8. In the previous inequalities, by setting x = #, one can acquire multiple midpoint-type

inequalities. Furthermore, it leaves the specifics to the interested reader.

Theorem 6. We assume that the conditions of Lemma 1 hold. If the mapping |f'|7, ¢ > 1is
concave on [a, b], then we have the following inequality

b

(x— ) f(x +a — 1) + (g — 2)f(x+ b — 1) — [/;+”_”1f(t)dt+
1 [(xul)zf’(2a+;ul>’+(uzx)z ,<2b+;u2>H

X+b—up

s a9

1

(1+p)r
1,1

where;%—;—l.

Proof. From Lemma 1 and Holder’s inequality, we have the inequality

b

X+a—uq
(x—u)f(x+a—u)+ (ug—x)f(x+b—up) — Ul f(t)dt + f(t)dt” (16)

x+b—uy
(x—ulz/ tHf (x+a— (tug + (1 —t)x))|dt

+(u2—x2/ tH ' (x+b— (tug + (1 — t)x))|dt

(x—u1)2</0 t%) (/ |f'(x+a— (tug + (1 —t)x ]”’alt)1
—l—(uz—x)z(/oltpdt) (/ |f/(x+b—(tup+ (1 —t)x yth)l.
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Since |f’|7 is concave mapping, therefore, from inequality (5), we have

/01|f’(x+a—(tu1+(1—t)x)>!thg f’(x+a— ”12+x> = f’(m;”l)‘ (17)
and
AWﬁw+ba@+(10@MMu§f(x+bW;“>q=_FCm+;_W)M (18)

We obtain the resulting inequality (15) by placing the inequalities (17) and (18) in (16). O

Remark 9. If we consider uy = a and uy = b in Theorem 6, then we obtain Theorem 5, as proved
in [21] fors = 1.

3. Application to Special Means

For arbitrary positive numbers a,b (a # b), we consider the means as follows:

1. The arithmetic mean

A(a,b) = a—;b'

2. The generalized logarithmic mean

pp+1 _ gpt+l %
Ly(ab) = {(17_”)(}7"‘1)} , p € R\{-1,0}.

3.  The identric mean

1
1{pv\b-a .
I(a,b) = E(?ﬂ) JfaFEb oo,
a, ifa=0",
Proposition 1. Let a, b > 0, then we have the following inequality

|(x —u1) (2A(x,a) — u1)" + (up — x) (2A(x,b) — up)"
—[(x —up)Li(x+a—wuy,a)+ (up —x)LE(b,x + b — up)]|

< %((x — u1)2 + (up — x)z).

Proof. The result can be directly obtained by applying Corollary 1 to the convex function
f(x) = x", x > 0. There, some information is omitted. [

Proposition 2. Let a,b > 0, then we have the following inequality
[In(2A(x,0) 1)) + In(2A(x, b) — )=
- {hl I(x+a—u,a)*™ 4 InI(b,x+b— uz)(”zf")} ’

20x—w1)*  2(up —x)?
20+ x — uq 2b+x—u2

1

<

(1+P)%

Proof. The result can be directly obtained by applying Theorem 6 to the concave function
f(x) = Inx. There, some information is omitted. [
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4. Conclusions

In this work, we established some new Ostrowski-Mercer-type inequalities for differ-
entiable convex functions. Moreover, we proved that the newly established inequalities
are strong generalizations of comparable results in the literature. Finally, we gave some
applications to the special means of real numbers using the newly established inequalities.
It is an interesting and novel problem that upcoming researchers may prove some new
inequalities for co-ordinated convex functions using the techniques of this paper in their
future work.
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