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Abstract: For two n×m real matrices X and Y, X is said to be majorized by Y, written as X ≺ Y if
X = SY for some doubly stochastic matrix of order n. Matrix majorization has several applications in
statistics, wireless communications and other fields of science and engineering. Hwang and Park
obtained the necessary and sufficient conditions for X, Y to satisfy X ≺ Y for the cases where the rank
of Y = n− 1 and the rank of Y = n. In this paper, we obtain some necessary and sufficient conditions
for X, Y to satisfy X ≺ Y for the cases where the rank of Y = n− 2 and in general for rank of Y = n− k,
where 1 ≤ k ≤ n− 1. We obtain some necessary and sufficient conditions for X to be majorized by
Y with some conditions on X and Y. The matrix X is said to be doubly stochastic majorized by Y if
there is S ∈ Ωm such that X = YS. In this paper, we obtain some necessary and sufficient conditions
for X to be doubly stochastic majorized by Y. We introduced a new concept of column stochastic
majorization in this paper. A matrix X is said to be column stochastic majorized by Y, denoted as
X �c Y, if there exists a column stochastic matrix S such that X = SY. We give characterizations of
column stochastic majorization and doubly stochastic majorization for (0, 1) matrices.

Keywords: matrix majorization; doubly stochastic majorization; multivariate majorization

1. Introduction

Let Rn denote the set of all real column vectors with n coordinates. A real matrix A is
called non-negative, denoted by A ≥ 0, if all its entries are non-negative. Let Ωn denote the
set of all n× n doubly stochastic matrices, i.e., real non-negative matrices, with each row
sum and column sum equal to 1. For a vector (a1, a2, . . . , an)T ∈ Rn, let (a[1], a[2], . . . , a[n])T

denote the vector obtained from (a1, a2, . . . , an)T by rearranging the coordinates in nonin-
creasing order. For vectors x = (x1, x2, . . . , xn)T , y = (y1, y2, . . . , yn)T ∈ Rn, x is said to be

majorized by y, denoted by x ≺ y, if
k
∑

i=1
x[i] ≤

k
∑

i=1
y[i] for all positive integers k such that

1 ≤ k ≤ n.
It is well known that for two vectors x, y ∈ Rn, x ≺ y iff x = Sy for some S ∈ Ωn. In [1],

the polytope of doubly stochastic matrices D for which x = Dy was investigated. The
notion of vector majorization is naturally extended to that of matrix majorization as follows.
For two matrices X and Y in Rn×m, X is said to be majorized by Y, denoted by X ≺ Y, if
X = SY for some S ∈ Ωn. In [2], a new notion of matrix majorization was introduced, called
weak matrix majorization, where X ≺w Y, if there exists a row stochastic matrix R such
that X = RY. Additionally, relations between this concept and strong majorization (usual
majorization) are considered. In [3], the polytope of row-stochastic matrices R for which
X = RY was investigated and generalizations of the results for vector majorization were
obtained. The notion of matrix majorization was referred to as multivariate majorization
in [4]. In [4], it was proved that, if X ≺ Y for X, Y ∈ Rn×m, then XC ≺ YC for any real
matrix C with m rows.
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For X = [x1, x2, . . . , xm], Y = [y1, y2, . . . , ym] ∈ Rn×m, if X ≺ Y, then certainly xj ≺ yj
for all j = 1, 2, . . . , m. However, the converse does not hold in general, as is easily seen with

the matrices X =

[ 1
2 1
1
2 0

]
and Y =

[
1 1
0 0

]
.

For x, y ∈ Rn, let Ω(x ≺ y) denote the set of all S ∈ Ωn satisfying x = Sy. The set
Ω(x ≺ y) is known to contain various special types of doubly stochastic matrices [5,6].
While quite a lot of progress has been made in the theory of vector majorization, very little
is known about multivariate majorization. In [7], it is proved that X is majorized by Y if
Xv is majorized by Yv for every real n vector v, under the assumption that [X, e][Y, e]+ is
nonnegative, where e denotes the m-vector of ones and [Y, e]+ denotes the Moore–Penrose
generalized inverse of X.

In [8], a new matrix majorization order for classes (sets) of matrices was introduced,
which generalizes several existing notions of matrix majorization. Matrix majorization
order has several applications in mathematical statistics. Some applications of the ma-
trix majorization were discussed by Marshall, Olkinbarry and Arnold [4] and Tong [9].
Majorization of (0,1) matrices have important applications in classification theory and prin-
cipal/dominant component analysis. Eduard Jorswieck and Holger Boche [10] reviewed
the basic definitions of majorization theory and matrix monotone functions, describing
their concepts clearly with many illustrative examples and then proceeded to show their
applications in wireless communications. In [11], an algorithm was developed for the
problem of finding a low-rank correlation matrix nearest to a given correlation matrix.
The algorithm was based on majorization. The problem of rank reduction of correlation
matrices occurs when pricing a derivative dependent on a large number of assets, where the
asset prices are modeled as correlated log-normal processes. Mainly, such an application
concerns interest rates. Matrix majorization also has applications in the comparison of
eigenvalues [12].

Hwang and Park [13] obtained some necessary and sufficient conditions for X, Y ∈
Rn×m to satisfy X ≺ Y for the case that the rank of Y is any one of 1, n− 1 or n and for
the case that n ≤ 3. In Section 2, we obtain some necessary and sufficient conditions for
X, Y ∈ Rn×m to satisfy X ≺ Y for the case that the rank of Y is n− 2 and for the general
case that the rank of Y is n− k, 1 ≤ k ≤ n− 1. We also obtain some necessary and sufficient
conditions for X to be majorized by Y with some conditions on X and Y. Additionally, we
obtain some necessary and sufficient conditions for X to be doubly stochastic majorized by
Y with some conditions on X and Y.

Dahl, Guterman and Shteyner [14] obtained several results concerning matrix ma-
jorizations of (0, 1) matrices and characterizations for certain matrix majorization orders.
We extend these results for (0, 1) matrices in Section 3. We introduce a new concept of
column stochastic majorization. A matrix X is said to be column stochastic majorized by
Y, denoted as X �c Y, if there exists a column stochastic matrix S such that X = SY. We
obtain some characterizations for column stochastic majorization and doubly stochastic
majorization of (0, 1) matrices.

2. Matrix Majorization

Let In denote the identity matrix of order n. For two real matrices A, B of the same
size, let A ≥ B (resp. A ≤ B) denote that each entry of A is bigger (resp. less) than or equal
to the corresponding entry of B. Let ek denote all l vectors in Rk. For matrix A, let σ(A), rA
and CA denote the sum of all of the entries of A, the row sum vector of A and the column
sum vector of A, respectively. A vector z ∈ Rn is called a stochastic vector if z ≥ 0 and
zTen = 1.
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Theorem 1. Let X = [xij], Y = [yij] = [In−2, y1, y2]
T ∈ Rn×n−2. Then X ≺ Y if the follow-

ing hold.

1. cX = cY.
2. There exist stochastic vectors z1, z2 ∈ Rn such that en − rX = (1 − σ(y1))z1 + (1 −

σ(y2))z2 and X ≥ z1yT
1 + z2yT

2 .

Proof. Let us assume X ≺ Y. Then there exists S ∈ Ωn satisfying X = SY. It is easy to see
that cX = cY. Let S = [A, z1, z2] with z1, z2 ∈ Rn. Then X = SY = A + z1yT

1 + z2yT
2 . Since

A ≥ 0, we obtain that there exist stochastic vectors z1 and z2 such that X ≥ z1yT
1 + z2yT

2 .
Sen = Aen−2 + z1 + z2 = Xen−2 − z1yT

1 en−2 − z2yT
2 en−2 + z1 + z2 = rX + (1− σ(y1))z1 +

(1− σ(y2))z2. Since Sen = en, we obtain that there exist stochastic vectors z1 and z2 such
that en = rX + (1− σ(y1))z1 + (1− σ(y2))z2. Conversely, suppose (1) and (2) hold. For
the vectors z1, z2 in (2), let S = [A, z1, z2], where A = X − z1yT

1 − z2yT
2 . Then SY =

[A, z1, z2][In−2, y1, y2]
T = A + z1yT

1 + z2yT
2 = X. It remains to show that S ∈ Ωn. We see

from (2) that S ≥ 0. From (1) and (2) we have Sen = en. Additionally, eT
n S = [eT

n X −
eT

n z1yT
1 − eT

n z2yT
2 , eT

n z1, eT
n z2] = [cX − yT

1 − yT
2 , 1, 1] = [eT

n−2, 1, 1] = eT
n since cX = cY and

cY = eT
n−2 + yT

1 + yT
2 . This implies that S ∈ Ωn.

The above theorem can be extended to any Y ∈ Rn×n−k of rank n− k.

Theorem 2. Let X = [xij], Y = [In−k, y1, y2, . . . , yk]
T ∈ Rn×n−k, 1 ≤ k ≤ n− 1. Then X ≺ Y

if the following hold.

1. cX = cY.

2. There exist stochastic vectors z1, z2, . . . , zk such that en − rX =
k
∑

i=1
(1− σ(yi))zi and X ≥

z1yT
1 + z2yT

2 + · · ·+ zkyT
k .

Proof. Proof is similar to the proof of Theorem 1 extending to k vectors.

In the next theorem, we give a necessary condition for X � Y, for any two matrices
X, Y ∈ Rn×m.

Theorem 3. Let X, Y ∈ Rn×m. If X � Y then there exists δ1, δ2, . . . , δn−1 ∈ R such that |δi| ≤ 1
for i = 1, 2, 3, . . . , n− 1, δ1 + δ2 + · · ·+ δn−1 ≥ n− 3 and x1j + x2j + · · ·+ xn−1,j − xn,j =
δ1y1j + δ2y2j + · · ·+ δn−1jyn−1j + ynj(n− 2− δ1 − δ2 − · · · − δn−1).

Proof. Suppose X � Y so that X = SY for some S =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
...

...
an1 an2 . . . ann

 ∈ Ωn. Let

[1, 1, . . . ,−1] be a 1× n matrix. Then the j-th element in the row vector [1, 1, . . . ,−1]X =
[1, 1, . . . ,−1]SY is x1j + x2j + · · ·+ xn−1j − xnj = (a11 + a21 + · · · − an1)y1j + (a12 + a22 +
· · · − an2)y2j + · · ·+ (a1n + a2n + · · · − ann)ynj = (a11 + a21 + · · · − (1− (a11 + a21 + · · ·+
an1)))y1j + (a12 + a22 + · · · − (1− (a12 + a22 + · · · − an2))y2j + · · ·+ (a1n−1 + a2n−1 + · · · −
(1− (a1n−1 + a2n−1 + · · · − ann−1)))ynj = (2(a11 + a21 + · · · + an−11) − 1)y1j + (2(a1,2 +
a2,2 + · · · + an−1,2) − 1)y2,j + · · · + (2(a1,n + a2,n−1 + · · · + an−1,n−1) − 1)yn,j = (2(a1,1 +
a2,1 + · · ·+ an−1,1)− 1)y1,j + (2(a1,2 + a2,2 + · · ·+ an−1,2)− 1)y2,j + · · ·+ (2(a1,n + a2,n +
· · · + an−1,n−1) − 1)yn,j. 2(a1n + a2n + · · · + an−1n) − 1 = 2n − 3 − 2(a11 + a12 + · · · +
a1n−1 + · · · + an−11 + an−12 + · · · + an−1n−1). Let 2(a11 + a21 + · · · + an−11) − 1 = δ1,
2(a12 + a22 + · · ·+ an−12)− 1 = δ2, . . . 2(a1n−1 + a2n−1 + · · ·+ an−1n−1)− 1 = δn−1.

This implies x1,j + x2,j + · · ·+ xn−1,j− xn,j = δ1y1,j + δ2y2,j + · · ·+ δn−1yn−1,j + yn,j(2n−
3− 2( 1+δ1

2 + 1+δ2
2 + · · ·+ 1+δn−1

2 )) = δ1y1j + δ2y2j + · · ·+ δn−1yn−1,j + (n− 2− (δ1 + δ2 +
· · ·+ δn))ynj.
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2(a1,j + a2,j + · · ·+ an−1,j)− 1 = δj.
Since 0 ≤ a1,j + a2,j + · · · + an−1,j ≤ 1,−1 ≤ 2(a1,j + a2,j + · · · + an−1,j) − 1 ≤ 1.

⇒ |δj| ≤ 1. ⇒ a11 + a21 + · · · + an−11 + · · · + a1n−1 + a2n−1 + · · · + an−1n−1 + 2− n ≥
0. 1+δ1

2 + 1+δ2
2 + · · ·+ 1+δn−1

2 + 2− n ≥ 0.δ1 + δ2 + · · ·+ δn−1 ≥ n− 3.

Example 1. Let Y =

1 3 1
1 1 1
2 2 3

, S =

1 0 0
0 0.5 0.5
0 0.5 0.5

 and X =

 1 3 1
1.5 1.5 2
1.5 1.5 2

. Then δ1 = 1

and δ2 = 0 are such that they satisfy the required conditions of the theorem and so this example
validates Theorem 3.

The converse of Theorem 3 is not true.

Example 2. Let X =

1.5 1 1
0 1 2
0 2 3

 and Y =

1 3 1
1 1 1
2 2 3

.

Take δ1 = 0.5 and δ2 = 0. Then X, Y and δ1, δ2 satisfy the conditions of the above
theorem but there exists no matrix S such that X = SY. Assume that there exists a matrix

S such that S =

 s11 s12 1− s11 − s12
s21 s22 1− s21 − s22

1− s11 − s21 1− s12 − s22 (s11 + s12 + s21 + s22 − 1)

 Since X = SY

when we multiply the first row of S with the first column of Y, we obtain x11 = 1.5 =
s11 + s12 + (1− s11 − s12)2. This implies that s11 + s12 = 0.5. Similarly for x21, we have
x21 = 0 = s21 + s22 + (1− s21 − s22)2. This implies that s21 + s22 = 1. Similarly for x31, we
have (1− s11 − s21) + (1− s12 − s22) + (s11 + s21 + s12 + s22 − 1)2 = 0. This implies that
s11 = 0, s12 = 0, s21 = 0 and s22 = 0. However, this is a contradiction to s11 + s12 = 0.5.
Therefore, there exists no such matrix S such that X = SY. In the next theorem, we show
sufficient conditions for X � Y, for any two matrices X, Y ∈ Rn×m.

Theorem 4. Let X, Y ∈ Rn×m. A sufficient condition for X to be majorized by Y is that cX = cY
and x1j = x2j = · · · = xn−1j for j = 1, 2, . . . , m and there exists δ1, δ2, . . . , δn−1 ∈ R such that
|δi| ≤ 1 for i = 1, 2, . . . , n− 1, δ1 + δ2 + · · ·+ δn−1 ≥ n− 3 and for j = 1, 2, . . . , m x1j + x2j +
· · ·+ xn−1j − xnj = δ1y1j + δ2y2j + · · ·+ δn−1jyn−1j + ynj(n− 2− δ1 − δ2 − · · · − δn−1).

Proof. Assume that cX = cY and δ1, δ2, . . . , δn−1 ∈ R such that the conditions given in the

theorem hold. Let S =



1+δ1
2(n−1)

1+δ2
2(n−1) . . . 1+δn−1

2(n−1)
1
2 −

1
2(n−1) (δ1 + δ2 + · · ·+ δn−1)

1+δ1
2(n−1)

1+δ2
2(n−1) . . . 1+δn−1

2(n−1)
1
2 −

1
2(n−1) (δ1 + δ2 + · · ·+ δn−1)

...
...

...
...

1+δ1
2(n−1)

1+δ2
2(n−1) . . . 1+δn−1

2(n−1)
1
2 −

1
2(n−1) (δ1 + δ2 + · · ·+ δn−1)

1−δ1
2

1−δ2
2 . . . 1+δn−1

2 1− (n−1)
2 + δ1

2 + δ2
2 + · · ·+ δn−1

2


.

Then S is a doubly stochastic matrix. When we multiply the first row of S and the first
column of Y, we will obtain (1+δ1)

2(n−1)y11 +
(1+δ2)
2(n−1)y21 + · · ·+ 1+δn−1

2(n−1) yn−11 + ( 1
2 −

1
2(n−1) (δ1 +

δ2 + · · · + δn−1)yn1 = y11
2(n−1) +

y21
2(n−1) + · · · +

yn−11
2(n−1) +

yn,1
2(n−1) +

1
2(n−1) (δ1y1,1 + δ2y2,1 +

· · ·+ δn−1yn−11) + yn,1(
1
2 −

1
2(n−1) −

1
2(n−1) (δ1 + δ2 + . . . δn−1)) =

1
2(n−1) (y11 + y21 + · · ·+

yn1) +
1

2(n−1) (δ1y11 + δ2y21 + · · · + δn−1yn−11) + yn1(
1
2 −

1
2(n−1) −

1
2(n−1) (δ1 + δ2 + · · · +

δn−1))
= 1

2(n−1) (x11 + x21 + · · ·+ xn1) +
1

2(n−1) (δ1y11 + δ2y21 + · · ·+ δn−1yn−11) + yn,1(n− 2−
(δ1 + δ2 + · · ·+ δn−1)) =

1
2(n−1) (x11 + x21 + · · ·+ xn1)+ (x11 + x21 + · · ·+ xn−11− xn1)) =

x11. Hence, X = SY. This implies that X is majorized by Y.
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Example 3. Let X =

1 0.5 1
1 0.5 1
2 3 2

 and Y =

−4 −2 −1
4 8 4
4 −2 1

 ∈ R3×3.

Then X and Y satisfy the conditions of Theorem 4 and so X is majorized by Y. Take

δ1 = 0.5 and δ2 = 0. Then S =

0.375 0.25 0.375
0.375 0.25 0.375
0.25 0.5 0.25

 ∈ Ω3 and X = SY. So X is majorized

by Y.
A matrix X is said to be doubly stochastic majorized by Y, denoted by X ≺ds Y, when

there is S ∈ Ωm such that X = YS. In the next theorem, we prove a necessary condition for
X to be doubly stochastic majorized by Y.

Theorem 5. Let X, Y ∈ Rn×m. If X ≺ds Y then there exists δ1, δ2, . . . , δm−1 ∈ R such that
|δi| ≤ 1 for i = 1, 2, . . . , m− 1, δ1 + δ2 + · · ·+ δm−1 ≥ m− 3 and xi1 + xi2 + · · ·+ xim−1 −
xim = δ1yi1 + δ2yi2 + · · ·+ yim(m− 2− δ1 − δ2 − · · · − δm−1).

Proof. Suppose X ≺ds Y so that X = YS for some S = (aij)m×m ∈ Ωm. The j-th element
of the vector X[1, 1, . . . ,−1] = YS[1, 1, . . . ,−1] is xi1 + xi2 + · · · − xim = yi1(2(a11 + a12 +
· · · + a1m−1) − 1) + yi2(2(a21 + a22 + · · · + a2m−1) − 1) + · · · + yim(2(am1 + am2 + · · · +
amm−1)− 1).2(am1 + am2 + · · ·+ amm−1)− 1 = 2m− 3− 2(a11 + · · ·+ am−11 + a12 + a22 +
· · ·+ am−12 + · · ·+ a1m−1 + a2m−1 + · · ·+ am−1m−1). Let 2(a11 + a21 + · · ·+ am−11)− 1 =
δ1, 2(a12 + a22 + · · ·+ am−12)− 1 = δ2, . . . 2(a1m−1 + a2m−1 + · · ·+ am−1m−1)− 1 = δm−1.

This implies, xi1 + xi2 + · · ·+ xim−1− xim = δ1yi1 + δ2yi2 + · · ·+ yim(2m− 3− 2( 1+δ1
2 +

1+δ2
2 + · · · + 1+δm−1

2 )) = δ1yi1 + δ2yi2 + · · · + yim(m − 2− (δ1 + δ2 + · · · + δm−1)). Since
0 ≤ ai1 + ai2 + · · · + aim−1 ≤ 1,−1 ≤ 2(ai1 + ai2 + · · · + aim−1) − 1 ≤ 1. ⇒ |δi| ≤ 1.
amm ≥ 0.⇒ a11 + a12 + · · ·+ a1m−1 + · · ·+ am−1m−1 + 2−m ≥ 0.⇒ 1+δ1

2 + 1+δ2
2 + · · ·+

1+δm−1
2 + 2−m ≥ 0.⇒ δ1 + δ2 + · · ·+ δm−1 ≥ m− 3.

Example 4. Let X =

1 1.5 1.5
3 1.5 1.5
1 2 2

, Y =

1 1 2
3 1 2
1 1 3

 and S =

1 0 0
0 0.5 0.5
0 0.5 0.5

. Then δ1 = 1

and δ2 = 0 are such that they satisfy the required conditions of the theorem and so this example
validates Theorem 5.

The converse of Theorem 5 is not true.

Example 5. X =

1.5 1 1
0 1 2
0 2 3

 and Y =

1 3 1
1 1 1
2 2 3

. Take δ1 = 0.5 and δ2 = 0.

Then X, Y and δ1, δ2 satisfy the conditions of the above theorem, but there
exists no matrix such that X = YS. Assume that there exists a matrix S such that

S =

 s11 s12 1− s11 − s12
s21 s22 1− s21 − s22

1− s11 − s21 1− s12 − s22 (s11 + s12 + s21 + s22 − 1)

. Since X = YS when we mul-

tiply the first row of Y with the first column of S, we obtain x11 = 1.5 = 2s21 + 1. This implies that
s21 = 0.25. Similarly for x21 we have x21 = 1 = 2s22 + 1. This implies that s22 = 0. Similarly, for
x13 we have x13 = 1 = 3− 2s21 − 2s22. This implies that s21 + s22 = 1 which is a contradiction
since s21 = 0.25 and s22 = 0. Therefore, there exists no such matrix S such that X = YS.

Theorem 6. Let X, Y ∈ Rn×m. A sufficient condition for X to be doubly stochastic majorized by Y
is that rX = rY and xi1 = xi2 = · · · = xim−1 for i = 1, 2, . . . , m and there exist δ1, δ2, . . . δm−1 ∈
R such that |δi| ≤ 1 for i = 1, 2, . . . , m− 1, δ1 + δ2 + · · ·+ δm−1 ≥ m− 3 and xi1 + xi2 + · · ·+
xim−1 − xim = δ1yi1 + δ2yi2 + · · ·+ yim(m− 2− δ1 − δ2 · · · − δm−1).
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Proof. The proof is similar to the proof of Theorem 4.

Example 6. Let X =

 1 1 2
0.5 0.5 3
1 1 2

 and Y =

−4 4 4
−2 8 −2
−1 4 1

 ∈ R3×3. Then X and Y satisfy

the conditions of Theorem 6 and so X is doubly stochastic majorized by Y.

Take δ1 = 0.5 and δ2 = 0. Then S =

0.375 0.375 0.25
0.25 0.25 0.5
0.375 0.375 0.25

 ∈ Ω3 and YS = X. So X is

doubly stochastic majorized by Y.

3. Majorization for (0, 1) Matrices

There are two main motivations for the study of matrix majorization for (0, 1) matrices.
First, it is of interest to see if this restriction to the subclass of (0, 1) matrices leads to simpler
characterizations of the majorization order in question. Secondly, (0, 1) matrices are essen-
tial to represent combinatorial objects, and therefore one may look at the meaning of such a
matrix majorization order (each associated with a (0, 1) matrix). In [14] weak, directional
and strong majorizations of (0, 1) matrices are characterized. Matrix majorization on (0, 1)
matrices is investigated.

Definition 1. A matrix X is said to be column stochastic majorized by Y, denoted as X �c Y, if
there exists a column stochastic matrix S such that X = SY.

Theorems 7 and 8 give characterizations of �ds and �c for (0, 1) matrices.

Theorem 7. Let X, Y ∈ Mm,n(0, 1) and X �ds Y. Then for every i = 1, 2, . . . , m the number of
1′s in the i-th column of X is equal to the number of 1′s in the i-th column of Y.

Proof. By assumption, X = YS for some S ∈ Ωn. Then eX = eYS = eY where e =
[1, 1, . . . , 1]t. Since both matrices are (0, 1), the i-th entry of eX is the number of 1′s in the
i-th column of A. The same holds is for Y. Hence the result follows.

Theorem 8. Let X, Y ∈ Mm,n(0, 1). Assume X �c Y, but X �ds Y. Then

(i) There exists S ∈ Ωcolumn
n satisfying X = SY such that S contains a zero row, and for each

row sum ri of S it holds that either ri = 0 or ri ≥ 1.
(ii) If Y does not contain a zero row, then for any S ∈ Ωcolumn

n satisfying X = SY it holds that S
contains a zero row, and for each row sum ri of R it holds that ri = 0 or ri ≥ 1.

(iii) X contains a zero row.

Proof. (i) Suppose X = SY where S is column stochastic. Since S ∈ Ωcolumn
n , the sum of all

elements in S is n. Since by assumption X �ds Y, there is i such that the ith row sum of S,
ri < 1 and there is k such that the kth row sum of S, rk > 1. If ri < 1, then X(i) is a zero
row. Indeed, each element of X(i) is less than or equal to ri < 1. Hence, it is zero. We are
going to modify S in order to construct S′ ∈ Ωcolumn

n such that X = S′Y and S′(i) is zero. Fix

some k such that rk > 1. Suppose sip 6= 0. Since 0 = X(i) = ∑n
j=1 sijY(j) ≥ sipY(p), we obtain

Y(p) = 0. Consider arbitrary x f g = ∑n
h=1 s f hyhg = ∑h 6=p s f pypg + s f pypg = ∑h 6=p s f pypg.

We consider the matrix S′, which is obtained from S by changing skp to skp + sip and sip to
0. We do the same for the rest of the nonzero elements in S(i). Finally, we obtain S′ such

that X = S′Y, S
′
i is a zero row, r′k > 1 and S(l) = S′(l) for l 6= i, k. We repeat this procedure

for every q with 0 < rq < 1. After several such substitutions, we obtain S′ such that for
every q either r′q = 0 or r

′
q ≥ 1. S′ contains a zero row, as required. (ii) Suppose Y does not

contain a zero row. Let i be such that ri < 1. From (i), X(i) is zero. X(i) = ∑n
j=1 sijY(j) and



Axioms 2022, 11, 146 7 of 8

all summands are non-negative, and it follows that sij = 0 for all j. Finally if ri < 1 then
ri = 0 and S contains a zero row. (iii) By (i) we obtain that X′ contains a zero row, and, as a
consequence, A = X′B contains a zero row.

In [14], it was proved that if A �wm B then R(A) ⊆ R(B), but matrix majorization
cannot be described in terms of row/column inclusion. The following examples show that
strong majorization also cannot be described in terms of row/column inclusion. The first
example shows that column inclusion does not follow from X �m Y, and the second one
shows that the converse implication does not hold as well.

Example 7. Let X =

0 0
0 0
1 1

, Y =

1 0
0 1
0 0

, S =

0 0 1
0 1 0
1 0 0

.

Then X = SY, so X �s Y. X(1) =

0
0
1

 /∈ C(Y). Also, Y(1) =

1
0
0

 /∈ C(X).

Example 8. Let X =


1 1 1
+1 1 1
0 0 1
0 0 1

 and Y =


1 1 1
0 1 1
1 0 1
0 0 1

. Then eX = eY and R(X) ⊆ R(Y).

But it is easy to verify that X �m Y. Suppose that there exists S =


a d g j
b e h k

. . .

. . .

 such

that X = SY. Since X = SY. Since SY =


a + g a + d a + d + g + j
b + h b + e b + h + e + k

. . .

. . .

 it follows that

a + g = a + d = a + d + g + j = 1. Then d = g = j = 0 and a = 1. For similar reasons, b = 1
and then R is not a row-stochastic matrix.

4. Conclusions

In this paper, we proved some necessary and sufficient conditions for X, Y ∈ Rn×m,
1 ≤ m ≤ n − 1 to satisfy X ≺ Y. We obtain some necessary and sufficient conditions
for X to be majorized by Y with some conditions on X and Y. We also obtained some
necessary and sufficient conditions for X to be doubly stochastic majorized by Y with
some conditions on X and Y. We also obtained some characterizations for majorization of
(0, 1) matrices. Finding necessary and sufficient conditions for general matrix majorization
is difficult and still it is open. Finding necessary and sufficient conditions for doubly
stochastic majorization and strong majorization are the scope of future studies.
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