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Abstract: The nonconvex and nonsmooth optimization problem has been attracting increasing
attention in recent years in image processing and machine learning research. The algorithm-based
reweighted step has been widely used in many applications. In this paper, we propose a new, extended
version of the iterative convex majorization–minimization method (ICMM) for solving a nonconvex
and nonsmooth minimization problem, which involves famous iterative reweighted methods. To
prove the convergence of the proposed algorithm, we adopt the general unified framework based
on the Kurdyka–Łojasiewicz inequality. Numerical experiments validate the effectiveness of the
proposed algorithm compared to the existing methods.
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1. Introduction

In this paper, we consider the following nonconvex and nonsmooth optimization
problem of a specific structure in a n-dimensional real vector space:

min
x∈Rn

F(x) := f (x) + p(x) + h(g(x)), (1)

where f : Rn → R∪{∞} is a proper, lower semicontinuous (l.s.c.), convex and continuously
differentiable function which has the Lipschitz gradient with Lipschitz constant L f , p :
Rn → R ∪ {∞} is a proper, l.s.c. and convex function, g : Rn → Rm is a proper and l.s.c.
function, and h : Image(g)→ R is continuously differentiable. Furthermore, we assume
that the coordinate functions gi of g are convex, and the function h has a strictly continuous
gradient and is coordinate-wise nondecreasing, i.e., h(x) ≤ h(x + λei), where x, x + λei ∈
Image(g) and λ > 0 with i-th standard basis vector ei for i = 1, · · · , m. We also suppose
that F is coercive, closed and definable in an o-minimal structure. Several nonconvex
optimization problems in image processing or signal processing have an objective function
of the form (1). For example, a nonconvex and nonsmooth minimization problem for image
denoising

min
u∈Rn×m

α1

2
‖u− f ‖2

2 + α2‖u− b‖1 + ∑
i

log(1 + |∇u|i)

has the form of the problem (1) whose objective function satisfies all assumptions. Here,
b ∈ Rn×m is an observed noisy image, u is a restored image, and α1, α2 are positive
parameters. The following nonconvex minimization for compressive sensing problem is
also an example of the proposed problem (1):

min
x∈Rn

1
2ρ

n

∑
i=1

log(1 + ρ|x|2i ) +
β

2
‖x‖2

2 +
µ

2
‖Ax− b‖2

2,
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where β, µ, ρ are positive parameters, A is a m× n matrix with m� n, and b is an observed
signal. As we will see in the numerical experiments, we will apply the proposed method to
this application.

Minimizing the sum of a finite number of given functions is an important issue
of mathematical optimization research. For the minimizing of convex functions, many
efficient algorithms were proposed with convergence analysis, such as gradient based
method [1,2], the iterative shrinkage thresholding algorithm [3], proximal point method [4]
and alternating minimization algorithm. On the other hand, it is difficult to prove the
global convergence of an algorithm to solve the nonconvex minimization problem. Nev-
ertheless, several algorithms for solving nonconvex minimization problems have been
developed. Extensions in the nonconvex setting of many first-order algorithms have been
proposed, such as the gradient method, proximal point method [5] and iterative shrinkage
thresholding algorithm [6] for nonconvex optimization. Recently, Attouch et al. [7] ex-
tended the alternating minimization algorithm by adding a proximal term to minimize the
nonconvex function. The iteratively reweighted `1 algorithm [8] was proposed for solving
a nonconvex minimization problem in compressive sensing. The iteratively reweighed
least square method [9] was also developed for the nonconvex `p norm-based model ap-
plied to the compressive sensing problem. Very recently, Ochs et al. [10] extended these
algorithms in a framework of the iterative convex majorization–minimization method
(ICMM) to solve nonsmooth and nonconvex optimization problems and gave the global
convergence analysis.

The Kurdyka–Łojasiewicz (KL) inequality is key when proving the global convergence
of algorithms for nonsmooth and nonconvex optimization problems. A function which
satisfies the KL inequality is called a KL function. Smooth KL functions and nonsmooth
KL functions were introduced in [11–14]. Almost objective functions of the minimization
problem in image processing satisfy the KL inequality, and it is a very useful when we deal
with nonconvex objective functions. Many methods [7,15,16] whose global convergence
was given based on the KL inequality have been proposed. Recently, Ochs et al. [17]
proposed an inertial proximal algorithm by combining forward–backward splitting with an
inertial force. Attouch et al. [18] proposed a general framework for the global convergence
of descent methods for minimizing the KL function. In this paper, we utilize this general
framework for the convergence of the proposed method.

In general, a nonlinear optimization problem does not have a closed-form solution.
Hence, iterative algorithms frequently are used to solve a nonlinear minimization problem.
Several algorithms minimize alternatively a linear approximation of nonlinear differentiable
objective function. This technique is called “linearization”. The linearization technique of
continuously differentiable objective function was applied in many algorithms [3,19,20] to
solve constrained or unconstrained optimization problems.

The ICMM [10] is a popular algorithm for solving the problem (1). In this article, we
propose an extension of the ICMM to solve the nonconvex and nonsmooth minimization
problem (1). The linearization of the convex differentiable function f is considered unlike
the ICMM. This enables the proposed method to deal with more applications. Further
details of applications are given in Section 3. Based on the general framework introduced
in [18], we prove the global convergence of the proposed model. From numerical experi-
ments, we demonstrate the superiority of the proposed method over the existing methods,
which are presented in Section 4.

The rest of this paper is organized as follows. In Section 2, we present the mathematical
preliminary for nonconvex optimization and introduce the ICMM. In Section 3, we propose
an extended version of the ICMM, and the iterative reweighted algorithms, which are
special examples of the ICMM, are also suggested. The global convergence of the proposed
algorithm is proved. In Section 4, numerical experiments are provided for our method,
with comparisons to state-of-the-art methods. Finally, Section 5 summarizes our work.
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2. Background

In this section, we present the mathematical preliminary for our work, and the iterative
convex majorization–minimization method [10] is introduced.

2.1. Mathematical Preliminary

In Section 2.1, we introduce basic mathematical concepts and properties. More details
are given in [21,22].

The concept of the Lipschitz continuity of a function is important in mathematical
optimization theory. In the problem (1), we consider a continuously differentiable function
which is included in a class of functions, namely the function with the Lipschitz gradient.
This class is denoted by C1,1. A continuously differentiable function f : Rn → R has a
Lipschitz gradient with constant L if there exists L ∈ [0, ∞) with

‖∇ f (x)−∇ f (y)‖2 ≤ L‖x− y‖2 for all x, y ∈ Rn.

There is a property for a function with the Lipschitz gradient: If f : Rn → R is a
continuously differentiable function whose gradient is Lipschitz continuous with Lipschitz
constant L f , i.e., f ∈ C1,1, then, for any L ≥ L f , the following inequality holds:

f (x) ≤ f (y) + 〈x− y,∇ f (y)〉+ L
2
‖x− y‖2

2, ∀x, y ∈ Rn. (2)

Now we introduce the generalized subdifferentials for a nonsmooth and
nonconvex function.

Definition 1. For a function f : Rn → R∪ {∞} and a point x̄ ∈ dom f ,

• ω is a regular subgradient of f at x̄, denoted by ω ∈ ∂̂ f (x̄), if

lim inf
x→x̄
x 6=x̄

1
‖x− x̄‖2

( f (x)− f (x̄)− 〈x− x̄, ω〉) ≥ 0.

• v is a (limiting) subgradient of f at x̄, denoted by v ∈ ∂ f (x̄), if there are sequences xν → x̄,
with f (xν)→ f (x̄), vν → v, vν ∈ ∂̂ f (xν).

A trivial property of the subdifferential is that ∂̂ f (x) ⊆ ∂ f (x). Moreover, there are
many important properties of the subdifferential. These properties will be used to prove
the convergence of the proposed method.

Proposition 1 (subgradient properties). Let f : Rn → R∪ {∞} be a function.

1. If f is convex, the regular and limiting subdifferentials are same sets, which is the subdifferen-
tial in the convex analysis:

{ω| f (y)− f (x) ≥ 〈ω, y− x〉, ∀y ∈ Rn}.

2. If f is continuously differentiable on a neighborhood of x̄, then ∂ f (x̄) = {∇ f (x̄)}.
3. If g is a l.s.c. function and f is continuously differentiable on a neighborhood of x̄, then we

can obtain the subdifferential of f + g as follows:

∂̂( f + g)(x) = ∇ f (x) + ∂̂(g)(x), ∂( f + g)(x) = ∇ f (x) + ∂(g)(x).

4. If a proper and l.s.c. function f : Rn → R has a local minimum at x̄, then 0 ∈ ∂̂ f (x̄) ⊆ ∂ f (x̄).
Furthermore, if f is convex, then this condition is also sufficient for a global minimum.

For obtain the global convergence of the proposed algorithm, the objective function in
the problem (1) must be a Kurdyka–Łojasiewicz function.
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Definition 2. A function f : Rn → R ∪ {∞} satisfies the Kurdyka–Łojasiewicz (KL) property
at a point x∗ ∈ dom ∂ f if there exist η ∈ (0,+∞], neighborhood U of x∗, and a continuous and
convex function φ : [0, η)→ R+ which satisfy

(i) φ(0) = 0;
(ii) φ is differentiable in (0, η);
(iii) φ(s) > 0 for all s ∈ (0, η);
(iv) For any x ∈ U ∩ {x ∈ R : f (x∗) < f (x) < f (x∗ + η)},

dist(0, ∂ f (x))φ′( f (x)− f (x∗)) ≥ 1.

A function F : Rn → R∪ {∞} is called Kurdyka–Łojasiewicz (KL) function if F satisfies the
KL property at every point in dom ∂ f .

Although the KL property is a strong condition, many functions are KL functions. The
semialgebraic functions [23] are typical examples of KL functions. The set of semialgebraic
functions involves polynomials, indicator functions of semialgebraic sets [23], and the `2
norm. The compositions, finite sums, and finite products of semialgebraic functions are also
semialgebraic. However, log and exponential functions are not semialgebraic functions.
Recently, a class of definable functions in the log-exp o-minimal structure [24,25] was
proposed, which involves log and exponential functions, and all semialgebraic functions.
Moreover, it is proved that the functions in this class are KL functions. More details of the
log-exp o-minimal structure are given in [24,25].

Lastly, we recall the general framework for an iterative algorithm when the objective
function in an unconstrained minimization problem is a KL function. We consider a
nonconvex unconstrained minimization problem:

min
x∈Rn

F(x), (3)

where F is a l.s.c. and proper function. Attouch et al. [18] suggested a framework for the
convergence of an iterative method to solve the nonconvex minimization problem (3). They
proved that a given algorithm converges when the following three conditions hold: Let
{xk}k∈N be a sequence generated by a given iterative algorithm.

Hypothesis 1 (sufficient decrease condition). There exists a positive value a > 0 such that for
each k ∈ N,

F(xk+1) + a‖xk+1 − xk‖2
2 ≤ F(xk).

Hypothesis 2 (relative error condition). For each k ∈ N, there exists a sequence wk+1 ∈
∂F(xk+1) such that

‖wk+1‖2 ≤ b‖xk+1 − xk‖2,

where b is a fixed positive constant.

Hypothesis 3 (continuity condition). There exists a subsequence {xkj}j∈N and x̃ such that

xkj → x̃ and F(xkj)→ F(x̃), as j→ ∞.

The following theorem is the convergence result, and the proof is given in ([18],
Theorem 2.9).

Theorem 1. Let F : Rn → R∪ {∞} be a proper l.s.c. function. We consider a sequence {xk}k∈N
that satisfies Hypotheses 1–3. If F has the KL property at the cluster point x̃ specified in Hypothesis 3,
then the sequence {xk}k∈N converges to x̄ = x̃ as k goes to infinity, and x̄ is a critical point of F.
Moreover, the sequence {xk}k∈N has a finite length, i.e.,
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∞

∑
k=0
‖xk+1 − xk‖2 < ∞

2.2. Iterative Convex Majorization–Minimization Method

This section recalls the iterative convex majorization–minimization method (ICMM) [10]
for solving the following nonconvex minimization problem:

min
x∈Rn

G(x) := p(x) + h(g(x)), (4)

where G : Rn → R∪ {∞} is proper, l.s.c., and bounded below. The further assumptions are
required; p : Rn → R ∪ {∞} is proper, l.s.c., and convex. g : Rn → X2 is coordinatewise
convex. h : g(X2)→ R∪ {∞} is coordinatewise nondecreasing.

The ICMM to solve this nonconvex problem (4) is a famous iterative algorithm. This
algorithm is an adopted majorization–minimization technique that chooses a suitable
family of convex surrogate functions called majorizers, and it minimizes a convex majorizer
function instead of the objective function G at each iteration. The specific algorithm is
summarized in Algorithm 1.

Algorithm 1 Iterative Convex Majorization–Minimization Method (ICMM).

Initialization Choose a starting point x0 ∈ Rn with G
(
x0) < ∞ and define a suitable

family of convex surrogate functions (hx)x∈Rn such that for all x ∈ Rn, hx ∈ H(x) holds,
where

H(x) :=

q : Im(g)→ R∪ {∞} |

q is proper, convex,
q is nondecreasing on Im(g),

q(g(x)) = h(g(x)),
q(y) ≥ h(y), for y ∈ Im(g)

.

repeat
xk+1 = arg min

x∈Rn
p(x) + hxk

(g(x))

until The algorithm satisfies a stopping condition

The convergence of Algorithm 1 was studied in [10]. Additional conditions are
required for the global convergence of the ICMM. First, h should have a locally Lipschitz
continuous gradient on a compact set B containing all xk, and majorizers hx should have
globally Lipschitz continuous gradients on B for all x ∈ Rn, with a uniform Lipschitz
constant. Another condition is that p + hx ◦ g should be strongly convex, which is a
stronger condition. To show the global convergence of the ICMM, it was proved that
the objective function G satisfies the three Hypotheses 1–3 for any KL function G, which
were introduced in the previous section. Then, Theorem 1 is applied. As examples of the
ICMM, several iteratively reweighted convex algorithms were introduced in [10], such
as the iterative reweighted `1 algorithm, iteratively reweighted tight convex algorithm,
iteratively reweighted Huber algorithm and iteratively reweighted least squares algorithm.

3. Proposed Algorithm
3.1. Proximal Linearized Iteratively Convex Majorization–Minimization Method

In this section, we propose a novel algorithm for solving the nonconvex and nons-
mooth minimization problem (1). The ICMM in Algorithm 1, introduced in the previous
section, can be applied to the problem (1), since f (x) + p(x) is also a proper, l.s.c, convex
function. This yields the following iteration:

xk+1 = arg min
x∈Rn

f (x) + p(x) + hxk
(g(x)). (5)
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In many cases, this problem does not have a closed form solution and we cannot
compute the exact solution of (5). Since the convergence of the ICMM is only guaranteed
under the assumption that the subproblem (5) is solved exactly, it is not applicable to
many problems. To overcome this fatal drawback, an inexact stopping criterion of the
subproblem (5) was also proposed in [26]. Specifically, solving the subproblem (5) requires
an inner algorithm such as the iterative shrinkage thresholding algorithm [27], and fast
iterative shrinkage thresholding algorithm [3]. However, it is often time consuming for
solving a large-scale problem. Therefore, we extend the ICMM by adopting a linearization
technique of f . Here, we consider the linear approximation of f at the k-th iterate xk with
an additional proximal term instead of f (x):

f (x) ≈ f (xk) + 〈∇ f (xk), x− xk〉+ α

2
‖x− xk‖2.

Utilizing this technique, we propose the following minimization of a convex
surrogate function:

xk+1 = arg min
x∈Rn

〈∇ f (xk), x− xk〉+ p(xk) + hxk
(g(x)) +

α

2
‖x− xk‖2

2. (6)

where α >
L f
2 is a proximal parameter. The proposed algorithm is summarized in

Algorithm 2 and it is called as proximal linearized ICMM (PL-ICMM).

Algorithm 2 Proximal Linearized Iteratively Convex Majorization–Minimization Method
(PL-ICMM).

Conditions
• f is differentiable and has Lipschitz gradient with Lipschitz constant L f .
• p is proper, convex, and l.s.c.
• g : Rn → Rm is l.s.c. and convex.
• h : Im(g)→ R is differentiable.
• F is bounded below.

Initialization Choose a starting point x0 ∈ Rn with F(x0) < ∞ and define a suitable
family of convex surrogate functions (hx)x∈Rn such that for all x ∈ Rn, hx ∈ H(x) holds,
where

H(x) :=

q : Im(g)→ R∪ {∞} |

q is proper, convex,
q is nondecreasing on Im(g),

q(g(x)) = h(g(x)),
q(y) ≥ h(y), ∀y ∈ Im(g)

.

repeat
Solve

xk+1 = arg min
x∈Rn

〈∇ f (xk), x− xk〉+ p(x) + hxk
(g(x)) +

α

2
‖x− xk‖2

2.

until The algorithm satisfies a stopping condition.

The proposed method can be regarded as a generalized version of the ICMM and is
more applicable than the ICMM. For examples, the PL-ICMM can be directly applied to the
following minimizations for a regression problem, while the ICMM cannot be applied:

min
x

1
2
‖b− Ax‖2

2 + µ
N

∑
i=1

(|xi|+ ε)q,
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and

min
x

1
2
‖b− Ax‖2

2 + µ
n

∑
i=1

log(1 + |xi|),

where A ∈ Rm×n, b ∈ Rm, ε, µ > 0, and 0 < q < 1.
Many iteratively reweighted algorithms [28–30] are examples of the ICMM, which

use a weighted function appropriately to serve a convex majorizer in the ICMM. A convex
majorizer hxk

has the form hxk
(x) = 〈wxk

, h̄(x)〉 for some given h̄(x). The weight wxk

must be selected such that the function hxk
satisfies the conditions of the class of convex

majorizers. Similar to the ICMM, the PL-ICMM is a general algorithm which includes lots
of iteratively reweighted algorithms. We also introduce proximal linearized versions of
iteratively reweighted algorithms.

Algorithm 3 Proximal linearized iteratively reweighted `1 algorithm (PL-IRL1).

Conditions
• f is differentiable and has Lipschitz gradient with Lipschitz constant L f .
• p is proper, convex, and l.s.c.
• g : Rn → Rm is l.s.c. and convex.
• h : Im(g)→ R is differentiable, concave.
• F is bounded below.

Initialization Choose a starting point x0 ∈ Rn with F(x0) < ∞.
repeat

wxk
= ∇h(g(xk)).

Solve

xk+1 = arg min
x∈RN

〈∇ f (xk), x− xk〉+ p(x) + 〈wxk
, g(x)〉+ α

2
‖x− xk‖2

2.

until The algorithm satisfies a stopping condition

First, we propose proximal linearized iteratively reweighted `1 algorithm (PL-IRL1).
We further assume that the function h is concave on Im(g). For a concave function h, we
can define the limiting supergradient of h as an element of −∂(−h). The set of all limiting
supergradients of h is denoted by ∂̄(h). Since −h is convex and differentiable, ∂̄(h)(x)
on Im(g) has only one element ∇h(x) from the property 2 in Proposition 1. The PI-IRL1
considers the majorizer hxk

(y) = 〈∇h(g(xk)), y − g(xk)〉 and minimizes iteratively the
following convex problem:

min
x
〈∇ f (xk), x− xk〉+ p(x) + 〈∇h(g(xk)), g(x)− g(xk)〉+ α

2
‖x− xk‖2

2.

In ([10], Proposition 2), it was proved that the majorizer 〈∇h(g(xk)), y − g(xk)〉 +
h(g(x)k) is the optimal majorizer of h ◦ g at xk. The PL-IRL1 is summarized in Algorithm 3.

Remark 1. We assume that p is also continuously differentiable and has a Lipschitz continuous
gradient with Lipschitz constant Lp, and h is additively separable, i.e.,

h(y1, · · · , ym) = h1(y1) + · · ·+ hm(ym).

Then, the proximal iteratively reweighted algorithm [31] can be applied to the problem (1),
which is the following iterative algorithm:

xk+1 = arg min
x∈Rn

〈∇ f (xk) +∇p(xk), x− xk〉+ 〈wxk
, g(x)〉+ α

2
‖x− xk‖2

2,
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where wxk
= ∇h(g(xk)), and α >

L f +Lp
2 is a parameter. Hence, our PL-IRL1 can be also regraded

as an extension of the proximal iteratively reweighted algorithm.

Due to the optimality of the iterative reweighted `1 algorithm, it has been used
frequently to solve many applications. However, it cannot be applied to solve the problem
(1) when h is not concave on Im(g), such as h(|y|) = log(1+ |y|2). For nonconcave function
h, the iterative reweighted least square algorithm (IRLS) is well known. For a proximal
linearized version of IRLS, we need more assumptions that h is additively separable on
Rn
+ and each separable function hj(yj) is convex in [0, rj] and concave in [rj,+∞) for some

rj > 0. The IRLS makes use of a convex majorizer

hxk
(y) = 〈wxk

,
1
2

y2〉,

where the weights wxk
are given as wxk

i =
(∇h(y))i

yi
and the the square in y2 means the

coordinatewise square operation. This yields the following iterative algorithm:

min
x
〈∇ f (xk), x− xk〉+ p(x) + 〈wxk

,
1
2

g(x)2〉+ α

2
‖x− xk‖2

2. (7)

The specific algorithm is given in Algorithm 4.

Algorithm 4 Proximal Linearized Iterative Reweighted Least Square Algorithm (PL-IRLS).

Conditions
• f is differentiable and has Lipschitz gradient with Lipschitz constant L f .
• p be proper, convex, and l.s.c.
• g : Rn → Rm be l.s.c. and convex.
• h is additively separable on Rn

+, i.e., h(x1, · · · , xm) = h1(x1) + · · ·+ hm(xm), and
each hj is convex in [0, rj] and concave in [rj, ∞) for some rj > 0.

Initialization Choose a starting point x0 ∈ Rn with F(x0) < ∞.
repeat

y = g(xk).

wxk

i =
(∇h(y))i

yi
, i = 1, · · · , m.

Solve

xk+1 = arg min
x∈Rn

〈∇ f (xk), x− xk〉+ p(x) +
〈

wxk
,

1
2
(g(x))2

〉
+

α

2
‖x− xk‖2

2.

until The algorithm satisfies a stopping condition

The majorization property of PL-IRLS can be also obtained from ([10], Proposition 23),
when h(y) has the form h(y) = log(1 + ρy2) for any ρ > 0.

3.2. Convergence Analysis of the PL-ICMM

First, we prove the partial convergence of the PL-ICMM. From the following proposi-
tion, the sequence {xk} generated by Algorithm 2 induces the convergence of the sequence
{F(xk)} of objective function value at xk.

Proposition 2. Let {xk}k∈N be generated by Algorithm 2, and let hx ∈ H(x) for all x ∈ Rn. If
α > L f , then the sequence {F(xk)}k∈N monotonically decreases and hence converges.
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Proof. Let F be bounded below by L. We can obtain

L ≤ F(xk+1) = f (xk+1) + p(xk+1) + h(g(xk+1)),

≤ f (xk) + 〈∇ f (xk), xk+1 − xk〉+ α

2
‖xk+1 − xk‖2

2 + p(xk+1) + hxk
(g(xk+1)),

≤ f (xk) + p(xk) + hxk
(g(xk)),

= f (xk) + p(xk) + h(g(xk)) = F(xk),

where the second inequality is obtained from the property (2) and the majorization prop-
erty of h{x

k}, the third inequality is obtained from the optimality of the subproblem in
Algorithm 2 and the last inequality is obtained from the majorization property of h{x

k}.
The sequence {F(xk)}k∈N decreases and is bounded from below. Hence, it converges.

We can also obtain the local convergence of the PL-ICMM, given in the
following proposition.

Proposition 3. Let F be coercive. Then the sequence {xk}k∈N is bounded and has at least one
accumulation point.

Proof. By Proposition 2, the sequence {F(xk)} is monotonically decreasing, and therefore
the sequence {xk} is contained in the level set

L(x0) :=
{

x ∈ Rn : F(x) ≤ F(x0)
}

.

From the coercivity of F, we conclude the boundedness of the set L(x0). By the
Bolzano–Weierstrass theorem, {xk}k∈N has at least one accumulation point.

Now, we prove the global convergence of the proposed algorithm. We utilize the
general framework for the convergence of an iterative method, introduced in [18]. Specifi-
cally, we prove the three Hypothesis 1–3 with F(x) = f (x) + p(x) + h(g(x)) in the problem
(1) and the sequence {xk} generated by the PL-ICMM. As a result, we obtain the global
convergence of the PL-ICMM by using Theorem 1. We further assume the following:

• h has a locally Lipschitz gradient on a compact set containing the sequence {g(xk)},
and majorizers hx have a Lipschitz gradient on a compact set containing the sequence
{g(xk)} with a common Lipschitz constant.

To prove the global convergence of the PL-ICMM, we need the following lemma which
shows the subdifferential calculus about the composition and summation of two functions.
The proof of this lemma is provided in ([10], Lemma 1).

Lemma 1. Under the given conditions for PL-ICMM, the following holds for all x∗ ∈ Rn:

1. For all x ∈ Rn,

∂(hx∗ ◦ g)(x) = ∂〈∇hx∗ , g〉(x),

∂(h ◦ g)(x) = ∂〈∇h, g〉(x).

2. For all x ∈ Rn,

∂(p + hx∗ ◦ g)(x) = ∂p(x) + ∂(hx∗ ◦ g)(x),

∂(p + h ◦ g)(x) = ∂p(x) + ∂(h ◦ g)(x).

First we prove the sufficient decreasing condition for the proposed method in the
following proposition.
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Proposition 4 (Sufficient decreasing conditions). Let α >
L f
2 . There exists a > 0 such that for all

k ∈ N
F(xk+1) ≤ F(xk)− a

2
‖xk − xk+1‖2

2.

Proof. From the property (2) of C1,1 functions, we have

f (xk+1)− f (xk) ≤ 〈xk+1 − xk,∇ f (xk)〉+
L f

2
‖xk+1 − xk‖2

2. (8)

By the definition of the subdifferential of a convex function, we can obtain

p(xk+1)− p(xk) ≤ 〈ξp, xk+1 − xk〉, (9)

hxk
(g(xk+1))− hxk

(g(xk)) ≤ 〈ξk
h, xk+1 − xk〉, (10)

where ξp ∈ ∂p(xk+1) and ξk
h ∈ ∂(hxk ◦ g(xk+1)) are subderivatives of p and hxk ◦ g at xk+1,

respectively. Since xk+1 is the minimizer of the problem

arg min
x
〈∇ f (xk), x− xk〉+ p(x) + hxk ◦ g(x) +

α

2
‖x− xk‖2

2,

there exist the subderivatives ξp ∈ ∂p(xk+1) and ξk
h ∈ ∂(hxk ◦ g(xk+1)) by Lemma 1

such that
∇ f (xk) + ξp + ξk

h + α(xk+1 − xk) = 0. (11)

From the facts that h ◦ g(xk+1) ≤ hxk ◦ g(xk+1) and h ◦ g(xk) = hxk ◦ g(xk), we obtain
that for all k ∈ N,

F(xk+1)− F(xk) = ( f (xk+1) + p(xk+1) + h(g(xk+1))

−( f (xk) + p(xk) + h(g(xk)),

≤ ( f (xk+1) + p(xk+1) + hxk
(g(xk+1))

−( f (xk) + p(xk) + hxk
(g(xk)),

≤ 〈ξp, xk+1 − xk〉+ 〈ξk
h, xk+1 − xk〉

+〈xk+1 − xk,∇ f (xk)〉+
L f

2
‖xk+1 − xk‖2

2,

= 〈ξp + ξk
h +∇ f (xk), xk+1 − xk〉+

L f

2
‖xk+1 − xk‖2

2,

= −
2α− L f

2
‖xk+1 − xk‖2

2,

where the third inequality is obtained from Equations (8)–(10) and the last equality is

obtained from the property (11). Let a =
2α−L f

2 . Since α >
L f
2 , a > 0. Therefore, we can

obtain the following result:

F(xk+1) ≤ F(xk)− a
2
‖xk − xk+1‖2

2.

The relative error condition (Hypothesis 2) for the PL-ICMM is proved in Proposition 5.

Proposition 5 (relative error condition). For all k ∈ N, there exists a positive constant C > 0
(independent of k) and ξk+1 ∈ ∂F(xk+1) such that

‖ξk+1‖2 ≤ C‖xk+1 − xk‖2
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Proof. By the optimality of the subproblem of PL-ICMM and Lemma 1, there exist ξp ∈
∂p(xk+1) and ξk

h ∈ ∂(hxk ◦ g(xk+1)), satisfying

∇ f (xk) + ξp + ξk
h + α(xk+1 − xk) = 0.

Let yk = ∇hxk
(g(xk+1)). Then, by Lemma 1 and the property of the subdifferential,

∂(hxk ◦ g)(xk+1) = ∂〈yk, g〉(xk+1) = ∑
i

∂(yk
i gi)(xk+1) = ∑

i
yk

i ∂gi(xk+1).

We can decompose
ξk

h = ∂(hxk ◦ g)(xk+1) = ∑
i

yk
i ηi

for some ηi ∈ ∂gi(xk+1). Similarly, for any subderivative ξh ∈ ∂(h ◦ g)(xk+1), ξh can also
be decomposed as

ξh = ∂(h ◦ g)(xk+1) = ∂〈y, g〉(xk+1) = ∑
i

∂(yigi)(xk+1) = ∑
i

yi∂gi(xk+1),

where y = ∇h(g(xk+1)). Hence, it can be obtained from Lemma 1 that ξk+1 := ∇ f (xk+1) +
ξp + ξh is a subderivative of F at xk+1, i.e., ξk+1 ∈ ∂F(xk+1), where ξh := ∑i yiηi ∈
∂(h ◦ g)(xk+1).

From Proposition 4 and the coercivity of F, the sequence {xk} is bounded. Hence,
we can find a compact set containing this sequence in Rn. The convexity of g implies the
Lipschitz continuity on a compact, convex subset of Rn involving {xk} for all k. From the
further assumption, ∇h and ∇hx are Lipschitz continuous on a compact, convex subset
B of Rm containing g(xk) for all k. Let L1 and L2 be the Lipschitz constants of g and ∇h,
respectively. The common Lipschitz constant of∇hx on B is set to be Lh. By the property of
the local Lipschitz continuity of g, we can obtain

‖ξh − ξk
h‖2 = ‖∑

i
(yi − yk

i )ηi‖2 = ‖∑
i
(y− yk)iηi‖2 ≤ L1‖y− yi‖2. (12)

Since ∇ f (xk) + ξp + ξk
h + α(xk+1 − xk) = 0, the following identities hold:

‖ξk+1‖2 = ‖∇ f (xk+1) + ξp + ξh‖2,

= ‖∇ f (xk+1) + ξp + ξh − (∇ f (xk) + ξp + ξk
h + α(xk+1 − xk))‖2. (13)

From the fact ∇h(g(xk)) = ∇hxk
(g(xk)) and the Lipschitz continuity of ∇h and ∇hxk

,
we have

‖ξk+1‖2 ≤ ‖ξh − ξk
h‖2 + ‖∇ f (xk+1)−∇ f (xk)‖2 + α‖xk+1 − xk‖2,

≤ L1‖y− yk‖2 + ‖∇ f (xk+1)−∇ f (xk)‖2 + α‖xk+1 − xk‖2,

= L1‖y−∇h(g(xk)) +∇hxk
(g(xk))− yk‖2 + ‖∇ f (xk+1)−∇ f (xk)‖2

+ α‖xk+1 − xk‖2,

≤ (Lh + L2)L1‖g(xk+1)− g(xk)‖2 + L f ‖xk+1 − xk‖2 + α‖xk+1 − xk‖2,

≤ ((Lh + L2)L2
1 + L f + α)‖xk+1 − xk‖2,

where the first inequality is obtained from the Equation (13), and the second inequality is
obtained from the Equation (12). Letting C := (Lh + L2)L2

1 + L f + α, the final result can
be obtained.
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Proposition 6 (continuity condition). There exists a convergent subsequence {xkj} of {xk} and
its limit x̄ satisfying

lim
j→∞

xkj = x̄, F(xkj)→ F(x̄) as j→ ∞.

Proof. The boundedness of {xk} implies the existence of a convergent subsequence. Let
{xkj} be a convergent subsequence of {xk} such that xkj → x̄ as j → ∞. We define

sequences ξ
kj
1 ∈ ∂p(xkj) and ξ

kj
2 ∈ ∂(h ◦ g)(xkj) such that

0 = ∇ f (xkj−1) + ξ
kj
1 + ξ

kj
2 + α(xkj − xkj−1).

Let qkj(x) = α
2‖x− xkj−1‖2

2. Clearly, qkj is a convex function. Due to the strict continu-

ity of hxkj−1
◦ g + qkj , ∂(hxkj−1

◦ g + qkj)(x) is bounded. Clearly, {∇ f (xkj)} is bounded from

the continuity of ∇ f . Therefore, {ξkj
1 } is bounded and lim

j→∞
〈ξkj

1 , x̄ − xkj〉 = 0. Using the

facts of the lower semicontinuity of F, the continuity of f and the convexity of p, we obtain

F(x̄) ≤ lim inf
j→∞

F(xkj),

≤ lim sup
j→∞

F(xkj),

≤ lim sup
j→∞

f (xkj) + lim sup
j→∞

p(xkj) + lim sup
j→∞

(h ◦ g)(xkj),

= f (x̄) + lim sup
j→∞

p(xkj) + lim
j→∞
〈ξkj

1 , x̄− xkj〉+ h ◦ g(x̄),

= f (x̄) + lim sup
j→∞

(p(xkj) + 〈ξkj
1 , x̄− xkj〉) + h ◦ g(x̄),

≤ f (x̄) + p(x̄) + h ◦ g(x̄) = F(x̄).

Thus, F(xkj)→ F(x̄) as j→ ∞.

In Propositions 4–6, we show that PL-ICMM satisfies the three alternative Hypotheses 1–3.
Finally, we can obtain the global convergence of the proposed algorithm.

Theorem 2. Let F : Rn → R ∪ {∞} be a proper l.s.c. function. Let the sequence {xk} be
generated by PL-ICMM. If F has the KL property at the cluster point x∗ := lim

j→∞
xkj , then the

sequence {xk}k∈N converges to x∗ ∈ X as k → ∞ and x∗ is a critical point of F. Moreover, the
sequence {xk}k∈N has a finite length, i.e.,

∞

∑
k=0
‖xk+1 − xk‖2 < ∞.

Proof. Propositions 4–6 yield all of the requirements for Theorem 1. According to Theorem 1,
we can obtain the final results.

4. Numerical Experiments and Discussion

In this section, we present the numerical results of the proposed methods, and applica-
tions of the proposed algorithms are provided. We consider compressive sensing in signal
processing. All numerical experiments are implemented with MATLAB R2020b on a 64-bit
Windows 10 desktop with an Intel Xeon(R) 2.40 GHz CPU, with 64 GB RAM.
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4.1. Numerical Results for PL-IRL1

First, we show the performance of PL-IRL1. The main concept of compressive sensing
is that a sparse signal can be recovered from incomplete information, i.e., underdetermined
system Ax = b where m � n. We say that x is k-sparse if x has only k-nonzero elements.
The compressive sensing problem is generally an ill-posed problem, and there exist many
solutions mathematically. To obtain the sparse solution, the basic model for compressive
sensing is called lasso, which has the following form:

min
x∈Rn

‖x‖1 +
µ

2
‖Ax− b‖2

2,

where A ∈ Rm×n with m� n, b ∈ Rm, µ > 0 is a positive regularization parameter. This
problem is a convex relaxation of the following nonconvex `0 minimization problem:

min
x∈Rn

‖x‖0 +
µ

2
‖Ax− b‖2

2,

where ‖x‖0 is defined as the number of nonzero elements of input x. Recently, sparse
signal recovery from an observed signal corrupted impulsive noise was interested in lots
of works [32–35]. For the sparse recovery with impulsive noise, the following `1-fidelity
based convex problem can be often applied:

min
x∈Rn

‖x‖1 +
µ

2
‖Ax− b‖1.

We also consider nonconvex varations of this model for a compressive sensing problem
with impulsive noise as follows:

min
x∈Rn

n

∑
i=1

log(1 + ρ|x|i) +
µ

2
‖Ax− b‖1,

and

min
x∈Rn

n

∑
i=1

|x|i
1 + ρ|x|i

+
µ

2
‖Ax− b‖1,

where ρ > 0 is a positive parameter. Unfortunately the PL-IRL1 can be directly applied
to these nonconvex problems. Hence, we add the auxiliary variable z ∈ Rm and adopt
the penalty technique, leading us to obtain the following nonconvex and nonsmooth
minimization problems:

min
x∈Rn ,z∈Rm

F1(x, z) =
n

∑
i=1

log(1 + ρ|x|i) +
β

2
‖z− Ax + b‖2

2 + µ‖z‖1, (14)

and

min
x∈Rn ,z∈Rm

F2(x, z) =
n

∑
i=1

|x|i
1 + ρ|x|i

+
β

2
‖z− Ax + b‖2

2 + µ‖z‖1, (15)

where β is a positive penalty constant. We set

g(x) = |x|, h(y) = µ
n

∑
i=1

log(1 + ρyi) or
n

∑
i=1

|x|i
1 + ρ|x|i

,

f (x) =
β

2
‖z− Ax + b‖2

2, p(x) =
µ

2
‖z‖1.
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Figure 1. Comparison results of the energy and relative error for PL-IRL1 algorithm applied to
problems (14) and (15). Left: Result for problem (14). Right: Result for problem (15).

Table 1. Numerical results for PL-IRL1 algorithm applied to models (14) and (15).

Model Computing
Time (s) Iterations Energy Relative

Error

Problem (14) mean 5.437452 142 34.1832 3.5502× 10−2

std 0.293790 8 2.1721 4.5748× 10−3

Problem (15) mean 8.960141 236 282.1852 3.1598× 10−2

std 0.563042 15 13.0279 4.2781× 10−3

In this setting, the minimization problems (14) and (15) have the form of problem
(1). Since the objective function of the problem (14) is definable in the log-exp o-minimal
structure, it is a KL function. The objective function of the minimization problem (15)
is a semialgebraic function and it is also a KL function. Moreover, these are closed and
coercive. The function f is a convex, proper and continuously differentiable function, p
is a convex, proper and l.s.c function, and g is a proper and l.s.c function. The function
h : Rn

+ → R is coordinatewise nondecreasing, continuously differentiable and concave.
Since the objective function involves nondifferentiable term µ‖z‖1, the proximal iterative
reweighted algorithm proposed in [31] cannot be applied. Hence, we can apply IRL1 [10]
or PL-IRL1 to solve the given problem (14). The IRL1 or PL-IRL1 applied to the problem
(14) is given as follows:

wk =


ρ

1 + ρ|xk|
for (14)

1
(1 + ρ|xk|)2 for (15)

,

(xk+1, zk+1) = arg min
x,z
〈wk, |x|〉+ β

2
‖z− Ax + b‖2

2 + µ‖z‖1,

(16)
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and
wk =


ρ

1 + ρ|xk|
for (14)

1
(1 + ρ|xk|)2 for (15)

,

(xk+1, zk+1) = arg min
x,z
〈wk, |x|〉+ β〈zk − Axk + b, z− Ax + b〉+ µ‖z‖1

+ δ
2‖x− xk‖2

2 +
δ
2‖z− zk‖2

2,

(17)

respectively. For solving the convex subproblem of IRL1, the optimality conditions are
given as follows:{

0 ∈ ∂(〈wk, |x|〉)(xk+1) + βAT(Axk+1 − b− zk+1),
0 ∈ β(zk+1 − Axk+1 + b) + µ∂(‖z‖1)(zk+1).

(18)

This system (18) of equations does not have a closed form solution. Hence, the IRL1
cannot be employed to solve the problem (14). On the other hand, the optimality conditions
of the convex subproblem of our method are given as{

0 ∈ ∂(〈wk, |x|〉)(xk+1) + βAT(Axk − b− zk) + δ(xk+1 − xk),
0 ∈ β(zk − Axk + b) + µ(‖z‖1)(zk+1) + δ(zk+1 − zk).

(19)

These equations in (19) are separable, and each problem has a closed form solution:

xk+1 = shrink

(
xk − β

δ
AT(Axk − b− zk),

wk

δ

)
,

zk+1 = shrink
(

zk − β

δ
(zk − Axk + b),

µ

δ

)
,

where shrink function is defined as

shrink(a, b) = sign(a) ·max(|a| − b, 0).

To show the convergence of the PL-IRL1 to solve problems (14) and (15), we perform
the numerical experiments in the following setting. The size of A is n = 5000 and m = 2500.
We use an orthonormal Gaussian measurement matrix A whose entries are randomly
chosen by standard Gaussian distribution, and then each column of A is divided by its `2
norm. The number l of nonzero elements of the original sparse signal x0 is fixed at 50, the
locations of nonzero elements are selected randomly, and the values of nonzero elements
are chosen by Gaussian distribution N (0, 102). The observed data b can be calculated by

b = Ax0 + n,

where n is the Gaussian mixture noise that consists of two Gaussian components, which is
one of impulsive noise in signal processing [36]. The measured equation of n is given by

n = νn1 + (1− ν)n2,

where n1 and n2 are Gaussian noise with mean 0 and standard deviation η and qη. The n1
denotes the background noise, and n1 represents the influence of outliers. The parameter
ν ∈ (0, 1) controls the proportion of the large outliers and q > 1 controls the strength of the
outliers. Here, we fixed these parameters at (ν, q, η) = (0.1,

√
10, 0.02).

Since ‖A‖2 = 1, the Lipschitz constant of ∇ f is 2β. So, δ is set to be β + 0.001. The
regularization parameter µ is fixed at 0.2 for (14) or 1.5 for (15); the penalty parameter β
is set to be 2 for (14) or 28 for (15); and the controlling parameter ρ of nonconvexity is set
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to be 0.1. For the stopping condition of our algorithm, we use relative errors over energy
function values, whose specific formulation is given as

Fi(xk)− Fi(xk+1)

Fi(x0)
< 10−7, i = 1, 2.

For this setting, 100 different numerical tests are conducted.
In Table 1, we present the computing time, number of iterations, final energy value,

and relative error. From the relative errors, we can observe that the proposed algorithm
finds an approximated sparse solution with small error for all cases. In Figure 1, we
illustrate the relative errors and energy values Fi(xk) over k iterations. Since the penalty
parameter β for (14) is smaller than that for (15), the computing time of our method for
solving (14) is faster than that for solving (15). We can also see similar results in terms of the
number of iterations. Ultimately, we can show in Figure 1 and Table 1 the fast convergence
of the PL-IRL1, and the final energy value has enough small value.

4.2. Numerical Results for PL-IRLS

Second, we present numerical results of PL-IRLS compared with the iPiano [17]
method for the compressive sensing problem in signal processing. Specifically, the restora-
tion of the sparse signal corrupted by additive Gaussian noise is considered. We apply the
algorithms PL-IRLS and iPiano to the following unconstrained problems:

min
x∈Rn

1
2ρ

n

∑
i=1

log(1 + ρ|x|2i ) +
β

2
‖x‖2

2 +
µ

2
‖Ax− b‖2

2, (20)

and

min
x∈Rn

1
2

n

∑
i=1

|x|2i
1 + ρ(|x|i + c)2 +

β

2
‖x‖2

2 +
µ

2
‖Ax− b‖2

2, (21)

where β, µ are positive parameters, c is a positive constant, and ρ > 0 is the parameter that
controls the nonconvexity of regularizing term. These problems are a nonconvex variations
of lasso, which is a well-known model for compressive sensing. The objective functions of
problems (20) and (21) are definable in the log-exp o-minimal structure, and they are also
close, coercive KL functions. With setting

g(x) = |x|, h(y) =
1

2ρ

n

∑
i=1

log(1 + ρy2
i ) or

1
2

n

∑
i=1

y2
i

1 + ρ(yi + c)2

f (x) =
µ

2
‖Ax− b‖2

2, p(x) =
β

2
‖x‖2

2,

all assumptions in Algorithm 4 are satisfied. Since the norm of the Hessian matrix of h
is bounded on Rn

+, it has also a strictly continuous gradient. The PL-IRLS applied to the
problems (20) and (21) can be obtained by

wk =


1

1 + ρ|xk|2
, for (20)

cρ(|xk|+ c) + 1
(1 + ρ(|xk|+ c))2 for (21)

,

xk+1 = arg min
x

1
2
〈wk, x2〉+ δ

2
‖x− xk‖2

2 + µ〈AT(Axk − b), x− xk〉.

(22)

The subproblem in (22) is a quadratic problem, and its normal equation is given
as follows:

wkx + δ(x− xk) + µAT(Axk − b) = 0.
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It can be rewritten as the following linear equation,

(diag(wk) + δI)x = δxk − µAT(Axk − b),

where diag(wk) is a diagonal matrix whose diagonal entries consist of wk. Since diag(wk) +
δI is a diagonal matrix, this linear equation can be solved exactly and easily. The ma-
jorization property of PL-IRLS is obtained from ([10] , Proposition 23) for any ρ > 0 and
c > 0.

In this experiment, we use partial discrete cosine transform (DCT) matrices A whose
i-th rows are selected from the n× n DCT matrix. We note that the partial DCT matrices
are implicitly stored, i.e., matrix-vector multiplications in Ax or ATx are computed by the
DCT or inverse of DCT. Hence, we can use partial DCT matrices of very large sizes. Here,
the size n, m is fixed at (n, m) = (100,000, 30,000). Then, the original IRLS can be actually
applied to the nonsmooth and nonconvex problem (20), which is given by

wk =


1

1 + ρ|xk|2
, for (20)

cρ(|xk|+ c) + 1
(1 + ρ(|xk|+ c))2 for (21)

,

xk+1 = arg min
x

1
2
〈wk, x2〉+ µ

2
‖Ax− b‖2

2.

(23)

The optimality condition of the subproblem in the method (23) is

wkxk+1 + µAT(Axk+1 − b) = 0,

and it is equivalent to
(diag(wk) + µAT A)xk+1 = µATb.

Since the size of our measurement matrix is very large, finding the exact solution of
this linear equation is time consuming and it seem to be impossible in many cases.

The number l of nonzero elements of the sparse signal x0 is fixed at 2000, and the
locations of nonzero elements are randomly chosen. The values of nonzero elements
are selected from standard Gaussian distribution. The observed data b is measured by
the formula

b = Ax0 + n,

where n is the Gaussian white noise with mean 0 and standard deviation 0.02. The regular-
ization parameters (β, µ) are fixed at (0.001, 1.5) for (20) or (0.001, 0.9) for (21) in all tests.
The values of (ρ, c) are also fixed at (250, 0.001). The proximity parameter δ in our method
is set to be µ

2 + 0.0001 because the `2 norm of a partial DCT matrix is less than or equal to 1.
We present the mean values and standard deviations over 100 trials of computing

time, number of iterations, energy value and relative error in Table 2. In Figure 2, we plot
the relative errors and energy values of PL-IRLS and iPiano over iterations. Figure 2 shows
the convergence of PL-IRLS and iPiano. For the tests, average values of the energy value
and relative error for PL-IRLS are almost same with those for the iPiano. This shows that
PL-IRLS and iPiano recover almost the same sparse solutions. Hence, it demonstrates the
similar performance between PL-IRLS and iPiano in terms of the accuracy and optimization
of energy functional. On the other hand, it can be observed in Table 2 and Figure 2 that
PL-IRLS is faster than iPiano. Therefore, PL-IRLS is superior to iPiano for solving the
nonconvex and nonsmooth problems (20) and (21). In conclusion, PL-IRLS gives better
performance over iPiano.
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Figure 2. Comparison results of the energy and relative errors for PL-IRLS and iPiano applied to
problem (20) and (21). Left: Result for problem (20). Right: Result for problem (21).

Table 2. Numerical results for PL-IRL1 and iPiano applied to the model (20) and (21).

Method Computing
Time (s) Iterations Energy Relative

Error

Model (20)

PL-IRLS mean 3.255264 53 21.2322 8.7822× 10−2

std 0.215043 1 0.2123 2.0949× 10−3

iPiano mean 4.165273 68 21.2323 8.7787× 10−2

std 0.226674 1 0.2123 2.0945× 10−3

Model (21)

PL-IRLS mean 5.588428 90 7.1838 6.1408× 10−2

std 0.775879 11 0.0483 1.4041× 10−3

iPiano mean 8.849843 144 7.1840 6.1389× 10−2

std 0.915589 12 0.0483 1.4009× 10−3

5. Conclusions

In this paper, we proposed proximal linearized reweighted algorithms to solve noncon-
vex and nonsmooth unconstrained minimization problem (1). Based on the general unified
framework, we suggested an extension of the iterative convex majorization–minimization
method for solving (1). Moreover, extended versions of the iteratively reweighted `1 algo-
rithm and iterative least square algorithm were also introduced. The global convergence
of the proposed algorithm was also proved under uncertain assumptions. Lastly, the
numerical results related to compressive sensing demonstrated that the proposed methods
provides the outstanding performance compared with state-of-the-art methods. Recently,
several algorithms were extended by imposing an additional inertial term, resulting in a
faster convergence rate. In future, we will study a proximal linearized reweighted algorithm
with an inertial force.
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Abbreviations
The following abbreviations are used in this manuscript:

l.s.c. Lower semicontinuous
ICMM Iterative convex majorization–minimization method
KL Kurdyka–Łojasiewicz
PL-ICMM Proximal linearized iterative convex majorization–minimization method
PL-IRL1 Proximal linearized iteratively reweighted `1 algorithm
PL-IRLS Proximal linearized iteratively reweighted least square algorithm
IRL1 Iteratively reweighted `1 algorithm
DCT discrete cosine transform
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