
Citation: Alburaikan, A.;

Murugusundaramoorthy, G.; El-Deeb,

S.M. Certain Subclasses of Bi-Starlike

Function of Complex Order Defined

by Erdély–Kober-Type Integral

Operator. Axioms 2022, 11, 237.

https://doi.org/10.3390/axioms

11050237

Academic Editors: Georgia Irina Oros

and Federico G. Infusino

Received: 24 April 2022

Accepted: 16 May 2022

Published: 20 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

Certain Subclasses of Bi-Starlike Function of Complex Order
Defined by Erdély–Kober-Type Integral Operator
Alhanouf Alburaikan 1,† , Gangadharan Murugusundaramoorthy 2,† and Sheza M. El-Deeb 1,3,*,†

1 Department of Mathematics, College of Science and Arts, Al-Badaya, Qassim University,
Buraidah 51911, Saudi Arabia; a.albrikan@qu.edu.sa

2 School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, India; gms@vit.ac.in or
gmsmoorthy@yahoo.com

3 Department of Mathematics, Faculty of Science, Damietta University, New Damietta 34517, Egypt
* Correspondence: shezaeldeeb@yahoo.com or s.eldeeb@qu.edu.sa
† These authors contributed equally to this work.

Abstract: In the present paper, we introduce new subclasses of bi-starlike and bi-convex functions of
complex order associated with Erdély–Kober-type integral operator in the open unit disc and find the
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1. Introduction and Preliminaries

Let A signify the class of functions of the following form:

f (ξ) = ξ +
∞

∑
n=2

anξn (1)

which are analytic in the open unit disc U = {ξ : |ξ| < 1} and normalized as f (0) = 0 and
f ′(0) = 1. Furthermore, let S represent the class of all functions in A that are univalent in
U. Some of the imperative and well-investigated subclasses of the univalent function class
S include (for example) the class S∗(δ) of starlike functions of order δ in U and the class
K(δ) of convex functions of order δ (0 ≤ δ < 1) in U. It is known that if f ∈ S, then there
exists inverse function f−1 because normalization is defined in some neighborhood of the
origin. In some cases, f−1can be defined in the entire U. Clearly, f−1 is also univalent. For
this reason, class Σ is defined as follows.

It is well known that every function f ∈ S has an inverse f−1 defined by the following:

f−1( f (ξ)) = ξ (ξ ∈ U)

and f ( f−1(w)) = w (|w| < r0( f ); r0( f ) ≥ 1/4)

where the following is the case.

f−1(w) = g(w) = w− a2w2 + (2a2
2 − a3)w3 − (5a3

2 − 5a2a3 + a4)w4 + · · · . (2)
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A function f (ξ) ∈ A is said to be bi-univalent in U if both f (ξ) and f−1(ξ) are
univalent in U. Let Σ denote the class of bi-univalent functions in U given by (1). Note that
the following functions:

f1(ξ) =
ξ

1− ξ
, f2(ξ) =

1
2

log
1 + ξ

1− ξ
, f3(ξ) = − log(1− ξ)

with their corresponding inverses

f−1
1 (w) =

w
1 + w

, f−1
2 (w) =

e2w − 1
e2w + 1

, f−1
3 (w) =

ew − 1
ew

are elements of Σ (see [1–3]). Certain subclasses of Σ are explicitly bi-starlike functions
of order δ(0 < δ ≤ 1) denoted by S∗Σ(δ) and bi-convex function of order δ designated by
KΣ(δ) familiarized by Brannan and Taha [1]. For each f ∈ S∗Σ(δ) and f ∈ KΣ(δ), non-sharp
estimates on the first two Taylor–Maclaurin coefficients |a2| and |a3| were established [1,2],
but the problem to find the general coefficient bounds on the following Taylor–Maclaurin
coefficients:

|an| (n ∈ N \ {1, 2}; N := {1, 2, 3, · · · })

is still an open problem (see [1–5]). Several researchers (see [6–11]) have introduced and
explored some inspiring subclasses Σ and they have initiated non-sharp estimates |a2| and
|a3|. For two functions f1 and f2 ∈ A, we say that function f1 is subordinate to f2 if there
exists a Schwarz function ω that is holomorphic in U with property w(0) = 0; |ω(ξ)| < 1
and satisfying f1(ξ) = f2(w(ξ)) This subordination is symbolically written as f1(ξ) ≺
f2(ξ). Lately, Ma and Minda [12]-unified subclasses of starlike and convex functions are
subordinate to a general superordinate function. For this purpose, they considered an
analytic function W with positive real parts in the unit disk U,W(0) = 1,W′(0) > 0, and
W maps U onto a region starlike with respect to 1 and is symmetric with respect to the real
axis. In the consequence, it is assumed that W is an analytic function with positive real part
in the unit disk U, with W(0) = 1,W′(0) > 0, and W(U) is symmetric with respect to the
real axis. Such functions are of the following form.

W(ξ) = 1 + m1ξ + m2ξ2 + m3ξ3 + · · · , (m1 > 0). (3)

The study of operators plays a central role in geometric function theory and its cor-
related fields. In the recent years, there has been an collective importance in problems
concerning the evaluations of various differential and integral operators. For our study,
we recall the Erdély–Kober type ([13] Ch. 5; also see [14–17]) for the integral operator
definition, which shall be used throughout the paper as stated below.

Erdély–Kober Fractional-Order Derivative

Let κ > 0, ς, τ ∈ C be such that R(τ − ς) ≥ 0, an Erdély–Kober type integral operator:

I
ς,τ
κ : A→ A

be defined for R(τ − ς) > 0 and R(ς) > −κ by the following.

I
ς,τ
κ f (ξ) =

Γ(τ + κ)

Γ(ς + κ)

1
Γ(τ − ς)

1∫
0

(1− t)τ−ς−1tς−1 f (ξtκ)dt, κ > 0. (4)
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For κ > 0,R(τ− ς) ≥ 0, R(ϑ) > −κ and f ∈ A of the form (1), we have the following:

I
ς,τ
κ f (ξ) = ξ +

∞

∑
n=2

Γ(τ + κ)Γ(ς + nκ)

Γ(ς + κ)Γ(τ + nκ)
anξn (ξ ∈ U) (5)

= ξ +
∞

∑
n=2

Υς,τ
κ (n)anξn (ξ ∈ U) (6)

where the following is the case.

Υς,τ
κ (n) =

Γ(τ + κ)Γ(ς + nκ)

Γ(ς + κ)Γ(τ + nκ)
(7)

and Γ(n + 1) = n!.
Note that the following is the case.

I
ς,ς
κ f (ξ) = f (ξ)

Remark 1. By fixing the parameters ς, τ, ϑ as mentioned below, the operator Iς,τ
κ includes various

operators studied in the literature as cited below:

1. For ς = β; τ = α + β and κ = 1, we obtain the operator Qα
β f (ξ)(α ≥ 0; β > 1) studied by

Jung et al. [18];
2. For ς = α− 1; τ = β− 1 and κ = 1, we obtain the operator Lα,β f (ξ)(α; β ∈ C ∈ Z0;Z0 =

{0;−1;−2; · · · } studied by Carlson and Shafer [19];
3. For ς = ρ − 1; τ = l and κ = 1, we obtain the operator Iρ,l(ρ > 0; l > 1) studied by

Choi et al. [20];
4. For ς = α; τ = 0 and κ = 1, we obtain the operator Dα(α > 1) studied by Ruscheweyh [21];
5. For ς = 1; τ = n and µ = 1, we obtain the operator In(n > N0) studied in [22,23];
6. For ς = β; τ = β + 1 and κ = 1; we obtain the integral operator Iβ,1 which studied by

Bernardi [24];
7. For ς = 1; τ = 2 and κ = 1, we obtain the integral operator I1,1 = I studied by Libera [25]

and Livingston [26].

The motivation of our present investigation stems from (by Silverman and Silvia [27]
(also see [28])) the seminal paper on bi-univalent functions by Srivastava et al. [8] and
by the recent works by many authors (for example Deniz [7], Huo Tang et al. [6], EI-
Deeb et al. [29–31], and Murugusundaramoorthy and Janani [32]). In the present paper,
we introduce two new subclasses of the function class Σ of complex order ϑ ∈ C\{0},
involving the linear operator Iς,τ

κ given in Definition 1. We find estimates on the coefficients
|a2| and |a3| for functions f ∈ S

ς,τ
Σ,W(ϑ, `). Several related classes are also considered, and

connections to earlier known results are provided. Moreover we obtain the Fekete-Szegő
inequalities for f ∈ S

ς,τ
Σ,W(ϑ, `) and f ∈ K

ς,τ
Σ,W(ϑ, `).

Definition 1. Let f ∈ Σ be assumed by (1) and f ∈ S
ς,τ
Σ,W(ϑ, `), if the subsequent conditions holds:

1 +
1
ϑ

(
ξ(Iς,τ

κ f (ξ))′

I
ς,τ
κ f (ξ)

+

(
1 + ei`

2

)
ξ2(Iς,τ

κ f (ξ))′′

I
ς,τ
κ f (ξ)

− 1

)
≺W(ξ) (8)

and

1 +
1
ϑ

(
w(Iς,τ

κ g(w))′

I
ς,τ
κ g(w)

+

(
1 + ei`

2

)
w2(Iς,τ

κ g(w))′′

I
ς,τ
κ g(w)

− 1

)
≺W(w), (9)

where ϑ ∈ C\{0}; ` ∈ (−π, π]; ξ, w ∈ U and g is given by (2).

Definition 2. Let f ∈ Σ be assumed by (1) and f ∈ K
ς,τ
Σ,W(ϑ, `), if the subsequent conditions

are satisfied:
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1 +
1
ϑ

 [ξ(Iς,τ
κ f (ξ))′ +

(
1+ei`

2

)
ξ2(Iς,τ

κ f (ξ))′′]′

(Iς,τ
κ f (ξ))′

− 1

 ≺W(ξ) (10)

and

1 +
1
ϑ

 [w(Iς,τ
κ g(w))′ +

(
1+ei`

2

)
w2(Iς,τ

κ g(w))′′]′

(Iς,τ
κ g(w))′

− 1

 ≺W(w), (11)

where ϑ ∈ C\{0}; ` ∈ (−π, π]; ξ, w ∈ U and g is given by (2).

Remark 2. For a function f (ξ) ∈ Σ specified by (1) and for ` = π, interpret that Sς,τ
Σ,W(ϑ, `) ≡

S
ς,τ
Σ,W(ϑ) satisfies the ensuing conditions :

[
1 +

1
ϑ

(
ξ(Iς,τ

κ f (ξ))′

I
ς,τ
κ f (ξ)

− 1
)]
≺W(ξ) and

[
1 +

1
ϑ

(
w(Iς,τ

κ g(w))′

I
ς,τ
κ g(w)

− 1
)]
≺W(w)

where ϑ ∈ C\{0}; ξ, w ∈ U and g is given by (2).

Remark 3. A function f (ξ) ∈ Σ specified by (1) and for ` = π, we interpret that Kς,τ
Σ,W(ϑ, `) ≡

K
ς,τ
Σ,W(ϑ) satisfies the ensuing conditions correspondingly:

[
1 +

1
ϑ

(
ξ(Iς,τ

κ f (ξ))′′

(Iς,τ
κ f (ξ))′

)]
≺W(ξ) and

[
1 +

1
ϑ

(
w(Iς,τ

κ g(w))′′

(Iς,τ
κ g(w))′

)]
≺W(w),

where ϑ ∈ C\{0}; ξ, w ∈ U and g is given by (2).

Remark 4. For a function f (ξ) ∈ Σ given by (1) and for ϑ = 1, we note that Sς,τ
Σ,W(ϑ, `) ≡

S
ς,τ
Σ,W(`) and satisfies the following conditions, respectively:(

ξ(Iς,τ
κ f (ξ))′

I
ς,τ
κ f (ξ)

+

(
1 + ei`

2

)
ξ2(Iς,τ

κ f (ξ))′′

I
ς,τ
κ f (ξ)

)
≺W(ξ)

and the following is the case.(
w(Iς,τ

κ g(w))′

I
ς,τ
κ g(w)

+

(
1 + ei`

2

)
w2(Iς,τ

κ g(w))′′

I
ς,τ
κ g(w)

)
≺W(w).

Moreover, Kς,τ
Σ,W(ϑ, `) ≡ K

ς,τ
Σ,W(`) and it satisfies the following conditions: [ξ(Iς,τ

κ f (ξ))′ +
(

1+ei`

2

)
ξ2(Iς,τ

κ f (ξ))′′]′

(Iς,τ
κ f (ξ))′

 ≺W(ξ)

and the following is the case: [w(Iς,τ
κ g(w))′ +

(
1+ei`

2

)
w2(Iς,τ

κ g(w))′′]′

(Iς,τ
κ g(w))′

 ≺W(w),

where ` ∈ (−π, π]; ξ, w ∈ U and g is given by (2).
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2. Coefficient Estimates for f ∈ S
ς,τ
Σ,W(ϑ, `) and f ∈ K

ς,τ
Σ,W(ϑ, `)

For notational simplicity, in the sequel we let the following be the case:

κ > 0,R(τ − ς) ≥ 0, R(ς) > −κ and I
ς,τ
κ f (ξ)

and it is provided by (5):

Υ2 = Υς,τ
κ (2) =

Γ(τ + κ)Γ(ς + 2κ)

Γ(ς + κ)Γ(τ + 2κ)
, (12)

Υ3 = Υς,τ
κ (3) =

Γ(τ + κ)Γ(ς + 3κ)

Γ(ς + κ)Γ(τ + 3κ)
(13)

and the following.
` ∈ (−π, π].

For deriving our main results, we need the following lemma.

Lemma 1. Ref. [33] states that if h ∈ P, then |ck| ≤ 2 for each k, where P is the family of all
functions h analytic in U for which <(h(ξ)) > 0 and the following is the case.

h(ξ) = 1 + c1ξ + c2ξ2 + · · · for ξ ∈ U.

Define the functions p(ξ) and q(ξ) by the following:

p(ξ) :=
1 + u(ξ)
1− u(ξ)

= 1 + ℘1ξ + ℘2ξ2 + · · ·

and the following.

q(w) :=
1 + v(w)

1− v(w)
= 1 + q1w + q2w2 + · · · .

It follows that the following is the case:

u(ξ) :=
p(ξ)− 1
p(ξ) + 1

=
1
2

[
℘1ξ +

(
℘2 −

℘2
1

2

)
ξ2 + · · ·

]

and

v(w) :=
q(w)− 1
q(w) + 1

=
1
2

[
q1w +

(
q2 −

q2
1

2

)
w2 + · · ·

]
.

Then, p(ξ) and q(w) are analytic in U with p(0) = 1 = q(0).
Since u, v : U → U, the functions p(ξ) and q(w) have a positive real part in U, and

|℘i| ≤ 2 and |qi| ≤ 2 for each i.

Theorem 1. Let f given by (1) be in the class Sς,τ
Σ,W(ϑ, `), ϑ ∈ C\{0} and ` ∈ (−π, π]. Then,

we have the following:

|a2| ≤
|ϑ|m1

√
m1√∣∣ϑ[(5 + 3ei`)Υ3 − (2 + ei`)Υ2

2]m
2
1 + (2 + ei`)2(m1 −m2)Υ2

2

∣∣ (14)

and the following.

|a3| ≤
|ϑ|2m2

1
|2 + ei`|2Υ2

2
+

|ϑ|m1

|5 + 3ei`|Υ3
. (15)
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Proof. It follows from (8) and (9) that we have the following:

1 +
1
ϑ

(
ξ(Iς,τ

κ f (ξ))′

I
ς,τ
κ f (ξ)

+

(
1 + ei`

2

)
ξ2(Iς,τ

κ f (ξ))′′

I
ς,τ
κ f (ξ)

− 1

)
= W(u(ξ)) (16)

and

1 +
1
ϑ

(
w(Iς,τ

κ g(w))′

I
ς,τ
κ g(w)

+

(
1 + ei`

2

)
w2(Iς,τ

κ g(w))′′

I
ς,τ
κ g(w)

− 1

)
= W(v(w)), (17)

where

W(u(ξ)) =
1
2

m1℘1ξ +

(
1
2
m1(℘2 −

℘2
1

2
) +

1
4

m2℘
2
1

)
ξ2 + · · · . (18)

and

W(v(w)) =
1
2

m1q1w +

(
1
2
m1(q2 −

q2
1

2
) +

1
4

m2q
2
1

)
w2 + · · · . (19)

For a given f (z) of form (1), a computation shows the following:

z f ′(z)
f (z)

= 1 + a2Υ2z + (2Υ3a3 − a2
2Υ2

2)z
2 + (3a4Υ4 + a3

2Υ3
2 − 3a3a2Υ2Υ3)z3 + · · ·

and
z f ′′(z)
f ′(z)

= 2a2Υ2
2z + (6a3Υ3 − 4a2

2Υ2
2)z

2 + · · · .

Using these in the left hand side of (16) and (17), a simple computation produces
the following:

1 +
1
ϑ

(
ξ(Iς,τ

κ f (ξ))′

I
ς,τ
κ f (ξ)

+

(
1 + ei`

2

)
ξ2(Iς,τ

κ f (ξ))′′

I
ς,τ
κ f (ξ)

− 1

)
= 1 +

1
ϑ
(2 + ei`)Υ2a2ς

+
1
ϑ

[
(5 + 3ei`)Υ3a3 − (2 + ei`)Υ2

2a2
2

]
ς2 + · · ·

and

1 +
1
ϑ

(
w(Iς,τ

κ g(w))′

I
ς,τ
κ g(w)

+

(
1 + ei`

2

)
w2(Iς,τ

κ g(w))′′

I
ς,τ
κ g(w)

− 1

)
= 1− 1

ϑ
(2 + ei`)Υ2a2w

+
1
ϑ

(
[2(5 + 3ei`)Υ3 − (2 + ei`)Υ2

2]a
2
2 − (5 + 3ei`)Υ3a3

)
w2 = · · · .

Thus, by equating the coefficients of ς and ς2 in (16) and (17), we obtain the following:

1
ϑ
(2 + ei`)Υ2a2 =

1
2

m1℘1, (20)

1
ϑ

[
(5 + 3ei`)Υ3a3 − (2 + ei`)Υ2

2a2
2

]
=

1
2

m1(℘2 −
℘2

1
2
) +

1
4

m2℘
2
1, (21)

− 1
ϑ
(2 + ei`)Υ2a2 =

1
2

m1q1, (22)

and

1
ϑ

(
[2(5 + 3ei`)Υ3 − (2 + ei`)Υ2

2]a
2
2 − (5 + 3ei`)Υ3a3

)
=

1
2

m1(q2 −
q2

1
2
) +

1
4

m2q
2
1. (23)

From (20) and (22), we obtain the following:

℘1 = −q1 (24)
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and

8(2 + ei`)2Υ2
2a2

2 = ϑ2m2
1(℘

2
1 + q2

1)

a2
2 =

ϑ2m2
1(℘

2
1 + q2

1)

8(2 + ei`)2Υ2
2

. (25)

Now, by adding (21) and (23) and then using (25), we obtain the following.

a2
2 =

ϑ2m3
1(℘2 + q2)(

4{ϑ[(5 + 3ei`)Υ3 − (2 + ei`)Υ2
2]m

2
1 + (2 + ei`)2(m1 −m2)Υ2

2}
) . (26)

Applying Lemma (1) to the coefficients ℘2 and q2, we have the following.

|a2| ≤
|ϑ|m1

√
m1√∣∣ϑ[(5 + 3ei`)Υ3 − (2 + ei`)Υ2

2]m
2
1 + (2 + ei`)2(m1 −m2)Υ2

2

∣∣ .
Next, in order to find the bound on |a3|, by subtracting (21) from (23) and using (24),

we obtain the following.

4
ϑ

(5 + 3ei`)

2
Υ3(a3 − a2

2) =
m1

2
(℘2 − q2)

a3 = a2
2 +

ϑm1(℘2 − q2)

4(5 + 3ei`)Υ3
. (27)

Substituting the value of a2
2 given by (25), we obtain the following.

a3 =
ϑ2m2

1(℘
2
1 + q2

1)

8(2 + ei`)2Υ2
2

+
ϑm1(℘2 − q2)

4(5 + 3ei`)Υ3
.

Applying Lemma 1 once again to the coefficients ℘1,℘2, q1 and q2, we obtain the
following.

|a3| ≤
|ϑ|2m2

1
|2 + ei`|2Υ2

2
+

|ϑ|m1

|5 + 3ei`|Υ3
.

Theorem 2. Let f given by (1) be in the following class: Kς,τ
Σ,W(ϑ, `), ϑ ∈ C\{0} and ` ∈ (−π, π].

Then, we have the following:

|a2| ≤
|ϑ|m1

√
m1√∣∣ϑ[3(5 + 3ei`)Υ3 − 4(2 + ei`)Υ2

2]m
2
1 + 4(2 + ei`)2(m1 −m2)Υ2

2

∣∣ (28)

and

|a3| ≤
|ϑ|2m2

1
4|2 + ei`|2Υ2

2
+

|ϑ|m1

3|5 + 3ei`|Υ3
. (29)

Proof. By Definition 2,the argument inequalities in (10) and (11) can be equivalently
written as follows:

1 +
1
ϑ

 [ξ(Iς,τ
κ f (ξ))′ +

(
1+ei`

2

)
ξ2(Iς,τ

κ f (ξ))′′]′

(Iς,τ
κ f (ξ))′

− 1

 = W(u(ξ)) (30)
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and

1 +
1
ϑ

 [w(Iς,τ
κ g(w))′ +

(
1+ei`

2

)
w2(Iς,τ

κ g(w))′′]′

(Iς,τ
κ g(w))′

− 1

 = W(v(w)), (31)

and proceeding as in the proof of Theorem 1, we can arrive at the following relations:

1 +
1
ϑ

 [ξ(Iς,τ
κ f (ξ))′ +

(
1+ei`

2

)
ξ2(Iς,τ

κ f (ξ))′′]′

(Iς,τ
κ f (ξ))′

− 1

 = 1 + 2
ϑ (2 + ei`)Υ2a2ς

+
1
ϑ
[3(5 + 3ei`)Υ3a3 − 4(2 + ei`)Υ2

2a2
2]ς

2 + · · ·

and

1 +
1
ϑ

 [w(Iς,τ
κ g(w))′ +

(
1+ei`

2

)
w2(Iς,τ

κ g(w))′′]′

(Iς,τ
κ g(w))′

− 1

 = 1− 2
ϑ
(2 + ei`)Υ2a2w

+
1
ϑ
[3(5 + 3ei`)(2a2

2 − a3)Υ3 − 4(2 + ei`)Υ2
2a2

2]w
2 + · · · .

From (30) and (31), equating the coefficients of ς and ς2, we obtain the following:

2
ϑ
(2 + ei`)Υ2a2 =

1
2

m1℘1, (32)

1
ϑ
[3(5 + 3ei`)Υ3a3 − 4(2 + ei`)Υ2

2a2
2] =

1
2

m1(℘2 −
℘2

1
2
) +

1
4

m2℘
2
1, (33)

and
− 2

ϑ
(2 + ei`)Υ2a2 =

1
2

m1q1, (34)

1
ϑ
[3(5 + 3ei`)(2a2

2 − a3)Υ3 − 4(2 + ei`)Υ2
2a2

2] =
1
2

m1(q2 −
q2

1
2
) +

1
4

m2q
2
1. (35)

From (32) and (34), we obtain the following:

℘1 = −q1 (36)

and
32(2 + ei`)2Υ2

2a2
2 = ϑ2m2

1(℘
2
1 + q2

1). (37)

If we add (33) and (35) and substitute value ℘2
1 + q2

1, we obtain the following.

a2
2 =

ϑ2m3
1(℘2 + q2)

4[ϑ[3(5 + 3ei`)Υ3 − 4(2 + ei`)Υ2
2]m

2
1 + 4(2 + ei`)2(m1 −m2)Υ2

2]
. (38)

Applying Lemma 1 to the coefficients ℘2 and q2, we have the desired inequality given
in (28).

Next, if we subtract (33) from (35), we easily observe the following.

12
ϑ

(5 + 3ei`)

2
(a3 − a2

2)Υ3 =
m1

2
(℘2 − q2)

a3 =
ϑm1(℘2 − q2)

12(5 + 3ei`)Υ3
+ a2

2



Axioms 2022, 11, 237 9 of 13

Upon relieving the value of a2
2 given in (37), the above equation leads to the following.

a3 =
ϑm1(℘2 − q2)

12(5 + 3ei`)Υ3
+

ϑ2m2
1(℘

2
1 + q2

1)

32(2 + ei`)2Υ2
2

.

Applying Lemma (1) once again to the coefficients ℘1, ℘2, q1, and q2, we obtain the
preferred coefficient provided in (29).

Fixing ` = π in Theorems (1) and (2), we can state the coefficient estimates for the
functions in subclasses Sς,τ

Σ,W(ϑ) and K
ς,τ
Σ,W(ϑ), defined in Remark (2).

Corollary 1. Let f assumed as (1) be in the class Sς,τ
Σ,W(ϑ). Then, the following is the case.

|a2| ≤
|ϑ|m1

√
m1√

|ϑ|(2Υ3 − Υ2
2)m

2
1 + (m1 −m2)Υ2

2

and |a3| ≤
|ϑ|2m2

1
Υ2

2
+
|ϑ|m1

2Υ3
.

Corollary 2. Let f assumed as (1) be in class Kς,τ
Σ,W(ϑ). Then, we have the following.

|a2| ≤
|ϑ|m1

√
m1√

2|ϑ|(3Υ3 − 2Υ2
2)m

2
1 + 4(m1 −m2)Υ2

2

and |a3| ≤
|ϑ|2m2

1
4Υ2

2
+
|ϑ|m1

6Υ3
.

Fixing ϑ = 1 in Theorems (1) and (2), we can state the coefficient estimates for the
functions in the subclasses Sς,τ

Σ,W(`) and K
ς,τ
Σ,W(`) defined in Remark (4).

Corollary 3. Let f supposed by (1) be in class Sς,τ
Σ,W(`). Then, we have the following:

|a2| ≤
m1
√

m1√
|[(5 + 3ei`)Υ3 − (2 + ei`)Υ2

2]m
2
1 + (2 + ei`)2(m1 −m2)Υ2

2|

and the following is the case.

|a3| ≤
m2

1
|2 + ei`|2Υ2

2
+

m1

|5 + 3ei`|Υ3
.

Corollary 4. Let f supposed by (1) be in class Kς,τ
Σ,W(`). Then, we have the following:

|a2| ≤
m1
√

m1√
|[3(5 + 3ei`)Υ3 − 4(2 + ei`)Υ2

2]m
2
1 + 4(2 + ei`)2(m1 −m2)Υ2

2|

and

|a3| ≤
m2

1
4|2 + ei`|2Υ2

2
+

m1

3|5 + 3ei`|Υ3
.

3. Fekete-Szegő Inequality

In this section, we discuss the Fekete-Szegő results [34] due toZaprawa [35] for func-
tions f ∈ S

ς,τ
Σ,W(ϑ, `) and f ∈ K

ς,τ
Σ,W(ϑ, `).

Theorem 3. Let f assumed by (1) be in class Sς,τ
Σ,W(ϑ, `) and $ ∈ R. Then, we have the following:

| a3 − $a2
2 |≤


ϑm1

|5+3ei` |Υ3
, 0 ≤| φ($) |≤ ϑm1

4|5+3ei` |Υ3

4|φ($)|, |φ($)| ≥ ϑm1
4|5+3ei` |Υ3

.
.
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where the following is obtained.

φ($) =
(1− $)ϑ2m3

1
4{ϑ[(5 + 3ei`)Υ3 − (2 + ei`)Υ2

2]m
2
1 + (2 + ei`)2(m1 −m2)Υ2

2}
.

Proof. From (26) and (27), we have the following:

a3 − $a2
2 =

(1− $)ϑ2m3
1(℘2 + q2)(

4{ϑ[(5 + 3ei`)Υ3 − (2 + ei`)Υ2
2]m

2
1 + (2 + ei`)2(m1 −m2)Υ2

2}
) + ϑm1(℘2 − q2)

4(5 + 3ei`)Υ3

=

[
φ($) +

ϑm1

4(5 + 3ei`)Υ3

]
℘2 +

[
φ($)− ϑm1

4(5 + 3ei`)Υ3

]
q2

where the following is the case.

φ($) =
(1− $)ϑ2m3

1
4{ϑ[(5 + 3ei`)Υ3 − (2 + ei`)Υ2

2]m
2
1 + (2 + ei`)2(m1 −m2)Υ2

2}

Thus, by applying Lemma 1, we obtain the following.

| a3 − $a2
2 |≤


ϑm1

|5+3ei` |Υ3
, 0 ≤| φ($) |≤ ϑm1

4|5+3ei` |Υ3

4|φ($)|, |φ($)| ≥ ϑm1
4|5+3ei` |Υ3

.

In particular, by fixing $ = 1, we obtain the following.

| a3 − a2
2 |≤

ϑm1

|5 + 3ei`|Υ3
.

Theorem 4. Let f given by (1) be in class Kς,τ
Σ,W(ϑ, `) and ℵ ∈ R. Then, we have the following:

| a3 − ℵa2
2 |≤


ϑm1

3|5+3ei` |Υ3
, 0 ≤| φ(ℵ) |≤ ϑm1

12|5+3ei` |Υ3

4|φ(ℵ)|, |φ(ℵ)| ≥ ϑm1
12|5+3ei` |Υ3

.
.

where

φ(ℵ) =
(1− ℵ)ϑ2m3

1
4[ϑ[3(5 + 3ei`)Υ3 − 4(2 + ei`)Υ2

2]m
2
1 + 4(2 + ei`)2(m1 −m2)Υ2

2]
.

Proof. From (27) and (38), we have the following.

a3 − ℵa2
2 =

(1− ℵ)ϑ2m3
1(℘2 + q2)

4[ϑ[3(5 + 3ei`)Υ3 − 4(2 + ei`)Υ2
2]m

2
1 + 4(2 + ei`)2(m1 −m2)Υ2

2]
+

ϑm1(℘2 − q2)

12(5 + 3ei`)Υ3

=

[
φ(ℵ) + ϑm1

12(5 + 3ei`)Υ3

]
℘2 +

[
φ(ℵ)− ϑm1

12(5 + 3ei`)Υ3

]
q2

where the following is the case.

φ(ℵ) =
(1− ℵ)ϑ2m3

1
4[ϑ[3(5 + 3ei`)Υ3 − 4(2 + ei`)Υ2

2]m
2
1 + 4(2 + ei`)2(m1 −m2)Υ2

2]
.

Thus, by Lemma 1, we obtain the following.

| a3 − ℵa2
2 |≤


ϑm1

3|5+3ei` |Υ3
, 0 ≤| φ(ℵ) |≤ ϑm1

12|5+3ei` |Υ3

4|φ(ℵ)|, |φ(ℵ)| ≥ ϑm1
12|5+3ei` |Υ3

.
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In particular, by taking ℵ = 1, we obtain the following.

| a3 − a2
2 |≤

ϑm1

3|5 + 3ei`|Υ3
.

4. Conclusions

By fixing W(ξ) as listed below, one can determine new results as in Theorems 1–4 for
the subclasses introduced in this paper by suitably fixing m1 and m2:

1. For the class of strongly starlike functions, function W is given by W(ξ) =
(

1+ξ
1−ξ

)α
=

1 + 2αξ + 2α2ξ2 + · · · (0 < α ≤ 1), which gives m1 = 2α and m2 = 2α2, (see [36]);
2. On the other hand, if we take W(ξ) = 1+(1−2β)ξ

1−ξ = 1 + 2(1− β)ξ + 2(1− β)ξ2 +

· · · (0 ≤ β < 1), then m1 = m2 = 2(1− β), (see [36]);
3. For W(ξ) = 1+Aξ

1+Bξ (−1 ≤ B < A ≤ 1), we obtain class S∗(A, B) (see [37]);

4. For W(ξ) = 1 + 2
π2

(
log 1+

√
ξ

1−
√

ξ

)2
, which was considered and studied in [38];

5. For W(ξ) =
√

1 + ξ, the class is denoted by S∗L, , which was considered and studied
in [39] further in discussed [40];

6. For W(ξ) = ξ +
√

1 + ξ2, the class is denoted by S∗l ( see [41]);
7. If W(ξ) = 1 + 4

3 ξ + 2
3 ξ2, then such class denoted by S∗C was introduced in [42] and

further studied by [43];
8. For W(ξ) = eξ , class S∗e was defined and studied in [44,45];
9. For W(ξ) = cosh(ξ), the class is denoted by S∗cosh (see [46]);
10. For W(ξ) = 1 + sin(ξ), the class is denoted by S∗sin (see [47]); for details and further

investigation, (see [48]).

In the current paper, we mainly obtain the upper bounds of the initial Taylors coeffi-
cients of bi-starlike and bi-convex functions of complex order involving Erdély–Kober-type
integral operators in the open unit. Furthermore, we find the Fekete-Szegő inequalities
for the function in these classes. Several consequences of the results are also pointed out
as examples. Moreover, we note that by assuming W with some particular functions as
illustrated above, one can determine new results for the subclasses introduced in this
paper. Moreover, by fixing ` = 0 and ` = π in the above Theorems, we can easily state
the results for various subclasses of Σ illustrated in Remarks 2–4. By appropriately fixing
the parameters in Theorems 3 and 4, we can deduce the Fekete-Szegő functional for these
function classes. Moreover, motivating further research on the subject-matter of this, we
have chosen to draw the attention of the concerned readers toward a significantly large
number of interrelated publications(see [49–52]) and developments in the area of Geometric
Function Theory of Complex Analysis. In conclusion, we choose to reiterate an important
observation, which was offered in the recently published survey-cum-expository article by
Srivastava ([49], p. 340), who pointed out the fact that the results for the above-mentioned
or new q− analogues can easily (and possibly or unimportantly) be interpreted into the
equivalent results for the so-called (p; q)− analogues (with 0 < |q| < p ≤ 1) by smearing
some recognizable parametric and argument variations with the additional parameter p
being redundant.
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