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Abstract

:

For a graph   G = ( V , E )   and a set   S ⊆ V ( G )   of a size at least 2, a path in G is said to be an S-path if it connects all vertices of S. Two S-paths   P 1   and   P 2   are said to be internally disjoint if   E  (  P 1  )  ∩ E  (  P 2  )  = ∅   and   V  (  P 1  )  ∩ V  (  P 2  )  = S  ; that is, they share no vertices and edges apart from S. Let    π G   ( S )    denote the maximum number of internally disjoint S-paths in G. The k-path-connectivity    π k   ( G )    of G is then defined as the minimum    π G   ( S )   , where S ranges over all k-subsets of   V ( G )  . In this paper, we study the k-path-connectivity of the complete balanced tripartite graph   K  n , n , n    and obtain    π k    K  n , n , n    =    2 n   k − 1      for   3 ≤ k ≤ n .  
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1. Introduction


An interconnection network is usually modeled by a connected graph   G = ( V , E )  , where vertices represent processors and edges represent communication links between processors. Connectivity is an important parameter to evaluate the reliability and fault tolerance of a network. For a graph G, the   c o n n e c t i v i t y      κ ( G )   is defined as the minimum cardinality of a subset   V ′   of vertices of G such that   G −  V ′    is disconnected or trivial. An equivalent definition of connectivity was given in [1]. For each 2-subset   S = { u , v }   of vertices of G, let   κ ( S )   denote the maximum number of internally disjoint   ( u , v )  -paths in G. Then,   κ ( G ) =  min  { κ ( S ) | S ⊆ V  and  | S | = 2 }  .



There exist many generalizations of the classical connectivity, such as conditional connectivity [2], component connectivity [3], tree-connectivity [4,5] and rainbow connectivity [6]. In particular, Hager [7] introduced the concept of path-connectivity, which concerns paths connecting any k vertices in G and not only any two. Given a graph   G = ( V , E )   and a set   S ⊆ V ( G )   of a size at least 2, a path in G is said to be an S-path if it connects all vertices of S. Two S paths   P 1   and   P 2   are said to be internally disjoint if   E  (  P 1  )  ∩ E  (  P 2  )  = ∅   and   V  (  P 1  )  ∩ V  (  P 2  )  = S  ; that is, they share no vertices and edges apart from S. Let    π G   ( S )    denote the maximum number of internally disjoint S-paths in G. The k-path connectivity of G, denoted by    π k   ( G )   , is then defined as    π k   ( G )  =  min  {  π G   ( S )  | S ⊆ V  ( G )   a n d  | S | = k }  , where   2 ≤ k ≤ n  . Clearly,    π 2   ( G )    is exactly the classical connectivity   κ ( G )  , and    π n   ( G )    is exactly the maximum number of edge-disjoint Hamiltonian paths in G.



In [7], Hager studied the sufficient conditions for    π k   ( G )    to be at least ℓ in terms of   κ ( G )  . Hager conjectured that if G is a graph with   κ ( G ) ≥ ℓ ( k − 1 )   for   k ≥ 2   and   ℓ ≥ 1  , then    π k   ( G )  ≥ ℓ  ; moreover, the bound is sharp. He confirmed the conjecture for   2 ≤ k ≤ 4  . Recently, Li et al. [8] showed that this conjecture also is true for   k = 5  . Moreover, they studied the complexity of the path-connectivity. With their conclusions, it is difficult to obtain    π k   ( G )    for general G and   k ≥ 5  . In [9,10], the path connectivity of lexicographic product graphs was investigated. For special classes of graphs, the exact values of    π k   ( G )    were obtained for complete graphs [7] and complete bipartite graphs [7,11].



A complete multipartite graph is   b a l a n c e d   if the partite sets all have the same cardinality. In this paper, we study the k-path-connectivity of the complete balanced tripartite graph   K  n , n , n    and obtain    π k    K  n , n , n    =    2 n   k − 1     , for   3 ≤ k ≤ n .   Moreover, our result implies that Hager’s conjecture is true for   K  n , n , n    and   3 ≤ k ≤ n  .




2. Main Result


We first introduce some notations and terminology that will be used throughout the paper.



The subgraph of G induced by a vertex set   U ⊆ V ( G )   is denoted by   G [ U ]  . A subset S of V is called an independent set of G if no two vertices of S are adjacent in G. For any two vertices   x , y ∈ V ( G )  , an   x y  -path is a path starting at x and ending at y. For convenience, let     x 1  ,  x n   =  {  x 1  , … ,  x n  }   . We refer the reader to [12] for the notations and terminology not defined in this paper.



Now we provide our main result.



Theorem 1.

Given any positive integer   n ≥ 2  , let   K  n , n , n    denote a complete balanced tripartite graph in which each partite set contains exactly n vertices. Then, we have the following.


    π k    K  n , n , n    =    2 n   k − 1    , for  3 ≤ k ≤ n .    













Proof. 

Suppose that X, Y, and Z are the three parts of   K  n , n , n   , where   X = [  x 1  ,  x n  ]  ,   Y = [  y 1  ,  y n  ]  , and   Z = [  z 1  ,  z n  ]  . Let   G =  K  n , n , n     and S be any subset of   V ( G )   of cardinality k. By the symmetry of   K  n , n , n   , we can assume that   S ∩ X = A =     [  x 1  ,  x a  ]  ,   S ∩ Y = B =     [  y 1  ,  y b  ]  ,   S ∩ X = C =     [  z 1  ,  z c  ]  . Obviously,   a + b + c = k  .





Remember that, when we construct internally disjoint S-paths, each vertex in   V ( G )   \   S   can appear on one S-path at most. We distinguish three cases as follows.



Case 1:   a = b = 0   and   c = k  .



In this case,   S ⊆ Z  . Therefore, each vertex in S is adjacent to all the vertices in   X ∪ Y  , which means that we can use any   k − 1   vertices of   X ∪ Y   to connect all vertices in S into an S-path. On the other hand, since S is an independent set, each S-path needs at least   k − 1   vertices of   X ∪ Y  . Thus,   π  S  =    | X ∪ Y |   k − 1    =    2 n   k − 1     .



Case 2:   1 ≤ a ≤ b ≤ c  .



Note that   3 ≤ k = a + b + c ≤ n  . We will show   π  S  ≥    2 n   k − 1      in this case by constructing      2 ( n − c − 1 )   k − 1    + 2   internally disjoint S-paths and prove that      2 ( n − c − 1 )   k − 1    + 2 ≥    2 n   k − 1    .   We divide the construction process into four steps. In Steps 1 and 2, we will construct two S-paths mainly by using some edges in   G [ S ]   and some vertices in   Z   \   C  . In Steps 3 and 4, we will use   n − c − 1   vertices from   X   \   A   and   n − c − 1   vertices from   Y   \   B   to construct     2 ( n − c − 1 )   k − 1     internally disjoint S-paths. On these S-paths, any two vertices of S are connected by the vertices from   X   \   A   and   Y   \   B  .



Step 1: Construct the first S-path   P 1  .



Firstly, by using vertices    z  c + 1   , … ,  z  c + b − 1     in   Z   \   C  , we can connect all vertices    y 1  , … ,  y b    of B into a path, denoted by   P 11  , i.e.,    P 11  =  y 1   z  c + 1    y 2   z  c + 2   …  y  b − 1    z  c + b − 1    y b   .



Since   c ≥ a  ,   A ⊆   x 1  , … ,  x c    . Note that   G    x 1  , … ,  x c   ∪ C  =  K  c , c    . Thus, there must exist a path, denoted by   P 12  , connecting all the vertices of   A ∪ C   in   G    x 1  , … ,  x c   ∪ C   . More specifically, let    P 12  =  z 1   x 1   z 2  …  x  c − 1    z c   x c   .



Finally, using the vertex   x  c + 1    to connect   y b   and   z 1  , we obtain the first S-path   P 1  , i.e.,    P 1  =  P 11  ∪   y b   x  c + 1    z 1   ∪  P 12   .



Step 2: Construct the second S-path   P 2  .



Firstly, by using the vertices    z  c + b   , … ,  z  c + b + a − 2     in   Z   \   C  , we can connect all the vertices    x 1  , … ,  x a    of A into a path, denoted by   P 21  , i.e.,    P 21  =  x 1   z  b + c   …  x  a − 1    z  a + b + c − 2    x a   .



Since   c ≥ b  ,   B ⊆   y 1  , … ,  y c    . Similarly, in   G    y 1  , … ,  y c   ∪ C    there must exist a path, denoted by   P 22  , connecting all the vertices of   B ∪ C  . More specifically, let    P 22  =  z 1   y 1   z 2  …  y  c − 1    z c   y c   .



Finally, using the vertex   y  c + 1    to connect   x a   and   z 1  , we obtain the second S-path   P 2  , i.e.,    P 2  =  P 21  ∪   x a   y  c + 1    z 1   ∪  P 22   .



Remark. 

After the first two steps, we have found two S-paths, which are obviously internally disjoint. Moreover, there are   n − c − 1   unused vertices in   X   \   A   (namely,    x  c + 2   , … ,  x n   ),   n − c − 1   unused vertices in   Y   \   B   (namely,    y  c + 2   , … ,  y n   ) and   n − k + 2   unused vertices in   Z   \   C  . Set    A ′  =    x  c + 2   ,  x n      and    B ′  =    y  c + 2   ,  y n     .





Step 3: Construct the next   2 l  S-paths, where   l =    n − c − 1   k − 1     .



Note that, if   l = 0  , proceed directly to Step 4. Thus, we assume that   l ≥ 1  . We now provide a method to construct S-paths in pairs. The outline of the method is as follows.



Firstly, we take     k − 1  2    unused vertices from    A    ′    and     k − 1  2    unused vertices from    B    ′   . Then, using the   k − 1   vertices in total, connect all the vertices of S into an S-path. Next, we take     k − 1  2    unused vertices from    A    ′    and     k − 1  2    unused vertices from    B    ′   . Using the   k − 1   vertices in total, construct another S-path. Thus, by      k − 1  2   +    k − 1  2   = k − 1   vertices in    A    ′    and      k − 1  2   +    k − 1  2   = k − 1   vertices in    B    ′   , we can obtain a pair of S-paths. By repeating this process, we can construct   l =    n − c − 1   k − 1      pairs of S-paths in this step.



Now, we construct the S-paths   P 3   and   P 4   to illustrate the specific method. Note that, since   a ≥ 1  ,      k − 1  2   =    a + b + c − 1  2   ≥    b + c  2   ≥ b ≥ a  .



The construction of   P 3  .



Firstly, by using   b − 1   vertices    x  c + 2   , … ,  x  c + b     in   A ′  , connect all vertices    y 1  , … ,  y b    of B into a path, denoted by   P 31  , i.e.,    P 31  =  y 1   x  c + 2    y 2   x  c + 3   …  x  c + b    y b   .



Similarly, by using   a − 1   vertices    y  c + 2   , … ,  y  c + a     in   B ′  , connect all vertices    x 1  , … ,  x a    of A into a path, denoted by   P 32  , i.e.,    P 32  =  x 1   y  c + 2    x 2   y  c + 3   …  y  c + a    x a   .



Then, join the vertices   y b   and   z 1   by vertex   x  c + b + 1   . Moreover, join vertices   x 1   and   z c   by vertex   y  c + a + 1   .



Next, we take      k − 1  2   − b   unused vertices    x  c + b + 2   ,  x  c + 1 +    k − 1  2       from    A    ′    and take      k − 1  2   − a   unused vertices    y  c + a + 2   ,  y  c + 1 +    k − 1  2       from    B    ′   . Since each vertex in     A    ′   ⋃   B    ′     is adjacent to all the vertices in C, using the   k − 1 − a − b = c − 1   vertices in total, we can connect all the vertices of C into a    z 1   z c   -path   P 33  .



Now, we obtain the third S-path    P 3  =  P 31  ∪   y b   x  c + b + 1    z 1   ∪  P 33  ∪   z c   y  c + a + 1    x 1   ∪  P 32   .



The construction of   P 4   is similar. The only difference is that the subpath   P 43   is constructed by      k − 1  2   − b   unused vertices in    A    ′    and   ⌈   k − 1  2  ⌉ − a   unused vertices in    B    ′   . It follows that the fourth S-path   P 4   uses     k − 1  2    unused vertices in    A    ′    and     k − 1  2    unused vertices in    B    ′   , respectively.



Step 4: Construct the last path if necessary.



Let   d = n − c − 1 − l ( k − 1 )  . Thus, there are d unused vertices in    A    ′    and    B    ′   , respectively. Since   l =    n − c − 1   k − 1     ,   0 ≤ d < k − 1  . Now, according to the value of d, we distinguish two cases.



If   0 ≤ d <    k − 1  2    , then   2 l = 2    n − c − 1   k − 1    = 2    l ( k − 1 ) + d   k − 1    =    2 ( n − c − 1 )   k − 1     . In this case, we stop constructing any new S-path.



If      k − 1  2   ≤ d < k − 1  , then   2 l = 2    n − c − 1   k − 1    =    2 ( n − c − 1 )   k − 1    − 1  . Since   d ≥    k − 1  2    , we can take     k − 1  2    and     k − 1  2    remaining vertices from    A    ′    and    B    ′   , respectively. Similarly to   P 3  , using the   k − 1   vertices in total, we can obtain a new S-path.



Therefore, by the above four steps, we construct      2 ( n − c − 1 )   k − 1    + 2  S-paths, which are obviously internally disjoint.



Moreover, since   1 ≤ a ≤ b ≤ c  ,   k − 1 = a + b + c − 1 ≥ c + 1  . Hence,


     2 ( n − c − 1 )   k − 1    + 2 ≥    2 ( n − k + 1 )   k − 1    + 2 =    2 n   k − 1    .  











It follows that we can obtain at least     2 n   k − 1     internally disjoint S-paths in this case; that is,   π  S  ≥    2 n   k − 1     .



Case 3:  a = 0   and   1 ≤ b ≤ c  .



In this case,   S = ( B ∪ C )  . We will also construct at least     2 n   k − 1     internally disjoint S-paths. We divide the construction process into four steps, as follows.



Step 1: Construct the first S-path   P 1  .



By using   b − 1   vertices    z  c + 1   , … ,  z  c + b − 1     in   Z \ C  , connect all the vertices    y 1  , … ,  y b    of B into a path, denoted by   P 11  , i.e.,    P 11  =  y 1   z  c + 1    y 2   z  c + 2   …  y  b − 1    z  c + b − 1    y b   .



By using   c − 1   vertices    x 1  , … ,  x  c − 1     in X, connect all the vertices    z 1  , … ,  z c    of C into a path, denoted by   P 12  , i.e.,    P 12  =  z 1   x 1   z 2   x 2  …  z  c − 1    x  c − 1    z c   .



Finally, using the vertex   x c   to connect   y b   and   z 1  , we obtain the first S-path   P 1  , i.e.,    P 1  =  P 11  ∪   y b   x c   z 1   ∪  P 12   .



Step 2: Construct the second S-path   P 2  .



Let    P 2  =  z 1   y 1   z 2  …  y  c − 1    z c   y c   . Since   c ≥ b  ,   B ⊆   y 1  , … ,  y c    . Hence,   P 2   is a path connecting all the vertices of   B ∪ C  , and so is an S-path.



Remark. 

After the first two steps, we have found two S-paths, which are obviously internally disjoint. Moreover, there are   n − c   unused vertices in   X   \   A   (namely,    x  c + 1   , … ,  x n   ),   n − c   unused vertices in   Y   \   B   (namely,    y  c + 1   , … ,  y n   ) and   n − c −  b − 1  = n − k + 1   unused vertices in   Z   \   C   (namely,    z  c + b   , … ,  z n   ). Set    A ′  =    x  c + 1   ,  x n     ,    B ′  =    y  c + 1   ,  y n     , and     C    ′   =   z k  ,  z n    .





Step 3: Construct the next   2 l  S-paths, where   l =    n − c   k − 1     .



The method is similar to case 2. If   l = 0  , proceed directly to Step 4. thus, we assume that   l ≥ 1  . In general, by   k − 1   vertices in    A    ′    and   k − 1   vertices in    B    ′   , we can obtain S-paths in pairs: use     k − 1  2    unused vertices in    A    ′    and     k − 1  2    unused vertices in    B    ′    to construct an S-path; next, use     k − 1  2    unused vertices in    A    ′    and     k − 1  2    unused vertices in    B    ′    to construct another S-path; by repeating this process, we can construct   l =    n − c   k − 1      pairs of S-paths.



However, when   b = c  ,      k − 1  2   =    2 b − 1  2   = b − 1   and      k − 1  2   = b  . If we only use   b − 1   vertices in    A    ′    and b vertices in    B    ′    and do not use any other vertex and edge in   E ( G [ B ∪ C ] )  , we cannot connect all the vertices of   B ∪ C   into a path. Thus, we distinguish two subcases:



Subcase 3.1:   1 ≤ b < c  .



We have      k − 1  2   ≥ b  .



Firstly, by using b vertices in   A ′  , connect all vertices    y 1  , … ,  y b    of B and vertex   z 1   into a    y 1   z 1   -path, denoted by   P  i 1   , where   3 ≤ i ≤ 2 l + 2  .



Next, when i is odd (when i is even), take      k − 1  2   − b   (     k − 1  2   − b  ) unused vertices from    A    ′   , and take     k − 1  2    (    k − 1  2   ) unused vertices from    B    ′   . Using the   k − 1 − b = c − 1   vertices in total, we can connect all vertices    z 1  , … ,  z c    of C into a    z 1   z c   -path   P  i 2   .



Combining these two paths, we obtain an S-path   P i  , i.e.,    P i  =  P  i 1   ∪  P  i 2    , where   3 ≤ i ≤ 2 l + 2  .



Clearly, when i is odd (when i is even), then the path   P i   uses     k − 1  2    (    k − 1  2   ) vertices in    A    ′    and     k − 1  2    (    k − 1  2   ) vertices in    B    ′   , respectively.



Subcase 3.2:   b = c  .



We have      k − 1  2   = b   and      k − 1  2   = b − 1  .



When i is odd   ( 3 ≤ i ≤ 2 l + 2 )  , since      k − 1  2   − b ≥ 0  , by the same method as Subcase 3.1, we can construct   P i   by     k − 1  2    unused vertices in    A    ′    and     k − 1  2    unused vertices in    B    ′   .



However, when i is even, as noted above,     k − 1  2    vertices in    A    ′    and     k − 1  2    vertices in    B    ′    are not enough to obtain an S-path. We will complete the construction with the help of a vertex in    C    ′   , as follows.



Firstly, by using      k − 1  2   = b − 1   vertices in   A ′  , connect all the vertices    y 1  , … ,  y b    of B into a    y 1   y b   -path, denoted by   P  i 1   .



Then, by using      k − 1  2   − 1 = b − 1   vertices in   B ′  , connect all vertices    z 1  , … ,  z c    of C into a    z 1   z c   -path, denoted by   P  i 2   .



Finally, by one unused vertex   y ^   in   B ′   and one unused vertex   z ^   in    C    ′   , connect vertices   y b   and   z 1  . Then, we obtain an S-path   P i  , i.e.,    P i  =  P  i 1   ⋃  y b   z ^   y ^   z 1  ⋃  P  i 2    , where   3 ≤ i ≤ 2 l + 2   and i is even.



Note that, it remains to show that the vertices in    C    ′    are enough. Therefore, we will prove that    |   C ′   | ≥ l   .



Since   3 ≤ k ≤ n   and   c ≥ 2  , we obtain the following.


        C  ′   − l     = n − k + 1 −    n − c   k − 1              ≥ n − k + 1 −   n − c   k − 1            =   n  ( k − 2 )  −   ( k − 1 )  2  + c   k − 1            ≥   k  ( k − 2 )  −   ( k − 1 )  2  + c   k − 1            =   c − 1   k − 1   ≥ 0 .     











Thus, in either case, we can always obtain   2 l = 2    n − c   k − 1     S-paths in this step.



Step 4: Construct the last path if necessary.



Let   d = n − c − l ( k − 1 )  . Since   l =    n − c   k − 1     ,   0 ≤ d < k − 1  . Similarly to Case 2, according to the value of d, distinguish two cases.



If   0 ≤ d <    k − 1  2    , then   2 l = 2    n − c   k − 1    =    2 ( n − c )   k − 1     . We stop constructing any new S-path.



If      k − 1  2   ≤ d < k − 1  , then   2 l = 2    n − c   k − 1    =    2 ( n − c )   k − 1    − 1  . We can construct one more new S-path by the remaining d vertices in    A    ′    and    B    ′   , respectively.



Therefore, by the above four steps, we construct      2 ( n − c )   k − 1    + 2  S-paths, which are obviously internally disjoint.



Moreover, since   a = 0   and   1 ≤ b ≤ c  ,   k − 1 = b + c − 1 ≥ c  . Hence,


     2 ( n − c )   k − 1    + 2 ≥    2 ( n − k + 1 )   k − 1    + 2 =    2 n   k − 1    .  











Thus, in this case, we can also obtain at least     2 n   k − 1     internally disjoint S-paths; that is,   π  S  ≥    2 n   k − 1     .



From the above discussion,   π  S  ≥    2 n   k − 1      in all cases and   π ( S )   is exactly     2 n   k − 1     in Case 1. Thus, we can conclude that    π k   (  K  n , n , n   )  = min   π  ( S )  | S ⊆ V   (  K  n , n , n   )  ,  | S |  = k  =    2 n   k − 1    .   □



By Steps 3 and 4 of Case 2 in Theorem 1, we can obtain the following corollary, which may be useful for study on complete tripartite graphs.



Corollary 1.

Let   a , b , c  , and d be positive integers with   1 ≤ a ≤ b ≤ c  , and G be a complete tripartite graph with three parts X, Y, and Z, where   | X | = a + d  ,   | Y | = b + d  , and   | Z | = c  . For any k-subset S of   V ( G )  , if   | X ∩ S | = a  ,   | Y ∩ S | = b  , and   | Z ∩ S | = c  , then there always exist at least     2 d   k − 1     internally disjoint S-paths in G, where   k = a + b + c  .





Remark. 

Since        2 n   k − 1    + 1     k − 1   > κ   K  n , n , n    = 2 n ≥    2 n   k − 1      k − 1    , Theorem 1 implies that Hager’s conjecture is true for   K  n , n , n    and   3 ≤ k ≤ n  .






3. Conclusions


k-path-connectivity is a natural generalization of the traditional connectivity. In this paper, we showed that the k-path-connectivity of the complete balanced tripartite graph   K  n , n , n    is     2 n   k − 1    , for   3 ≤ k ≤ n .   For future work, we will continue to investigate the k-path-connectivity of   K  n , n , n    for   n + 1 ≤ k ≤ 3 n  . It would also be interesting to study the path connectivity of complete r-partite graphs for   r ≥ 4  .







Author Contributions


Conceptualization, S.L.; methodology, S.L.; validation, P.W. and X.G.; formal analysis, P.W. and X.G.; writing—original draft preparation, P.W.; writing—review and editing, X.G. and S.L.; supervision, S.L.; project administration, S.L. All authors have read and agreed to the published version of the manuscript.




Funding


This research was funded by the Natural Science Foundation of Ningbo, China (No. 202003N4148).




Institutional Review Board Statement


Not applicable.




Informed Consent Statement


Not applicable.




Data Availability Statement


Not applicable.




Acknowledgments


The authors are very grateful to Q. Jin for her helpful comments and suggestions. This study is supported by the Natural Science Foundation of Ningbo, China (No. 202003N4148).




Conflicts of Interest


The authors declare no conflict of interest.




References


	



Whitney, H. Congruent graphs and the connectivity of graphs. Am. J. Math. 1932, 54, 150–168. [Google Scholar] [CrossRef]

	



Harary, F. Conditional connectivity. Networks 1983, 13, 347–357. [Google Scholar] [CrossRef]

	



Sampathkumar, E. Connectivity of a graph—A generalization. J. Comb. Inf. Syst. Sci. 1984, 9, 71–78. [Google Scholar]

	



Hager, M. Pendant tree-connectivity. J. Comb. Theory Ser. B 1985, 38, 179–189. [Google Scholar] [CrossRef]

	



Li, X.; Mao, Y. Generalized Connectivity of Graphs; Springer: Cham, Switzerland, 2016. [Google Scholar]

	



Chartrand, G.; Johns, G.L.; McKeon, K.A.; Zhang, P. Rainbow connection in graphs. Math. Bohem. 2008, 133, 85–98. [Google Scholar] [CrossRef]

	



Hager, M. Path-connectivity in graphs. Discrete Math. 1986, 59, 53–59. [Google Scholar] [CrossRef]

	



Li, S.; Qin, Z.; Tu, J.; Yue, J. On Tree-Connectivity and Path-Connectivity of Graphs. Graphs Combin. 2021, 37, 2521–2533. [Google Scholar] [CrossRef]

	



Ma, T.; Wang, J.; Zhang, M.; Liang, X. Path 3-(edge-)connectivity of lexicographic product graphs. Discrete Appl. Math. 2020, 282, 152–161. [Google Scholar] [CrossRef]

	



Mao, Y. Path-connectivity of lexicographic product graphs. Int. J. Comput. Math. 2016, 93, 27–39. [Google Scholar] [CrossRef]

	



Gao, X.; Li, S.; Zhao, Y. Note on Path-Connectivity of Complete Bipartite Graphs. J. Interconnect. Netw. 2022, 22. [Google Scholar] [CrossRef]

	



Bondy, J.A.; Murty, U.S.R. Graph Theory with Applications; Macmillan: London, UK, 2008. [Google Scholar]












	
	
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.











© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).






nav.xhtml


  axioms-11-00270


  
    		
      axioms-11-00270
    


  




  





media/file0.png


