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Abstract: In this paper, we investigate a class of nonlinear Schrödinger systems containing a non-
linear operator under Osgood-type conditions. By employing the iterative technique, the existence
conditions for entire positive radial solutions of the above problem are given under the cases where
components µ and ν are bounded, µ and ν are blow-up, and one of the components is bounded, while
the other is blow-up. Finally, we present two examples to verify our results.
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1. Introduction

Osgood-type condition is of great significance in the field of mathematics and has
been widely applied to different equations or systems by many authors. In 1898, under the
Osgood type condition ∫ U

0

ds
ψ(s)

= ∞, ∀U > 0,

Osgood [1] presented the existence result of solutions for the following equation
without the Cauchy–Lipschitz condition

dy
dχ

= ψ(χ, y),

where ψ(s) is a continuous function satisfying |ψ(χ, y)− ψ(χ, y′)| ≤ ϕ(|y− y′|). Then, lots
of authors began to consider applying the Osgood-type condition to other problems and
gained many excellent results such as the comparison result of viscosity upper and lower
solutions for fully nonlinear parabolic equations [2], the existence result of solutions for
backward stochastic differential equations (BSDEs) [3], and the nonexistence result of the
local solution for semilinear fractional heat Equation [4]. For more results, see [5–9].

The Schrödinger equation was derived from mathematical physics and closely re-
lated to several physical phenomena. In [10], Kurihura used it to model the superfluid
film equation in plasma physics. In [11,12], it was used to model the phenomena of the
self-channeling of a high-power ultrashort laser in matter. More examples and details of
applications can be found in [13–16].

In 2017, by employing the analysis technique and weighted norm method, Sun [17]
established the existence result of solutions to the following Schrödinger equation
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∆µ + ψ(|χ|)b(µ) = 0,

where |χ| ∈ ED, ψ(|χ|) ∈ Cλ
loc(ED, R), λ ∈ (0, 1), b(µ) ∈ Cλ

loc(R, R) (locally Hölder
continuous), ED = {χ ∈ R2 : |χ| > D}, SD = {χ ∈ R2 : |χ| = D}, for D > 0.

In 2018, by introducing a growth condition and employing the iterative technique,
Zhang, Wu and Cui [18] established the nonexistence and existence results of the entire
blow-up solutions to the following Schrödinger equation

div(Λ(|∇µ|)∇µ) = b(|χ|)ψ(µ), χ ∈ Rn,

where n ≥ 2, Λ is a nonlinear operator belonging to the set {Λ ∈ C2([0, ∞), (0, ∞))|∃β ∈
(0, ∞) : Λ(ms) ≤ mβΛ(s), 0 < m < 1}.

In 2020, by employing the iterative technique, Wang et al. [19] established the existence
result of the entire radial solutions for the following Schrödinger system{

div
(
Λ(|∇µ|p−2)∇µ

)
= b(|χ|)ψ

(
ν
)
, χ ∈ Rn,

div
(
Λ(|∇ν|p−2)∇ν

)
= h(|χ|)ϕ

(
µ
)
, χ ∈ Rn,

where n ≥ 3, b, h, ψ, ϕ ∈ C([0, ∞), [0, ∞)) and Λ is a nonlinear operator belonging to
θ = {Λ ∈ C2([0, ∞), (0, ∞))|∃p ∈ (2, ∞) : Λ(ms) ≤ mp−2Λ(s), 0 < m < 1}.

Motivated by the above work, we studied the existence of entire positive radial
solutions to the following Schrödinger system{

div
(
Λ(|∇µ|p−2)∇µ

)
= b(|χ|)ψ

(
µ, ν
)
, χ ∈ Rn,

div
(
Λ(|∇ν|p−2)∇ν

)
= h(|χ|)ϕ

(
µ, ν
)
, χ ∈ Rn,

(1)

where n ≥ 3, b, h are continuous functions, Λ is a nonlinear operator belonging to θ and
ψ, ϕ are continuous functions satisfying Osgood-type conditions∫ ∞

i

1(
ψ
(
t, (ϕ(t, t))

1
p−1
)
+ 1
) 1

p−1
dt = ∞, ∀i > 0

and ∫ ∞

j

1(
ϕ
(
(ψ(t, t))

1
p−1 , t

)
+ 1
) 1

p−1
dt = ∞, ∀j > 0.

By employing the monotone iterative method, we give the existence results of positive
entire radial solutions to the Schrödinger system (1) under the cases where the components
µ and ν are bounded, µ and ν are blow-up, and one of the components is bounded while
the other is blow-up. The monotone iterative method plays a significant role in the study
of nonlinear problem, as can be seen in [18–28] and the references therein. To the best of
our knowledge, there is no work about the existence of the positive radial solutions of the
Schrödinger system (1) under the Osgood-type conditions. In addition, our results extended
the work of authors in [18,28–33].

2. Preliminaries

In this section, we give a definition, some notations, assumptions and Lemmas that
are subsequently needed in the proof.

Firstly, we present the definition about the classification of solutions.

Definition 1 ([34]). A solution (µ, ν) ∈ C2[0, ∞)× C2[0, ∞) of system (1) is called an entire
bounded solution if condition (2) is established; it is called an entire blow-up solution if condition
(3) is established; it is called a semifinite entire blow-up solution if condition (4) or (5) is established.
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Finite case: both components µ and ν are bounded, that is

lim
|χ|→∞

µ(|χ|) < ∞ and lim
|χ|→∞

ν(|χ|) < ∞. (2)

Infinite case: both components µ, ν are blow-up, that is

lim
|χ|→∞

µ(|χ|) = ∞ and lim
|χ|→∞

ν(|χ|) = ∞. (3)

Semifinite Case: one of the components is bounded, while the other is blow-up, that is

lim
|χ|→∞

µ(|χ|) < ∞ and lim
|χ|→∞

ν(|χ|) = ∞ (4)

or
lim
|χ|→∞

µ(|χ|) = ∞ and lim
|χ|→∞

ν(|χ|) < ∞. (5)

We then present the notations as follows: τ = |χ|, i, j, c1, c2 ∈ (0, ∞) are suitably chosen,

G1(τ) =
∫ τ

0
=−1

( 1
tn−1

∫ t

0
sn−1b(s)ds

)
dt,

G2(τ) =
∫ τ

0
=−1

( 1
tn−1

∫ t

0
sn−1h(s)ds

)
dt,

L(τ) =
∫ τ

i+j

dt

[(ψ + ϕ)(t, t) + 1]
1

p−1
, L(∞) := lim

τ→∞
L(τ),

G(τ) = G1(τ) + G2(τ), Gk(∞) := lim
τ→∞

Gk(τ), k = 1, 2,

ω1(τ) = ψ

(
1,
( j

ϕ(i, i)p−1 +
(
c2 ϕ(1, 1 +

L−1(G(τ))

i
) +

1
ϕ(i, i)

) 1
p−1 G2(τ)

))
,

ω2(τ) = ϕ

(( i
ψ(j, j)p−1 +

(
c1ψ(1 +

L−1(G(τ))

j
, 1) +

1
ψ(j, j)

) 1
p−1 G1(τ)

)
, 1
)

,

U1(τ) =
∫ τ

0
=−1

(
1

$n−1

∫ $

0
tn−1b(t)ψ

(
i, j + (

1
ϕ(i, j) + 1

)
1

p−1 G2(t)
)

dt
)

d$,

V1(τ) =
∫ τ

0
=−1

(
1

$n−1

∫ $

0
tn−1h(t)ϕ

(
i + (

1
ψ(i, j) + 1

)
1

p−1 G1(t), j
)

dt
)

d$,

U2(τ) =
∫ τ

0

(
c1ω1(t) + 1

) 1
p−1=−1

( ∫ t

0
b(s)ds

)
dt,

V2(τ) =
∫ τ

0

(
c2ω2(t) + 1

) 1
p−1=−1

( ∫ t

0
h(s)ds

)
dt,

Uk(∞) := lim
τ→∞

Uk(τ), Vk(∞) := lim
τ→∞

Vk(τ), f or k = 1, 2,

F1(τ) =
∫ τ

i

1(
ψ
(
t, (ϕ(t, t))

1
p−1
)
+ 1
) 1

p−1
dt, F1(∞) := lim

r→∞
F1(τ),

F2(τ) =
∫ τ

j

1(
ϕ
(
(ψ(t, t))

1
p−1 , t

)
+ 1
) 1

p−1
dt, F2(∞) := lim

r→∞
F2(τ).

Assume that ψ and ϕ satisfy the following assumptions.
(N1) ψ, ϕ ∈ C

(
[0, ∞) × [0, ∞), [0, ∞)

)
are increasing for every variable and

ψ(µ, ν) > 0, ϕ(µ, ν) > 0 for all µ, ν > 0;
(N2) for fixed constants i, j ∈ (0, ∞), there exist c1, c2 ∈ (0, ∞) such that

ψ(t1s1, t2s2) ≤ c1ψ(t1, t2)ψ(s1, s2),
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ϕ(t1s1, t3s3) ≤ c2 ϕ(t1, t3)ϕ(s1, s3),

ψ(i, j) ≥
√

5− 1
2

and ϕ(i, j) ≥
√

5− 1
2

,

where t1 ≥ min
{

i, j, ψ
1

p−1 (j, j)
}

, s1 ≥ min
{

1, iψ
1

1−p (j, j)
}

, t2 ≥ min
{

j, ϕ
1

p−1 (i, i)
}

,

s2 ≥ min
{

1, jϕ
1

1−p (i, i)
}

, t3 ≥ min
{

i, j
}

, s3 ≥ 1;
(S1) U2(∞) < F1(∞) < ∞, V2(∞) < F2(∞) < ∞;
(S2) U1(∞) < ∞, V1(∞) < ∞;
(S3) F1(∞) = F2(∞) = ∞, U2(∞) = V2(∞) = ∞;
(S4) U1(∞) = V1(∞) = ∞;
(S5) F1(∞) = ∞, U1(∞) = ∞, U2(∞) = ∞;
(S6) V1(∞) < ∞, V2(∞) < F2(∞) < ∞;
(S7) F2(∞) = ∞, V1(∞) = ∞, V2(∞) = ∞;
(S8) U1(∞) < ∞, U2(∞) < F1(∞) < ∞.

Lemma 1 ([18]). If Λ ∈ θ, let =(s) = sΛ(sp−2). We have
(1) : =(s) has a nonnegative increasing inverse mapping =−1(s);
(2) : If 0 < q < 1, we have

=−1(qs) ≥ q
1

p−1=−1(s);

(3) : If q ≥ 1, we have

=−1(qs) ≤ q
1

p−1=−1(s).

Through the similar proof as in [19], we can obtain the following Lemma.

Lemma 2. (µ, ν) ∈ C2[0, ∞)× C2[0, ∞) is a radial solution of the Schrödinger system (1) if and
only if it is a solution of the following ordinary differential system

(
Λ(|µ′|p−2)µ′

)′
+

n− 1
τ

Λ(|µ′|p−2)µ′ = b(τ)ψ
(
µ, ν
)
, τ > 0,(

Λ(|ν′|p−2)ν′
)′
+

n− 1
τ

Λ(|ν′|p−2)ν′ = h(τ)ϕ
(
µ, ν
)
, τ > 0.

(6)

3. The Entire Positive Bounded Radial Solutions

In this section, we prove Theorems 1 and 2.

Theorem 1. Assume that (N1), (N2) hold, then the system (1) has an entire positive radial
solution (µ, ν) ∈ C2[0, ∞)× C2[0, ∞).

Proof. Through an operation on system (6), we obtain
(
=(µ′)

)′
+

n− 1
τ
=(µ′) = b(τ)ψ

(
µ(τ), ν(τ)

)
, τ > 0,(

=(ν′)
)′
+

n− 1
τ
=(ν′) = h(τ)ϕ

(
µ(τ), ν(τ)

)
, τ > 0.

Obviously, the above system can be transformed into the following system
µ(τ) = µ(0) +

∫ τ

0
=−1

( 1
tn−1

∫ t

0
sn−1b(s)ψ

(
µ(s), ν(s)

)
ds
)

dt, τ ≥ 0,

ν(τ) = ν(0) +
∫ τ

0
=−1

( 1
tn−1

∫ t

0
sn−1h(s)ϕ

(
µ(s), ν(s)

)
ds
)

dt, τ ≥ 0.
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Define the sequences {µm(τ)}m≥0 and {νm(τ)}m≥0 on [0, ∞) by
µ0(τ) = µ(0) = i, ν0(τ) = ν(0) = j, τ ≥ 0,

µm(τ) = µ(0) +
∫ τ

0
=−1

( 1
tn−1

∫ t

0
sn−1b(s)ψ

(
µm−1(s), νm−1(s)

)
ds
)

dt, τ ≥ 0,

νm(τ) = ν(0) +
∫ τ

0
=−1

( 1
tn−1

∫ t

0
sn−1h(s)ϕ

(
µm−1(s), νm−1(s)

)
ds
)

dt, τ ≥ 0.

(7)

Using the similar arguments as in [19], we obtain the sequences {µm(τ)}m≥0 and
{νm(τ)}m≥0 are increasing and

(µm(τ) + νm(τ))′

[(ψ + ϕ)(µm(τ) + νm(τ), µm(τ) + νm(τ)) + 1]
1

p−1
≤ G′1(τ) + G′2(τ).

We then arrive at ∫ µm(τ)+νm(τ)

i+j

dt

[(ψ + ϕ)(t, t) + 1]
1

p−1
≤ G(τ).

Therefore,

L(µm(τ) + νm(τ)) ≤ G(τ).

By (N1), we can obtain that L′(τ) > 0 and L(τ) is a bijection. Clearly, the inverse
function L−1 is strictly increasing on [0, L(∞)) and

µm(τ) + νm(τ) ≤ L−1(G(τ)). (8)

By Lemma 1, (N1), (N2), (7) and (8), the monotonicity of {µm(τ)}m≥0 and {νm(τ)}m≥0,
we obtain

µm(τ) ≤i +
∫ τ

0
=−1

( 1
tn−1

∫ t

0
sn−1b(s)ψ

(
µm(s), νm(s)

)
ds
)

dt

≤i +
(

ψ
(
µm(τ), νm(τ)

)
+ 1
) 1

p−1
∫ τ

0
=−1

( 1
tn−1

∫ t

0
sn−1b(s)ds

)
dt

≤i +
(

ψ
(
νm(τ) + L−1(G(τ)), νm(τ)

)
+ 1
) 1

p−1 G1(τ)

=i +
(

ψ
(
νm(τ)(1 +

L−1(G(τ))

νm(τ)
), νm(τ)

)
+ 1
) 1

p−1 G1(τ)

≤i +
(

ψ
(
νm(τ)(1 +

L−1(G(τ))

j
), νm(τ)

)
+ 1
) 1

p−1 G1(τ)

≤i +
(

c1ψ
(
νm(τ), νm(τ)

)
ψ
(
1 +

L−1(G(τ))

j
, 1
)
+ 1
) 1

p−1 G1(τ)

=
(

ψ
(
νm(τ), νm(τ)

)) 1
p−1
( i

ψ(νm(τ), νm(τ))
1

p−1
+
(
c1ψ(1 +

L−1(G(τ))

j
, 1)

+
1

ψ(νm(τ), νm(τ))

) 1
p−1 G1(τ)

)
≤
(

ψ
(
νm(τ), νm(τ)

)) 1
p−1
( i

ψ(j, j)
1

p−1
+
(
c1ψ(1 +

L−1(G(τ))

j
, 1) +

1
ψ(j, j)

) 1
p−1 G1(τ)

)

(9)

and
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νm(τ) ≤j +
∫ τ

0
=−1

( 1
tn−1

∫ t

0
sn−1h(s)ϕ

(
µm(s), νm(s)

)
ds
)

dt

≤j +
(

ϕ
(
µm(τ), νm(τ)

)
+ 1
) 1

p−1
∫ τ

0
=−1

( 1
tn−1

∫ t

0
sn−1h(s)ds

)
dt

≤j +
(

ϕ
(
µm(τ), µm(τ) + L−1(G(τ))

)
+ 1
) 1

p−1 G2(τ)

=j +
(

ϕ
(
µm(τ), µm(τ)(1 +

L−1(G(τ))

µm(τ)
)
)
+ 1
) 1

p−1 G2(τ)

≤j +
(

ϕ
(
µm(τ), µm(τ)(1 +

L−1(G(τ))

i
)
)
+ 1
) 1

p−1 G2(τ)

≤j +
(

c2 ϕ
(
µm(τ), µm(τ)

)
ϕ
(
1, 1 +

L−1(G(τ))

i
)
+ 1
) 1

p−1 G2(τ)

=
(

ϕ
(
µm(τ), µm(τ)

)) 1
p−1
( j

ϕ(µm(τ), µm(τ))
1

p−1
+
(
c2 ϕ(1, 1 +

L−1(G(τ))

i
)

+
1

ϕ(µm(τ), µm(τ))

) 1
p−1 G2(τ)

)
≤
(

ϕ
(
µm(τ), µm(τ)

)) 1
p−1
( j

ϕ(i, i)
1

p−1
+
(
c2 ϕ(1, 1 +

L−1(G(τ))

i
) +

1
ϕ(i, i)

) 1
p−1 G2(τ)

)
.

(10)

By (N1), (N2), (9) and (10) and the monotonicity of {µm(τ)}m≥0 and {νm(τ)}m≥0,
we obtain

(
=
(
(µm(τ))

′))′ + n− 1
τ
=
((

µm(τ)
)′)

=b(τ)ψ
(
µm−1(τ), νm−1(τ)

)
≤b(τ)ψ

(
µm(τ), νm(τ)

)
≤b(τ)ψ

(
µm(τ),

(
ϕ
(
µm(τ), µm(τ)

)) 1
p−1
( j

ϕ(i, i)
1

p−1

+
(
c2 ϕ(1, 1 +

L−1(G(τ))

i
) +

1
ϕ(i, i)

) 1
p−1 G2(τ)

))
≤b(τ)c1ψ

(
µm(τ),

(
ϕ
(
µm(τ), µm(τ)

)) 1
p−1
)

ω1(τ)

and

(
=
(
(νm(τ))

′))′ + n− 1
τ
=
((

νm(τ)
)′)

=h(τ)ϕ
(
µm−1(τ), νm−1(τ)

)
≤h(τ)ϕ

(
µm(τ), νm(τ)

)
≤h(τ)ϕ

((
ψ
(
νm(τ), νm(τ)

)) 1
p−1
( i

ψ(j, j)
1

p−1

+
(
c1ψ(1 +

L−1(G(τ))

j
, 1) +

1
ψ(j, j)

) 1
p−1 G1(τ)

)
, νm(τ)

)
≤h(τ)c2 ϕ

((
ψ
(
νm(τ), νm(τ)

)) 1
p−1

, νm(τ)

)
ω2(τ).
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From the above inequalities, we obtain(
=
(
(µm(τ))

′))′ ≤(=((µm(τ))
′))′ + n− 1

τ
=−1

((
µm(τ)

)′)
≤b(τ)c1ψ

(
µm(τ),

(
ϕ
(
µm(τ), µm(τ)

)) 1
p−1
)

ω1(τ)
(11)

and (
=
(
(νm(τ))

′))′ ≤(=((νm(τ))
′))′ + n− 1

τ
=−1

((
νm(τ)

)′)
≤h(τ)c2 ϕ

((
ψ
(
νm(τ), νm(τ)

)) 1
p−1

, νm(τ)

)
ω2(τ).

(12)

We then arrive at

=
((

µm(τ)
)′) ≤ ∫ τ

0
b(s)c1ψ

(
µm(s),

(
ϕ
(
µm(s), µm(s)

)) 1
p−1
)

ω1(s)ds (13)

and

=
((

νm(τ)
)′) ≤ ∫ τ

0
h(s)c2 ϕ

((
ψ
(
νm(s), νm(s)

)) 1
p−1 , νm(s)

)
ω2(s)ds. (14)

By Lemma 1, (N1), (13) and (14), we obtain

(
µm(τ)

)′ ≤=−1
( ∫ τ

0
b(s)c1ψ

(
µm(s),

(
ϕ(µm(s), µm(s))

) 1
p−1
)

ω1(s)ds
)

≤=−1
(

c1ω1(τ)
∫ τ

0
b(s)ψ

(
µm(s),

(
ϕ(µm(s), µm(s))

) 1
p−1
)

ds
)

≤
(

c1ω1(τ) + 1
) 1

p−1

=−1
( ∫ τ

0
b(s)ψ

(
µm(s),

(
ϕ(µm(s), µm(s))

) 1
p−1
)

ds
)

≤
(

c1ω1(τ) + 1
) 1

p−1

=−1
(

ψ
(

µm(τ),
(

ϕ(µm(τ), µm(τ))
) 1

p−1
) ∫ τ

0
b(s)ds

)
≤
(

c1ω1(τ) + 1
) 1

p−1
(

ψ
(
µm(τ), (ϕ(µm(τ), µm(τ)))

1
p−1
)
+ 1
) 1

p−1=−1
( ∫ τ

0
b(s)ds

)

(15)

and

(
νm(τ)

)′ ≤=−1
( ∫ τ

0
h(s)c2 ϕ

((
ψ(νm(s), νm(s))

) 1
p−1 , νm(s)

)
ω2(s)ds

)
≤=−1

(
c2ω2(τ)

∫ τ

0
h(s)ϕ

((
ψ(νm(s), νm(s))

) 1
p−1 , νm(s)

)
ds
)

≤
(

c2ω2(τ) + 1
) 1

p−1

=−1
( ∫ τ

0
h(s)ϕ

((
ψ(νm(s), νm(s))

) 1
p−1 , νm(s)

)
ds
)

≤
(

c2ω2(τ) + 1
) 1

p−1

=−1
(

ϕ
((

ψ(νm(τ), νm(τ))
) 1

p−1 , νm(τ)
) ∫ τ

0
h(s)ds

)
≤
(

c2ω2(τ) + 1
) 1

p−1
(

ϕ
(
(ψ(νm(τ), νm(τ)))

1
p−1 , νm(τ)

)
+ 1
) 1

p−1=−1
( ∫ τ

0
h(s)ds

)
.

(16)

From the above two inequalities, we easily deduce that(
µm(τ)

)′(
ψ
(
µm(τ), (ϕ(µm(τ), µm(τ)))

1
p−1
)
+ 1
) 1

p−1
≤
(

c1ω1(τ) + 1
) 1

p−1=−1
( ∫ τ

0
b(s)ds

)
(17)
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and (
νm(τ)

)′(
ϕ
(
(ψ(νm(τ), νm(τ)))

1
p−1 , νm(τ)

)
+ 1
) 1

p−1
≤
(

c2ω2(τ) + 1
) 1

p−1=−1
( ∫ τ

0
h(s)ds

)
. (18)

We then arrive at ∫ µm(τ)

i

1(
ψ
(
t, (ϕ(t, t))

1
p−1
)
+ 1
) 1

p−1
dt

≤
∫ τ

0

(
c1ω1(t) + 1

) 1
p−1=−1

( ∫ t

0
b(s)ds

)
dt

and ∫ νm(τ)

j

1(
ϕ
(
(ψ(t, t))

1
p−1 , t

)
+ 1
) 1

p−1
dt

≤
∫ τ

0

(
c2ω2(t) + 1

) 1
p−1=−1

( ∫ t

0
h(s)ds

)
dt.

Now the above two inequalities can be expressed as

F1(µm(τ)) ≤ U2(τ), ∀τ ≥ 0 (19)

and

F2(νm(τ)) ≤ V2(τ), ∀τ ≥ 0. (20)

It follows from the (N1) that F−1
1 and F−1

2 are strictly increasing on [0, F1(∞)) and
[0, F2(∞)) separately, we obtain

µm(τ) ≤ F−1
1
(
U2(τ)

)
, ∀τ ≥ 0

and

νm(τ) ≤ F−1
2
(
V2(τ)

)
, ∀τ ≥ 0.

Since

(µm(τ))
′ ≥ 0 and (νm(τ))

′ ≥ 0, ∀τ ≥ 0,

we obtain

µm(τ) ≤ µm(c0) ≤W1 and νm(τ) ≤ νm(c0) ≤W2, on [0, c0],

where W1 = F−1
1 (U2(c0)) and W2 = F−1

2 (V2(c0)) are positive constants. Moreover, from
(15) and (16), we can deduce that {(µm(τ))′} and {(νm(τ))′} are bounded on [0, c0] for
arbitrary c0 > 0. Therefore, the monotone sequences {µm(τ)} and {νm(τ)} are bounded
and equicontinuous on [0, c0]. By employing the Arzela–Ascoli theorem, we obtain the
subsequences of {µm(τ)} and {νm(τ)} uniformly converging towards µ(r) and ν(r) on
[0, c0]. According to the arbitrariness of c0, we obtain that (µ, ν) is an entire positive solution
of the system (6). Thus, from Lemma 2, we obtain that (µ, ν) is an entire positive radial
solution of the system (1).
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Theorem 2. Assuming that (N1), (N2), (S1) and (S2) hold, then the system (1) has an entire
positive bounded radial solution (µ, ν) such that{

i + U1(τ) ≤ µ(τ) ≤ F−1
1 (U2(τ)),

j + V1(τ) ≤ ν(τ) ≤ F−1
2 (V2(τ)).

Proof. On the basis of (N1) and (N2), by Theorem 1, we see that the system (1) has an
entire positive radial solution (µ, ν). Moreover, it follows from (19), (20) and (S1) that

F1(µm(τ)) ≤ U2(∞) < F1(∞) < ∞, ∀τ ≥ 0

and

F2(νm(τ)) ≤ V2(∞) < F2(∞) < ∞, ∀τ ≥ 0.

Since F−1
1 and F−1

2 are strictly increasing on [0, F1(∞)) and [0, F2(∞)) separately, we
obtain

µm(τ) ≤ F−1
1
(
U2(∞)

)
< ∞, ∀τ ≥ 0

and

νm(τ) ≤ F−1
2
(
V2(∞)

)
< ∞, ∀τ ≥ 0.

Letting m→ ∞ into the above two inequalities, we obtain

µ(τ) ≤ F−1
1
(
U2(∞)

)
< ∞, ∀τ ≥ 0 (21)

and

ν(τ) ≤ F−1
2
(
V2(∞)

)
< ∞, ∀τ ≥ 0. (22)

Letting m→ ∞ in (7), we obtain

µ(τ) = i +
∫ τ

0
=−1

( 1
tn−1

∫ t

0
sn−1b(s)ψ

(
µ(s), ν(s)

)
ds
)

dt

and

ν(τ) = j +
∫ τ

0
=−1

( 1
tn−1

∫ t

0
sn−1h(s)ϕ

(
µ(s), ν(s)

)
ds
)

dt.

Then, it follows from Lemma 1, (N1), (N2) and (S2) that

µ(r) =i +
∫ τ

0
=−1

( 1
tn−1

∫ t

0
sn−1b(s)ψ

(
µ(s), ν(s)

)
ds
)

dt

≥i +
∫ τ

0
=−1

(
1

$n−1

∫ $

0
tn−1b(t)ψ

(
i, j+∫ t

0
=−1

( 1
σn−1

∫ σ

0
sn−1h(s)ϕ(µ(s), ν(s))ds

)
dσ
)

dt
)

d$

≥i +
∫ τ

0
=−1

(
1

$n−1

∫ $

0
tn−1b(t)ψ

(
i, j + (

1
ϕ(i, j) + 1

)
1

p−1 G2(t)
)

dt
)

d$

=i + U1(τ).

(23)

As with the above proof, we can prove that

ν(τ) ≥ j + V1(τ). (24)
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4. The Entire Positive Blow-Up Radial Solutions

In this section, we prove Theorem 3.

Theorem 3. Assume that (N1), (N2), (S3) and (S4) hold, then the system (1) has an entire
positive blow-up radial solution (µ, ν) ∈ C2[0, ∞)× C2[0, ∞).

Proof. On the basis of (N1), (N2), by Theorem 1, we see that the system (1) has an entire
positive radial solution (µ, ν) ∈ C2[0, ∞)× C2[0, ∞). Moreover, it follows from (19) and
(20) that

F1(µm(τ)) ≤ U2(∞), ∀τ ≥ 0

and

F2(νm(τ)) ≤ V2(∞), ∀τ ≥ 0.

Since F−1
1 and F−1

2 are strictly increasing on [0, F1(∞)) and [0, F2(∞)) separately, we
arrive at

µm(τ) ≤ F−1
1
(
U2(∞)

)
, ∀τ ≥ 0

and

νm(τ) ≤ F−1
2
(
V2(∞)

)
, ∀τ ≥ 0.

When (S3) holds, we see that F−1
1 (∞) = F−1

2 (∞) = ∞. Letting m→ ∞ into the above
two inequalities, we have

µ(τ) ≤ F−1
1
(
U2(∞)

)
, ∀τ ≥ 0

and

ν(τ) ≤ F−1
2
(
V2(∞)

)
, ∀τ ≥ 0.

By condition (S3), letting τ → ∞ into the above two inequalities, we obtain

lim
τ→∞

µ(τ) ≤ F−1
1
(
U2(∞)

)
= ∞, ∀τ ≥ 0 (25)

and

lim
τ→∞

ν(τ) ≤ F−1
2
(
V2(∞)

)
= ∞, ∀τ ≥ 0. (26)

Then, it follows from (S4), (23) and (24) that

lim
τ→∞

µ(τ) ≥ i + lim
τ→∞

U1(τ) > U1(∞) = ∞ (27)

and

lim
τ→∞

ν(τ) ≥ j + lim
τ→∞

V1(τ) > V1(∞) = ∞. (28)

Consequently,
lim

τ→∞
µ(τ) = ∞ and lim

τ→∞
ν(τ) = ∞,

which imply that the system (6) has an entire positive blow-up solution (µ, ν) ∈ C2[0, ∞)×
C2[0, ∞). From Lemma 2, the system (1) has an entire positive blow-up radial solution
(µ, ν) ∈ C2[0, ∞)× C2[0, ∞).
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5. The Semifinite Entire Positive Blow-Up Radial Solutions

In this section, we prove Theorems 4 and 5.

Theorem 4. Assuming that (N1), (N2), (S5) and (S6) hold, the system (1) then has a semifinite
entire positive blow-up radial solution (µ, ν) ∈ C2[0, ∞)× C2[0, ∞).

Proof. In view of (N1), (N2), by Theorem 1, we see that system (1) has an entire positive
radial solution (µ, ν) ∈ C2[0, ∞)× C2[0, ∞). By (S5), (25) and (27), we obtain

lim
τ→∞

µ(τ) ≤ F−1
1
(
U2(∞)

)
= ∞

and

lim
τ→∞

µ(τ) ≥ i + lim
τ→∞

U1(τ) > U1(∞) = ∞,

which imply that
lim

τ→∞
µ(τ) = ∞.

Moreover, by (S6), (22) and (24), we obtain

lim
τ→∞

ν(τ) ≤ F−1
2
(
V2(∞)

)
< ∞

and

lim
τ→∞

ν(τ) ≥ j + lim
τ→∞

V1(τ) > V1(∞), V1(∞) < ∞,

which imply that
lim

ν→∞
ν(τ) < ∞.

Therefore, system (6) has a semifinite entire positive blow-up solution
(µ, ν) ∈ C2[0, ∞)× C2[0, ∞). From Lemma 2, the system (1) has a semifinite entire positive
blow-up radial solution (µ, ν) ∈ C2[0, ∞)× C2[0, ∞).

Theorem 5. Assume that (N1), (N2), (S7) and (S8) hold, then the system (1) has a semifinite
entire positive blow-up radial solution (µ, ν) ∈ C2[0, ∞)× C2[0, ∞).

Proof. In view of (N1), (N2), by Theorem 1, we see that system (1) has an entire positive
radial solution (µ, ν) ∈ C2[0, ∞)× C2[0, ∞). By (S7), (26) and (28), we obtain

lim
τ→∞

ν(τ) ≤ F−1
2
(
V2(∞)

)
= ∞

and

lim
τ→∞

ν(τ) ≥ j + lim
τ→∞

V1(τ) > V1(∞) = ∞,

which imply that
lim

τ→∞
ν(τ) = ∞.

Moreover, by (S8), (21) and (23), we obtain

lim
τ→∞

µ(τ) ≤ F−1
1
(
U2(∞)

)
< ∞

and

lim
τ→∞

µ(τ) ≥ i + lim
τ→∞

U1(τ) > U1(∞), U1(∞) < ∞,

which imply that
lim

τ→∞
µ(τ) < ∞.
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Therefore, system (6) has a semifinite entire positive blow-up solution (µ, ν) ∈
C2[0, ∞)× C2[0, ∞). From Lemma 2, system (1) has a semifinite entire positive blow-up
radial solution (µ, ν) ∈ C2[0, ∞)× C2[0, ∞).

6. Example

Example 1. Consider the following Schrödinger system
div
(
Λ(|∇µ|5)∇µ

)
=

3
4

3− |χ|
|χ|e|χ|

µ
1
2 ν

1
2 , χ ∈ R6,

div
(
Λ(|∇ν|5)∇ν

)
=

1
4

3− 2|χ|
|χ|e2|χ| µ

1
3 ν

2
3 , χ ∈ R6.

(29)

Let Λ(s) = s5, p = 7, then Λ ∈ θ. Here b(s) = 3−s
ses , h(s) = 3−2s

se2s , ψ(µ, ν) = 3
4 µ

1
2 ν

1
2 ,

ϕ(µ, ν) = 1
4 µ

1
3 ν

2
3 , then ψ and ϕ are increasing for each variable and (N1) holds. Obviously,

when i = j = 4, we have t1 ≥ 6
√

3, s1 ≥ 1, t2 ≥ 1, s2 ≥ 1, t3 ≥ 4, s3 ≥ 1,

ψ(t1s1, t2s2) =
3
4

t
1
2
1 s

1
2
1 t

1
2
2 s

1
2
2 ≤ c1

3
4

t
1
2
1 t

1
2
2

3
4

s
1
2
1 s

1
2
2 = c1ψ(t1, t2)ψ(s1, s2), ∀c1 ≥

4
3

,

ϕ(t1s1, t3s3) =
1
4

t
1
3
1 s

1
3
1 t

2
3
3 s

2
3
3 ≤ c2

1
4

t
1
3
1 t

2
3
3

1
4

s
1
3
1 s

2
3
3 = c2 ϕ(t1, t3)ϕ(s1, s3), ∀c2 ≥ 4,

ψ(i, j) ≥
√

5− 1
2

and ϕ(i, j) ≥
√

5− 1
2

,

meaning that (N2) is established. From Theorem 1, the Schrödinger system (29) has an
entire positive radial solution (µ, ν) ∈ C2[0, ∞)× C2[0, ∞).

Example 2. Consider the following Schrödinger system{
div
(
Λ(|∇µ|3)∇µ

)
= |χ|3(µ4 + ν3), χ ∈ R4,

div
(
Λ(|∇ν|3)∇ν

)
= (3|χ|−1e|χ| + e|χ|)µν3, χ ∈ R4.

(30)

Let Λ(s) = s3, p = 5, then Λ ∈ θ. Here, b(s) = s3, h(s) = 3s−1es + es, ψ(µ, ν) =
µ4 + ν3, ϕ(µ, ν) = µν3, then ϕ and ψ are increasing for each variable and (N1) holds.
Obviously, when i = j = 1, we have t1 ≥ 1, s1 ≥ 1

4√2
, t2 ≥ 1, s2 ≥ 1, t3 ≥ 1, s3 ≥ 1,

ψ(t1s1, t2s2) = t4
1s4

1 + t3
2s3

2 ≤ c1(t4
1 + t3

2)(s
4
1 + s3

2) = c1ψ(t1, t2)ψ(s1, s2), ∀c1 ≥ 1,

ϕ(t1s1, t3s3) = t1s1t3
3s3

3 ≤ c2t1t3
3s1s3

3 = c2 ϕ(t1, t3)ϕ(s1, s3), ∀c2 ≥ 1,

ψ(i, j) ≥
√

5− 1
2

and ϕ(i, j) ≥
√

5− 1
2

,

meaning that (N2) is established. After a simple calculation, one has

U2(∞) =
∫ ∞

0

(
c1ω1(t) + 1

) 1
4=−1

( ∫ t

0
b(s)ds

)
dt >

∫ ∞

0

10

√
1
4

t4dt

=
10

√
1
4

∫ ∞

0
t

2
5 dt = ∞,

V2(∞) =
∫ ∞

0

(
c2ω2(t) + 1

) 1
4=−1

( ∫ t

0
h(s)ds

)
dt >

∫ ∞

0

10√etdt

=
∫ ∞

0
e

t
10 dt = ∞,

F1(∞) =
∫ ∞

i

1(
ψ
(
t, (ϕ(t, t))

1
4
)
+ 1
) 1

4
dt =

∫ ∞

i

1
4
√

t4 + t3 + 1
dt = ∞
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and

F2(∞) =
∫ ∞

j

1(
ϕ
(
(ψ(t, t))

1
4 , t
)
+ 1
) 1

4
dt =

∫ ∞

j

1
4
√
(t4 + t3)

1
4 t3 + 1

dt = ∞,

meaning that (S3) is established. We then have

G1(τ) =
∫ τ

0
=−1

( 1
t3

∫ t

0
s3b(s)ds

)
dt =

∫ τ

0

( 1
t3

∫ t

0
s6ds

) 1
10 dt = 10

√
1
7

∫ τ

0
t

2
5 dt =

5
7

10

√
1
7

τ
7
5 ,

G2(τ) =
∫ τ

0
=−1

( 1
t3

∫ t

0
s3h(s)ds

)
dt =

∫ τ

0

( 1
t3

∫ t

0
s2es(3 + s)ds

) 1
10 dt =

∫ τ

0
e

t
10 dt = 10e

τ
10 ,

U1(∞) =
∫ ∞

0
=−1

(
1
$3

∫ $

0
t3b(t)ψ

(
i, j + (

1
ϕ(i, j) + 1

)
1

p−1 G2(t)
)

dt
)

d$

>
∫ ∞

0
=−1

( 1
$3

∫ $

0
t3b(t)ψ(i, j)dt

)
d$

>
∫ ∞

0
=−1

( 1
$3

∫ $

0
t3b(t)

( 1
ψ(i, j) + 1

)
dt
)

d$

>
( 1

ψ
(
i, j
)
+ 1

) 1
p−1

∫ ∞

0
=−1

( 1
$3

∫ $

0
t3b(t)dt

)
d$

=
( 1

2 + 1

) 1
4 G1(∞) = ∞

and

V1(∞) =
∫ ∞

0
=−1

(
1
$3

∫ $

0
t3h(t)ϕ

(
i + (

1
ψ(i, j) + 1

)
1

p−1 G1(t), j
)

dt
)

d$

>
∫ ∞

0
=−1

( 1
$3

∫ $

0
t3h(t)ϕ(i, j)dt

)
d$

>
∫ ∞

0
=−1

( 1
$3

∫ $

0
t3h(t)

( 1
ϕ(i, j) + 1

)
dt
)

d$

>
( 1

ϕ(i, j) + 1

) 1
p−1

∫ ∞

0
=−1

( 1
$3

∫ $

0
t3h(t)dt

)
d$

=
( 1

1 + 1

) 1
4 G2(∞) = ∞,

meaning that (S4) is established. From Theorem 3, the Schrödinger system (30) has an
entire positive blow-up radial solution (µ, ν) ∈ C2[0, ∞)× C2[0, ∞).

Example 3. Consider the following Schrödinger system{
div
(
Λ(|∇µ|4)∇µ

)
= |χ|5(µ4 + ν), χ ∈ R5,

div
(
Λ(|∇ν|4)∇ν

)
= (6|χ|−1e|χ| + 2e|χ|)µ2ν2, χ ∈ R5.

(31)

Let Λ(s) = s4, p = 6, then Λ ∈ θ. Here, b(s) = s5, h(s) = 6s−1es + 2es, ψ(µ, ν) =
µ4 + ν, ϕ(µ, ν) = µ2ν2, then ϕ and ψ are increasing for each variable and (N1) holds.
Obviously, when i = j = 1, we have t1 ≥ 1, s1 ≥ 1

5√2
, t2 ≥ 1, s2 ≥ 1, t3 ≥ 1, s3 ≥ 1,

ψ(t1s1, t2s2) = t4
1s4

1 + t2s2 ≤ c1(t4
1 + t2)(s4

1 + s2) = c1ψ(t1, t2)ψ(s1, s2), ∀c1 ≥ 1,

ϕ(t1s1, t3s3) = t2
1s2

1t2
3s2

3 ≤ c2t2
1t2

3s2
1s2

3 = c2 ϕ(t1, t3)ϕ(s1, s3), ∀c2 ≥ 1,
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ψ(i, j) ≥
√

5− 1
2

and ϕ(i, j) ≥
√

5− 1
2

,

meaning that (N2) is established. After a simple calculation, one has

U2(∞) =
∫ ∞

0

(
c1ω1(t) + 1

) 1
4=−1

( ∫ t

0
b(s)ds

)
dt >

∫ ∞

0

17

√
1
6

t6dt

=
17

√
1
6

∫ ∞

0
t

6
17 dt = ∞,

V2(∞) =
∫ ∞

0

(
c2ω2(t) + 1

) 1
4=−1

( ∫ t

0
h(s)ds

)
dt >

∫ ∞

0

17√etdt

=
∫ ∞

0
e

t
17 dt = ∞,

F1(∞) =
∫ ∞

i

1(
ψ
(
t, (ϕ(t, t))

1
4
)
+ 1
) 1

4
dt =

∫ ∞

i

1
4
√

t4 + t + 1
dt = ∞

and

F2(∞) =
∫ ∞

j

1(
ϕ
(
(ψ(t, t))

1
4 , t
)
+ 1
) 1

4
dt =

∫ ∞

j

1
4
√

t2(t4 + t)
1
2 + 1

dt = ∞,

meaning that (S3) is established. We then have

G1(τ) =
∫ τ

0
=−1

( 1
t3

∫ t

0
s3b(s)ds

)
dt =

∫ τ

0

( 1
t3

∫ t

0
s8ds

) 1
17 dt = 17

√
1
9

∫ τ

0
t

6
17 dt =

17
23

10

√
1
9

τ
23
17 ,

G2(τ) =
∫ τ

0
=−1

( 1
t3

∫ t

0
s3h(s)ds

)
dt =

∫ τ

0

( 1
t3

∫ t

0
s2es(6 + 2s)ds

) 1
17 dt = 17

√
2
∫ τ

0
e

t
17 dt = 17 17

√
2e

τ
17 ,

U1(∞) =
∫ ∞

0
=−1

(
1
$4

∫ $

0
t4b(t)ψ

(
i, j + (

1
ϕ(i, j) + 1

)
1

p−1 G2(t)
)

dt
)

d$

>
∫ ∞

0
=−1

( 1
$4

∫ $

0
t4b(t)ψ(i, j)dt

)
d$

>
∫ ∞

0
=−1

( 1
$4

∫ $

0
t4b(t)

( 1
ψ(i, j) + 1

)
dt
)

d$

>
( 1

ψ
(
i, j
)
+ 1

) 1
p−1

∫ ∞

0
=−1

( 1
$4

∫ $

0
t4b(t)dt

)
d$

=
( 1

2 + 1

) 1
5
G1(∞) = ∞

and

V1(∞) =
∫ ∞

0
=−1

(
1
$4

∫ $

0
t4h(t)ϕ

(
i + (

1
ψ(i, j) + 1

)
1

p−1 G1(t), j
)

dt
)

d$

>
∫ ∞

0
=−1

( 1
$4

∫ $

0
t4h(t)ϕ(i, j)dt

)
d$

>
∫ ∞

0
=−1

( 1
$4

∫ $

0
t4h(t)

( 1
ϕ(i, j) + 1

)
dt
)

d$

>
( 1

ϕ(i, j) + 1

) 1
p−1

∫ ∞

0
=−1

( 1
$4

∫ $

0
t4h(t)dt

)
d$

=
( 1

1 + 1

) 1
5
G2(∞) = ∞,
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which mean that (S4) is established. From Theorem 3, the Schrödinger system (31) has an
entire positive blow-up radial solution (µ, ν) ∈ C2[0, ∞)× C2[0, ∞).

Author Contributions: G.W., Z.Z. and Z.Y. equally contributed this manuscript and approved the final
version. All authors have read and agreed to the published version of this manuscript.

Funding: The work was supported by NSF of Shanxi Province, China (No. 20210302123339) and the
Graduate Education and Teaching Innovation Project of Shanxi, China (No. 2021YJJG142).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We thank the referees for their useful comments on our work that led to
its improvement.

Conflicts of Interest: The authors declare that they have no competing interests.

References

1. Osgood, W.F. Beweis der Existenz einer LÖsung der Differential gleichung dy
dx = f (x, y) ohne Hinzunahme der Cauchy-

Lipschitz’schen Bedingung. Monatsh. Math. Phys. 1898, 9, 331–345. [CrossRef]
2. Papi, M. A generalized Osgood condition for viscosity solutions to fully nonlinear parabolic degenerate equations. Adv. Differ.

Equ. 2002, 7, 1125–1151.
3. Fan, S.; Jiang, L.; Davison, M. Existence and uniqueness result for multidimensional BSDEs with generators of Osgood type.

Front. Math. China 2013, 8, 811–824. [CrossRef]
4. Li, K. No local L1 solutions for semilinear fractional heat equations. Fract. Calc. Appl. Anal. 2017, 20, 1328–1337. [CrossRef]
5. Villa-Morales, J. An Osgood condition for a semilinear reaction-diffusion equation with time-dependent generator. Arab J. Math.

Sci. 2016, 22, 86–95. [CrossRef]
6. Zhang, L.; Hou, W. Standing waves of nonlinear fractional p-Laplacian Schrödinger equation involving logarithmic nonlinearity.

Appl. Math. Lett. 2020, 102, 106149. [CrossRef]
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