Some Generalized Euclidean Operator Radius Inequalities
Abstract
:1. Introduction
2. Inequalities for the Generalized Euclidean Operator Radius
3. Upper and Lower Bounds for the Generalized Euclidean Operator Radius
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kittaneh, F. A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix. Studia Math. 2003, 158, 11–17. [Google Scholar] [CrossRef] [Green Version]
- Kittaneh, F. Numerical radius inequalities for Hilbert space operators. Studia Math. 2005, 168, 73–80. [Google Scholar] [CrossRef] [Green Version]
- Alomari, M.W. On the generalized mixed Schwarz inequality. Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerbaijan 2020, 46, 3–15. [Google Scholar] [CrossRef]
- Alomari, M.W. Improvements of some numerical radius inequalities. Azerbaijan J. Math. 2022, 12, 124–137. [Google Scholar]
- Dragomir, S.S. Inequalities for the numerical radius of linear operators in Hilbert spaces. In SpringerBriefs in Mathematics; Springer: Cham, Switzerland, 2013. [Google Scholar]
- El-Haddad, M.; Kittaneh, F. Numerical radius inequalities for Hilbert space operators. II. Studia Math. 2007, 182, 133–140. [Google Scholar] [CrossRef]
- Kittaneh, F.; Manasrah, Y. Improved Young and Heinz inequalities for matrices. J. Math. Anal. Appl. 2010, 361, 262–269. [Google Scholar] [CrossRef] [Green Version]
- Bakherad, M.; Shebrawi, K. Upper bounds for numerical radius inequalities involving off-diagonal operator matrices. Ann. Funct. Anal. 2018, 9, 297–309. [Google Scholar] [CrossRef] [Green Version]
- Sattari, M.; Moslehian, M.S.; Yamazaki, T. Some generalized numerical radius inequalities for Hilbert space operators. Linear Algebra Appl. 2015, 470, 216–227. [Google Scholar] [CrossRef]
- Dragomir, S.S. Some inequalities for the norm and the numerical radius of linear operator in Hilbert spaces. Tamkang J. Math. 2008, 39, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Dragomir, S.S. Some Inequalities generalizing Kato’s and Furuta’s results. FILOMAT 2014, 28, 179–195. [Google Scholar] [CrossRef]
- Kittaneh, F.; Moslehian, M.S.; Yamazaki, T. Cartesian decomposition and numerical radius inequalities. Linear Algebra Appl. 2015, 471, 46–53. [Google Scholar] [CrossRef]
- Popescu, G. Unitary Invariants in Multivariable Operator Theory; American Mathematical Society: Providence, RI, USA, 2009; Volume 200. [Google Scholar]
- Moslehian, M.S.; Sattari, M.; Shebrawi, K. Extension of Euclidean operator radius inequalities. Math. Scand. 2017, 120, 129–144. [Google Scholar] [CrossRef]
- Sheikhhosseini, A.; Moslehian, M.S.; Shebrawi, K. Inequalities for generalized Euclidean operator radius via Young’s inequality. J. Math. Anal. Appl. 2017, 445, 1516–1529. [Google Scholar] [CrossRef]
- Alomari, M.W. On Some Inequalities for the generalized Euclidean operator radius. Preprints 2019, 2019120389. [Google Scholar] [CrossRef]
- Kittaneh, F. Notes on some inequalities for Hilbert Space operators. Publ. Res. Inst. Math. Sci. 1988, 24, 283–293. [Google Scholar] [CrossRef] [Green Version]
- Al-Manasrah, Y.; Kittaneh, F. A generalization of two refined Young inequalities. Positivity 2015, 19, 757–768. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alomari, M.W.; Shebrawi, K.; Chesneau, C. Some Generalized Euclidean Operator Radius Inequalities. Axioms 2022, 11, 285. https://doi.org/10.3390/axioms11060285
Alomari MW, Shebrawi K, Chesneau C. Some Generalized Euclidean Operator Radius Inequalities. Axioms. 2022; 11(6):285. https://doi.org/10.3390/axioms11060285
Chicago/Turabian StyleAlomari, Mohammad W., Khalid Shebrawi, and Christophe Chesneau. 2022. "Some Generalized Euclidean Operator Radius Inequalities" Axioms 11, no. 6: 285. https://doi.org/10.3390/axioms11060285
APA StyleAlomari, M. W., Shebrawi, K., & Chesneau, C. (2022). Some Generalized Euclidean Operator Radius Inequalities. Axioms, 11(6), 285. https://doi.org/10.3390/axioms11060285