A Story of Computational Science: Colonel Titus’ Problem from the 17th Century
Abstract
:1. Introduction
2. Colonel Titus’ Problem
2.1. Ladies’ Diary 1725 Question 113
2.2. A Renewed Interest in Colonel Titus’ Problem
2.3. The Scientific Receptacle 1796 Question 209
2.4. First Reformulation and then Elimination
2.5. Simultaneous Solution of the Three Unknowns
2.6. Erroneous Solution
3. The Pell–Wallis Equation
3.1. Digit-by-Digit Methods
3.2. Bracketing Methods
3.3. Linear Interpolation
3.4. The Newton–Raphson Method
3.5. Halley’s Method
3.6. Ferrari–Cardano Approach
3.7. Gräffe’s Method
3.8. Miscellaneous Methods and Comments
- Wells pointed out in 1698 that the Pell–Wallis equation was solved by Raphson, Halley, and Wallis using the Newton–Raphson method, Halley’s methods, and Vietè’s method [73], pp. 213–214.
- With reference to [72] (pp. 74–75) for the Pell–Wallis equation Carlos Calvo Carbonell [77] derived the depressed quartic (14) and scaled the variable and obtained the equationBy graphical inspection, the roots of (18) are located in intervals of length 0.01.For a point in the interval, a first correction method is a Newton-Raphson iteration, then a correction based on the next term in the Taylor expansion. The four roots are computed using two or three corrections.
- Silvestre François Lacroix (1765–1843) [78], p. 261 discussed the Pell–Wallis equation as a problem of scaling the coefficients and found that the two roots are between 0 and 10 and 10 and 20.
- Leonard Eugene Dickson (1874–1954), in his book on Elementary theory of Equations from 1914, used the Pell-Wallis equation as a problem. He first found two approximate roots r and s and then the next two roots and by solving using expressions for and as functions of r and s [80], p. 121.
3.9. An Early Comparison of Four Algorithms on Three Examples
4. Concluding Remarks
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stedall, J.A. Tracing mathematical networks in seventeenth-century England. In The Oxford Handbook of the History of Mathematics; Robson, E., Stedall, J., Eds.; Oxford University Press: Oxford, UK, 2009; pp. 133–151. [Google Scholar]
- Wallis, J. A Treatise of Algebra, Both Historical and Practical; Richard Davis: London, UK, 1685. [Google Scholar] [CrossRef]
- Cockle, J. Horæ algebraicæ, XI Quadratic equations. Mech. Mag. 1849, 50, 33–36. [Google Scholar]
- Bonnycastle, J. Treatise on Algebra, in Practice and Theory, with Notes and Illustrations, 2nd ed.; J. Nunn: London, UK, 1820; Volume 1. [Google Scholar]
- Williams, J.D. An Elementary Treatise on Algebra, in Theory and Practice; Hilliard, Gray & Co: Boston, MA, USA, 1840. [Google Scholar]
- Anonymous. The Diarian Repository; or, Mathematical Register: Containing a Complete Collection of All the Mathematical Questions Which Have Been Published in the Ladies Diary, from the Commencement of that Work in 1704, to the Year 1760; Together with Their Solutions Fully Investigated, According to the Latest Improvements. The Whole Designed as an Easy and Familiar Praxis for Young Students in Mathematical and Philosophical Learning by A Society of Mathematicians; G. Robinson: London, UK, 1774. [Google Scholar]
- Hutton, C. The Diarian Miscellany: Consisting of All the Useful and Entertaining Parts, Both Mathematical and Poetical, Extracted from the Ladies’ Diary, from the Beginning of that Work in the Year 1704, Down to the End of the Year 1773. With Many Additional Solutions and Improvements; Vol. I, G. Robinson and R. Baldwin: London, UK, 1775. [Google Scholar]
- Leybourn, T. The Mathematical Questions, Proposed in the Ladies’ Diary; Vol. I, J. Mawman: London, UK, 1817. [Google Scholar]
- Whiting, T. The Scientific Receptacle; Printed by W. Kemmish: London, UK, 1796. [Google Scholar]
- Sturmfels, B. Solving Systems of Polynomial Equations; American Mathematical Society: Providence, RI, USA, 2002. [Google Scholar]
- Ding, J.; Petzoldt, A.; Schmidt, D.S. Solving Polynomial Systems. In Multivariate Public Key Cryptosystems; Springer: New York, NY, USA, 2020; pp. 185–248. [Google Scholar] [CrossRef]
- Cox, D.A.; Little, J.; O’Shea, D. Robotics and Automatic Geometric Theorem Proving. In Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra; Springer International Publishing: Cham, Switzerland, 2015; pp. 291–343. [Google Scholar] [CrossRef]
- McNamee, J.M. Numerical Methods for Roots of Polynomials—Part I; Elsevier Science: Amsterdam, The Netherlands, 2007. [Google Scholar]
- McNamee, J.M.; Pan, V.Y. Numerical Methods for Roots of Polynomials—Part II; Elsevier Science: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Abhyankar, S.S. Historical ramblings in algebraic geometry and related algebra. Am. Math. Mon. 1976, 83, 409–448. [Google Scholar] [CrossRef]
- Maseres, F. (Ed.) Tracts on the Resolution of Affected Algebraic Equations by Dr. Halley’s, Mr. Raphson’s and Sir Isaac Newton’s Methods of Approximation; Printed by J.Davis and sold by J. White: London, UK, 1800. [Google Scholar]
- Leybourn, T. The Mathematical Questions, Proposed in the Ladies’ Diary; Vol. IV, J. Mawman: London, UK, 1817. [Google Scholar]
- Davies, T.S. Solutions of the Principal Questions of Dr. Hutton’s Course of Mathematics; Printed for Longman, Orme, & Co: London, UK, 1840. [Google Scholar]
- Peacock, A. Brief solution of a celebrated algebraic problem. Mech. Mag. 1843, 39, 295–297. [Google Scholar]
- Kirkby, J. Arithmetical Institutions Containing a Compleat System of Arithmetic, Natural, Logarithmical, and Algebraical in All Their Branches; B.Motte and C.Bathurst: London, UK, 1735. [Google Scholar]
- Cayley, A. On a system of algebraic equations. Philos. Mag. J. Sci. 1860, 20, 341–342. [Google Scholar] [CrossRef]
- Frend, W. Another solution of Colonel Titus’s problem. In Tracts on the Resolution of Affected Algebraic Equations; Maseres, F., Ed.; Printed by J.Davis and sold by J. White: London, UK, 1800; pp. 240–275. [Google Scholar]
- Settle, W. Second solution to Problem IV. The Liverpool Apollonius, or the geometrical and philosophical repository 1824, 1, 121. [Google Scholar]
- Whitley, J. Colonel Titus’ problem, Problem IV. The Liverpool Apollonius, or the geometrical and philosophical repository 1824, 1, 120–121. [Google Scholar]
- Tebay, S. Question 22. Preston Chronicle, No.1705, 3 May 1845 1845, p. 3. [Google Scholar]
- Ivory, J. Article XVI. Solution to Colonel Titus’s arithmetical problem. In The Mathematical Repository; Leybourn, T., Ed.; W. Glendinning: London, UK, 1804; Volume III, pp. 156–159. [Google Scholar]
- Ivory, J. A new solution of Colonel Titus’s arithmetical problem. In Scriptores Logarithmici; Or a Collection of Several Curious Tracts; Maseres, F., Ed.; Printed by R.Wilks and sold by J. White: London, UK, 1807; Volume VI, pp. 360–370. [Google Scholar] [CrossRef]
- Whitley, J. A new and commodius method of solving Colonel Titus, and others of a similar kind. The Liverpool Apollonius, or the geometrical and philosophical repository 1824, 1, 127–128. [Google Scholar]
- Beighton, H. (Ed.) The Ladies’ Diary Or Woman’s Almanack, for the Year of Our Lord 1726; Printed by A. Wilde, for the Company of Stationers: London, UK, 1726. [Google Scholar]
- Archibald, R.C. Notes on Some Minor English Mathematical Serials. Math. Gaz. 1929, 14, 379–400. [Google Scholar] [CrossRef]
- Newton, I. Arithmetica Universalis; Sive de Compositione et Resolutione Arithmetica Liber; Printed by Benj. Tooke: London, UK, 1707; Edited by William Whiston. [Google Scholar]
- Maseres, F. The resolution of the biquadratic equation 34z + 5z2 − 34z3 − z4 = 8. In Scriptores Logarithmici; Or a Collection of Several Curious Tracts; Maseres, F., Ed.; Printed by R.Wilks and sold by J. White: London, UK, 1807; Volume VI, pp. 370–395. [Google Scholar] [CrossRef]
- Schumacher, J. Das Colonel Titus’s Problem. Archiv der Mathematik und Physik 1911, Series 3, 141–154. [Google Scholar]
- Buée, A. Solution of a problem of Col. Silas Titus. Ann. Philos. 1815, V, 53–61. [Google Scholar]
- Steihaug, T. Computational science in the eighteenth century. Test cases for the methods of Newton, Raphson, and Halley: 1685 to 1745. Numer. Algorithms 2020, 83, 1259–1275. [Google Scholar] [CrossRef]
- Ward, J. A Compendium of Algebra; Author & by him sold: London, UK, 1695. [Google Scholar]
- Ward, J. The Young Mathematician’s Guide. Being a Plain and Easie Introduction to the Mathematicks; John Taylor: London, UK, 1707. [Google Scholar]
- Steihaug, T. Computational Science in the 17th Century. Numerical Solution of Algebraic Equations: Digit–by–Digit Computation. In Numerical Analysis and Optimization, NAO-V, Muscat, Oman, January 2020; Al-Baali, M., Purnama, A., Grandinetti, L., Eds.; Springer Nature: Berlin, Germany, 2021; chapter 12; pp. 249–269. [Google Scholar] [CrossRef]
- Holdred, T. A New Method of Solving Equations with Ease and Expedition; by which the True Value of the Unknown Quantity is Found without Previous Reduction. With a Supplement, Containing Two Other Methods of Solving Equations, Derived from the Same Principle; Printed by Richard Watts: London, UK, 1820. [Google Scholar]
- Nicholson, P. Essay on Involution and Evolution Particularly Applied to the Operation of Extracting the Roots of Equations and Numbers; According to a Process Entirely Arithmetical. A New Edition; Davis and Dickson: London, UK, 1820. [Google Scholar]
- Nicholson, P. Analytical and Arithmetical Essays; Davis and Dickson: London, UK, 1821. [Google Scholar]
- De Morgan, A. Notices of the progress of the problem of evolution. The Companion to the Almanac 1839, pp. 34–52. [Google Scholar]
- Perkins, G.R. A Treatise on Algebra: Embracing, Besides the Elementary Principles, All the Higher Parts Usually Taught in Colleges: Containing Moreover, the New Method of Cubic and Higher Equations, as well as the Development and Application of the More Recently Discovered Theorem of Sturm; O.Hutchinson: Utica, NY, USA, 1842. [Google Scholar]
- Young, J.R. The Analysis and Solution of Cubic and Biquadratic Equations; Souter and Law: London, UK, 1842. [Google Scholar]
- Lobatto, R. (Ed.) Lessen over de Hoogere Algebra; Gebroeders Van Cleef: Amsterdam, The Netherlands, 1845. [Google Scholar]
- Schnuse, C.H. Die Theorie und Auflösung der höhern algebraischen und der transcendenten Gleichungen; Eduard Leibrock: Braunschweig, Germany, 1850. [Google Scholar] [CrossRef]
- Olney, E. A University Algebra; Sheldon & Co: New York, NY, USA, 1878. [Google Scholar]
- Reyneau, C.R. Analyse démontrée, ou la Méthode de résoudre les problèmes des mathématiques, Tome I; Paris, chez Jacque Quillau, 1708. [Google Scholar]
- Frend, W. The Principles of Algebra or the True Theory of Equations Etablished on the Principles of Mathematical Demonstration. Part the second; G.G. and J. Robinson: London, UK, 1799. [Google Scholar]
- Frend, W. Article XXXV. Method of discovering the number of negative and impossible roots, in any equation. In The Mathematical Repository; Leybourn, T., Ed.; W. Glendinning: London, UK, 1801; Volume II, pp. 297–300. [Google Scholar]
- Lockhart, J. Extension of the Celebrated Theorem of C. Sturm, whereby the Roots of Numeral Equations may be Separated from Each Other, with Copious Examples; D.A.Talboys: Oxford, UK, 1839. [Google Scholar]
- Young, J.R. Mathematical Dissertations for the Use of Students in the Modern Analysis; John Souter: London, UK, 1841. [Google Scholar]
- Siebel, A. Untersuchungen über algebraische gleichungen. Archiv der Mathematik und Physik 1880, 56, 394–419. [Google Scholar]
- Siebel, A. Exacte Trennung der reellen Wurzeln numerischer algebraischen und transcendenten Gleichungen. Archiv der Mathematik und Physik 1887, Series 2, 279–349. [Google Scholar]
- de Graaf, I. Analysis Aequationum Algebraïcarum, of Algemeene Ontbinding der Bepaalde Stelkonstige Vergelykingen van drie, vier, vyf, ses en meer Afmetingen; Loots: Amsterdam, The Netherlands, 1732. [Google Scholar]
- Papakonstantinou, J.M.; Tapia, R.A. Origin and Evolution of the Secant Method in One Dimension. Am. Math. Mon. 2013, 120, 500–518. [Google Scholar] [CrossRef] [Green Version]
- Cardano, G. Artis Magnae, Sive de Regulis Algebraicis; Nuremberg, Germany, 1545. Ioh Petreius. English translation by T. Richard Witmer, The Rules of Algebra (Ars Magna), Cambridge, MA: MIT Press, 1968; reprinted as G. Cardano, Ars Magna or The Rules of Algebra, Garden City, NY: Dover Publications; 1993. [Google Scholar]
- Davidson, J. Supplement to the Practical Calculator; Andrew Balfour: Edinburgh, UK, 1814. [Google Scholar]
- Davidson, J. Key to Davidson’s System of Practical Mathematics: Containing Solutions to All the Exercises in that Work; Bell & Bradfute: Edinburgh, UK, 1852. [Google Scholar]
- Raphson, J. Analysis Æquationum Universalis, seu ad Æquationes Algebraicas Resolvendas Methodus Generalis, et Expedita, Ex nova Infinitarum serierum Doctrina, Deducta ac Demonstrata; Sold by Abel Swalle: London, UK, 1690. [Google Scholar]
- Maseres, F. Scriptores Logarithmici; Or a Collection of Several Curious Tracts; Vol. III, J. Davis: London, UK, 1796. [Google Scholar]
- Lockhart, J. Resolution of Two Equations. Being a Homage to the Memory of the Founders and Benefactors of the University of Oxford, at the Commemoration Held on the 12th of June, 1839; D.A.Talboys: Oxford, UK, 1839. [Google Scholar]
- Halley, E. Methodus Nova Accurata et Facilis Inveniendi Radices Æquationum Quarumcumque Generaliter, Sine Prævia Reductione. Philos. Trans. (1683–1775) 1694, 18, 136–148. [Google Scholar] [CrossRef] [Green Version]
- Wolff, C. Der Anfangs-Gründe Aller Mathematischen Wiessenschaften. Letzter Theil. Welcher so wol die gemeine Algebra, als die Differential- und Integral-Rechnung, und einen Anhang Von den vornehmsten Mathematischen-Schrieften In sich begreifet; Renger: Halle Magdeburgischen, Germany, 1710. [Google Scholar]
- Ronayne, P. A Treatise of Algebra in Two Books: The First Treating of the Arithmetical and the Second of the Geometrical Part; Printed for W. Innys: London, UK, 1717. [Google Scholar]
- Simons, L.G. Algebra at Harvard College in 1730. Am. Math. Mon. 1925, 32, 63–70. [Google Scholar] [CrossRef]
- Simons, L.G. Introduction of Algebra into Ameriçan Schools in the Eighteenth Century; Department of the interior, Bureau of education Bulletin No.18: Washington, DC, USA, 1924. [Google Scholar]
- Maseres, F. Tracts on the Resolution of Cubick & Biquadratick Equations; Wilks and Taylor: London, UK, 1803. [Google Scholar]
- Rutherford, W. The Complete Solution of Numerical Equations: In Which, by One Uniform Process, the Imaginary as Well as the Real Roots are Easily Determined; G. Bell: London, UK, 1849. [Google Scholar]
- Pratt, O. New and Easy Method of Solution of the Cubic and Biquadratic Equations; Longmans, Green, Reader, and Dyer: London, UK, 1866. [Google Scholar]
- Encke, J.F. Resolucion general de las escuaciones numéricas por el método de Gräffe. Translated and revised by D. Miguel Merino of Allgemeine Auflösung der numerischen Gleichungen; E. Aguado: Madrid, Spain, 1879. [Google Scholar]
- Rey Pastor, J. Lecciones de álgebra, 2nd ed.; Notes from a course in 1915–1916: Madrid, Spain, 1924. [Google Scholar]
- Wells, E. Elementa Arithmeticae Numerosae Et Speciosae; Printed by Johan Croke: Oxford, UK, 1698. [Google Scholar]
- Struyck, N. Uytreekening der kansen in het speelen, door de arithematica en algebra, beneevens een verhandeling voor looteryen en interest; Salomon Schouten: Amsterdam, The Nederlands, 1716. [Google Scholar]
- Struyck, N. Les oeuvres de Nicolas Struyck, 1687–1769. qui se rapportent au calcul des chances, à la statistique générale, à la statistique des décès et aux rentes viagères tirées des oeuvres complètes. Traduites du hollandais par J.A. Vollgraff; Algemeene maatschappij van levensverzekering en lijfrente: Amsterdam, The Netherlands, 1912. [Google Scholar]
- Burnside, W.S.; Panton, A.W. The Theory of Equations: With an Introduction to the Theory of Binary Algebraic Forms, Vol 1; Dublin University Press series, Hodges, Figgis, & Co: Dublin, Ireland, 1899. [Google Scholar]
- Calvo Carbonell, C. Estudios sobre la resolución numérica de ecuaciones de 3.º, 4.º, y 5.º grado. Gaceta Matemática 1955, 5–6, 109–124. [Google Scholar]
- Lacroix, S.F. Élemens d’algèbre; Crapelet-Duprat: Paris, France, 1799. [Google Scholar]
- Lambert, P. New applications of Maclaurin’s series in the solution of equations and in the expansion of functions. Proc. Am. Philos. Soc. 1903, 42, 85–95. [Google Scholar]
- Dickson, L.E. Elementary theory of equations; John Wiley & sons: New York, USA, 1914. [Google Scholar]
- Bonnycastle, J. The Elements of Algebra with Many Useful and Important Additions, Adapted to the System of Instruction Pursued in the Universities and Military Colleges, by William Galbraith and William Rutherford; Maclachlan, Stedwart & Com: Edinburgh, UK, 1848. [Google Scholar]
- Chambers, W.; Chambers, R. Exercises and Problems in Algebra with Answers and Hints to the Solutions; W. and R. Chambers: London, UK, 1855. [Google Scholar]
- Day, J. An Introduction to Algebra: Being the First Part of A Course of Mathematics, Adapted to the Method of Instruction in the American Colleges; Durrie & Peck: New Haven, CT, USA, 1857. [Google Scholar]
- Pimentel, M.H. Verzameling van vraagstukken en toepassingen over de hoogere algebra; ’S Gravenhage: The Hague, The Netherlands, 1858. [Google Scholar]
- Heis, E. Sammlung von Beispielen und Aufgaben aus der allgemeinen Arithmetik und Algebra; M. DuMont: Koeln, Germany, 1868. [Google Scholar]
- Matthiessen, L. Schlüssel zur Sammlung von Beispielen und Aufgaben aus der allgemeinen Arithmetik und Algebra, 2nd ed.; Vol. 2, M. DuMont-Schauberg: Koeln, Germany, 1878. [Google Scholar]
- Burnside, W.S.; Panton, A.W. The Theory of Equations: With an Introduction to the Theory of Binary Algebraic Forms; Dublin University Press series, Hodges, Figgis & Company: Dublin, Ireland, 1881. [Google Scholar]
- Taylor, J.M. A College Algebra, 6th ed.; Allyn & Bacon: Boston, MA, USA; Chicago, IL, USA, 1889. [Google Scholar]
Whitley | |||
---|---|---|---|
k | |||
1 | 2.6458 | 3.0104 | 3.1678 |
2 | 2.5423 | 2.9910 | 3.2242 |
3 | 2.5211 | 2.9785 | 3.2390 |
4 | 2.5205 | 2.9726 | 3.2415 |
5 | 2.5227 | 2.9703 | 3.2414 |
Newton | |||
k | |||
1 | 2.5833 | 2.9167 | 3.2500 |
2 | 2.5263 | 2.9698 | 3.2395 |
3 | 2.5255 | 2.9692 | 3.2406 |
4 | 2.5255 | 2.9692 | 3.2406 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Steihaug, T. A Story of Computational Science: Colonel Titus’ Problem from the 17th Century. Axioms 2022, 11, 287. https://doi.org/10.3390/axioms11060287
Steihaug T. A Story of Computational Science: Colonel Titus’ Problem from the 17th Century. Axioms. 2022; 11(6):287. https://doi.org/10.3390/axioms11060287
Chicago/Turabian StyleSteihaug, Trond. 2022. "A Story of Computational Science: Colonel Titus’ Problem from the 17th Century" Axioms 11, no. 6: 287. https://doi.org/10.3390/axioms11060287
APA StyleSteihaug, T. (2022). A Story of Computational Science: Colonel Titus’ Problem from the 17th Century. Axioms, 11(6), 287. https://doi.org/10.3390/axioms11060287