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Abstract: In this paper, we have considered that ranked set sampling is able to estimate the parameters
of exponentiated Pareto distribution. The method with which the maximum likelihood estimators for
the parameters of exponentiated Pareto distribution is studied is numerical since there is no presence
or possibility of a closed-form at the hands of estimators or any other intellectual. The numerical
approach is a well-suited one for this study as there has been struggles in achieving it with any other
technique. In order to compare the different sampling methods, simulation studies are performed as
the main technique. As for the illustrative purposes, analysis of a simulated dataset is desired for the
objective of the presentation. The conclusion that we can reach based on these is that the estimators
based on the ranked set sample have far better efficiency than the simple random sample at the same
sample size.

Keywords: efficiency; exponentiated Pareto distribution; maximum likelihood estimator; order
statistics; ranked set sampling; simple random sampling
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1. Introduction

A two-parameter distribution, called the exponentiated Pareto distribution EP(β, λ),
has been introduced by [1]. They provided the cumulative distribution function (cdf) and
probability density function (pdf) of this distribution as follows:

F(x; β, λ) = [1− (1 + x)−λ]
β
, x > 0, (1)

and
f (x; β, λ) = βλ(1 + x)−(λ+1)[1− (1 + x)−λ]

β−1
, x > 0, (2)

where β > 0 and λ > 0. The parameters β and λ are two shape parameters. When β = 1,
the above distribution corresponds to the standard Pareto distribution of the second kind
(see [2]). It is essential to mention here that when β is a positive integer, EP(β, λ) cdf is the
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cdf of the maximum of a random sample size β from the standard Pareto distribution of
the second kind (see [3]). Therefore, the EP distribution has a survival function

S(x; β, λ) = 1− [1− (1 + x)−λ]
β
, x > 0, (3)

and a hazard function

h(x; β, λ) =
βλ(1 + x)−(λ+1)[1− (1 + x)−λ]

β−1

1− [1− (1 + x)−λ]
β

, x > 0. (4)

For β > 1, the distribution has a unique model, which is ( λβ+1
λ+1 )

1
λ − 1. The median of

the distribution is (1− 0.5
1
β )
−1
λ − 1.

Ref. [1] showed that the EP distribution could be used quite effectively in analyz-
ing many lifetime data. The EP distribution can have decreasing and upside-down
bathtub-shaped failure rates depending on the shape parameter (MLE) β. The authors
of [4] consider the maximum likelihood estimation of the different parameters of an EP
distribution, and they studied how the different estimators of the unknown parameters
of an EP distribution can behave for different sample sizes and for different parameter
values. The authors of [5] studied the mixture of exponentiated Pareto and exponential
distributions. The authors of [6] derived Bayes and classical estimators of the parameters
of exponentiated Pareto distributions under different sample schemes. The authors of [7]
introduced the generalized exponential distribution, which has been studied quite exten-
sively. The authors of [8] also discussed a different method of estimations of a generalized
exponential distribution of parameters. The authors of [9] derived the best linear unbiased
estimates (BLEUs) and the maximum likelihood estimates (MLEs) of the location and
scale parameters for the EP distribution based on progressively Type II right censored order
statistics. Some of the gamma-Pareto and the exponentiated Pareto properties, including
distribution shapes, limit behavior, hazard function, Renyi and Shannon entropies, mo-
ments, and deviations from the mean and median, are discussed in [10]. Ref. [11] applied
four real datasets for the issues of parameter estimation and provided a visual inspection
of the goodness-of-fit of the complementary beta model.

In this article, ranked set sampling (RSS) is considered. The MLE of the two parameters
based on RSS will be investigated, and simulation will illustrate the mathematical finding.

2. Ranked Set Sampling

A method of sampling based on ranked sets is an efficient alternative to simple
random sampling (SRS) that has been shown to outperform simple random sampling
in many situations by reducing the variance of an estimator, thereby providing the same
accuracy with a smaller sample size than is needed in SRS. The authors of [12] introduced
RSS to estimate mean pasture yields. RSS can be applied in many studies where the
exact measurement of an element is complicated (in terms of money, time, labor, and
organization). Still, although not easily measurable, the variable of interest can be relatively
easily ranked (order) at no cost or minimal additional cost. The ranking can be performed
based on visual inspection, preliminary information, earlier sampling episodes, or other
rough methods not requiring actual measurement. The procedure of using RSS is as follows

1. Select m units at random from a specified population.
2. Rank these m units with some expert judgment without measuring them.
3. Retain the smallest judged unit and return the others.
4. Continue the process until m ordered units are measured.
5. These m ordered observations X[1]i, . . . , X[m]i are called a cycle.
6. Process repeated i = 1, . . . , k cycle to get km observations.

These km observations are called a standard ranked set sample.
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The sample mean based on RSS is XRSS = 1
km ∑m

j=1 ∑k
i=1 x[j]i where x[j]i is the unit of

order j in cycle i. XRSS is an unbiased estimator for the population mean, with variance

Var
(
XRSS

)
=

σ2
x

km
− 1

km2

m

∑
j=1

(µx[j] − µx)
2

RSS yields a sample of observations that tends to be more representative of the
underlying population than a SRS of equivalent size. The authors of [13] established a
foundation for the theory of RSS. The method has become widely applicable, and many
modifications have been made. The authors of [14] showed that RSS is more efficient
than SRS even with an error in ranking. The authors of [15] suggested using extreme
RSS for estimating a population mean. The authors of [16] introduced median RSS to
estimate the population mean. The authors of [17] considered double RSS, as a procedure
that increases the efficiency of the RSS estimator without increasing the set size m. It
was shown that the double RSS estimator of the mean is more efficient than that using
RSS. For details on RSS, see [18,19]. The derivation of the parameter estimation based
on Simple Random Sampling and Ranked Set Sampling for Gumbel distribution and
logistic distribution are discussed by [20,21]. The derivation of the likelihood function for
parameter estimation based on double-ranked set sampling (DRSS) designs were used
by [22] for the estimation of the parameters of the power-generalized Weibull distribution.
The authors of [23] derived the estimate of the finite population total under Ranked Set
Sampling Without Replacement (RSSWOR), employing the model relationship, especially
Gamma Population Model (GPM), between the study and auxiliary variables. The authors
of [24] considered the estimation of the scale parameter of Levy distribution using a ranked
set sample; they derived the best linear unbiased estimator and its variance based on a
ranked set sample.

3. Estimation Using Ranked Set Sampling

This section aims to find the MLE for the parameters β and λ of EP distribution using
SRS and RSS.

The MLE of the parameters, when SRS is used, is the solution of the following
equations given by [4].

If X1, X2, . . . , Xn is a random sample from EP(β, λ), then the log-likelihood function,
L(β, λ), is

L(β, λ) = nln(β) + nln(βλ) + (β− 1)

n

∑
i=1

ln
[
1− (1 + xi)

−λ
]
− (λ + 1)

n

∑
i=1

ln(1 + xi).

The normal equations become:

∂L(β, λ)

∂β
=

n
β
+∑n

i=1ln
[
1− (1 + xi)

−λ
]
= 0 (5)

∂L(β, λ)

∂λ
=

n
λ
−∑n

i=1ln(1 + xi) + (θ − 1)∑n
i=1

(1 + xi)
−λln(1 + xi)

1− (1 + xi)
−λ

= 0 (6)

From (5), we obtain the MLE of θ as a function of λ, say θ̂(λ), where

β̂MLE = β̂(λ) = − n

∑n
i=1 ln

[
1− (1 + xi)

−λ
]
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Putting β̂(λ) in the log-likelihood function, we obtain

g(λ) = L
(

β̂(λ), λ
)

= nln(n)− nln

 n

∑
i=1

ln
[
1− (1 + xi)

−λ
]+ nln(λ)− n

−
n

∑
i=1

ln
[
1− (1 + xi)

−λ
]
− (λ + 1)

n

∑
i=1

ln(1 + xi)

Therefore, the MLE of λ, say λ̂MLE, can be obtained by maximizing g(λ) with respect
to λ. It is observed that g(λ) is a unimodal function, and the λ̂MLE that maximizes g(λ) can
be obtained from the fixed-point solution of h(λ) = λ, where

h(λ) =


∑n

i=1
(1+xi)

−λ ln(1+xi)

1−(1+xi)
−λ

∑n
i=1 ln

[
1− (1 + xi)

−λ
] + 1

n

n

∑
i=1

ln(1 + xi)

1− (1 + xi)
−λ


−1

.

Since λ̂ is a fixed-point solution of the nonlinear equation h(λ) = λ, therefore, it can
be obtained by using a simple iterative scheme as follows:

h
(

λ(j)

)
= λ(j+1),

where λ(j) is the jth iterate of λ̂. The iteration procedure should be stopped when∣∣∣λ(j) − λ(j+1)

∣∣∣ is sufficiently small.
Here we use the Newton–Raphson method to solve the nonlinear system of equations.

It is shown in [25] that if the initial guess is sufficiently close to the exact solution, the
Newton–Raphson method will be convergent to the exact solution.

These equations are solved numerically to compare the MLE based on SRS to that
found on RSS.

Now to simplify notations, let
{

Yij : i = 1, 2, . . . , m, j = 1, 2, . . . , k
}

denote the ranked
set sample of size n = km from an EP population, where m is the set size, and k is the
number of cycles. Then, the pdf of Yij is given by:

gi
(
yij
)
= m!

(i−1)!(m−i)!

[
F
(
yij
)
]i−1[1− F

(
yij
)
]m−i f

(
yij
)

= m!
(i−1)!(m−i)! βλ(1 + yij)

−(λ+1)[1− (1 + yij)
−λ]

βi−1
{1

−[1− (1 + yij)
−λ]

β
}

m−i
; yij > 0

(7)

The likelihood function is given by

L(β, λ) = Πk
j=1Πm

i=1gi
(
yij
)

= cβmkλmkΠk
j=1Πm

i=1(1 + yij)
−(λ+1)[1− (1

+yij)
−λ]

βi−1
Πk

j=1Πm
i=1{1− [1− (1 + yij)

−λ]
β
}m−i
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where c is a constant. Then, the log-likelihood function is:

logL(β, λ) = lnl = lnc + mklnβ + mklnλ− (λ + 1)
k

∑
j=1

m

∑
i=1

ln
(
1 + yij

)

+
k

∑
j=1

m

∑
i=1

(βi− 1)ln[1−
(
1 + yij)

−λ
]
+

k

∑
j=1

m

∑
i=1

(m− i)ln{1

−[1− (1 + yij)
−λ]

β
}

(8)

By finding the first derivation of logL with respect to β and λ and setting them to zero,
the following equations are found

∂
∂β logL = mk

β

k

∑
j=1

m

∑
i=1

+ iln[1−
(
1 + yij)

−λ
]
−

k

∑
j=1

m

∑
i=1

(m

−i)
[1−(1+yij)

−λ ]
β

ln[1−(1+yij)
−λ]

1−[1−(1+yij)
−λ ]

β = 0

(9)

∂
∂λ logL = mk

λ −
k

∑
j=1

m

∑
i=1

ln
(
1 + yij

)
+

k

∑
j=1

m

∑
i=1

(βi

−1)
(1+yij)

−λ ln(1+yij)
1−(1+yij)

−λ − β

k

∑
j=1

m

∑
i=1

(m

−i)
(1+yij)

−λ [1−(1+yij)
−λ ]

β−1
ln(1+yij)

1−[1−(1+yij)
−λ ]

β = 0

(10)

The ML estimators of β and λ, say βRSS and λRSS, are the solution of the two nonlinear
equations. Since it is difficult to find a closed-form solution for the parameters, a numerical
technique is needed to solve them.

4. Simulation Study

In this section, a numerical study is considered to compare the ML estimators of the
unknown parameters β and λ for EP distribution based on RSS and SRS. Comparison
studies between these estimators will be carried out through MSEs, Bias, and relative
efficiency. Monte Carlo simulation is applied for different set sizes, different numbers of
cycles, and different parameter values. The simulation procedures are described through
the following algorithm.

Step 1: A random sample of sizes n = 9, 12, 15, 20, 24, 30, 32 and 40 with set size
m = (3, 4), number of cycles k = (3, 5, 8, 10), where n = m × k are generated from
EP distribution.

Step 2: The parameter values are selected as β = 0.5, 1, 1.5 for λ = 1 in the
estimation procedure.

Step 3: For the chosen set of parameters and each sample of size n, four estimators(
β̂SRS, λ̂SRS, βRSS, λRSS

)
are computed under SRS and RSS.

Step 4: Repeat the previous steps from 1 to 3, N times representing different samples,
where N = 1000. Then, the MSE and Bias of the estimates are computed.

Step 5: Compute the efficiency of estimators, that defined as, E f f iciency = MSE(SRS)
MSE(RSS) .

All simulated studies presented here are obtained via Maple. The results are reported
in Tables 1–3. Each table contains the estimates of parameters for EP distribution under
SRS and RSS, along with the efficiency of the estimators for SRS relative to RSS for the
different sample sizes and parameters values.
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Table 1. The bias (MSE) and efficiency of the MLE parameters β and λ when β = 0.5 and λ = 1.

(k, s)
RSS

n
SRS Efficiency

β λ β λ β λ

(3, 3) 0.115 (0.091) 0.328 (0.658) 9 0.197 (0.291) 0.493 (1.262) 3.207 1.918

(4, 3) 0.072 (0.035) 0.209 (0.298) 12 0.127 (0.099) 0.367 (0.819) 2.751 2.851

(3, 5) 0.059 (0.031) 0.171 (0.240) 15 0.092 (0.057) 0.282 (0.474) 1.975 1.841

(4, 5) 0.043 (0.019) 0.130 (0.149) 20 0.063 (0.033) 0.180 (0.260) 1.744 1.773

(3, 8) 0.032 (0.013) 0.087 (0.105) 24 0.055 (0.025) 0.180 (0.225) 2.142 1.984

(3, 10) 0.026 (0.010) 0.074 (0.082) 30 0.036 (0.016) 0.098 (0.116) 1.419 1.630

(4, 8) 0.026 (0.009) 0.077 (0.076) 32 0.034 (0.015) 0.108 (0.128) 1.694 1.755

(4, 10) 0.021 (0.007) 0.066 (0.057) 40 0.031 (0.012) 0.088 (0.094) 1.645 1.828

Table 2. The bias (MSE) and efficiency of the MLE parameters β and λ when β = 1 and λ = 1.

(k, s)
RSS

n
SRS Efficiency

β λ β λ β λ

(3, 3) 0.318 (0.698) 0.328 (0.320) 9 0.552 (2.917) 0.328 (0.563) 1.759 4.180

(4, 3) 0.191 (0.233) 0.147 (0.162) 12 0.339 (0.721) 0.243 (0.366) 2.263 3.096

(3, 5) 0.155 (0.200) 0.118 (0.131) 15 0.239 (0.369) 0.190 (0.231) 1.765 1.847

(4, 5) 0.114 (0.121) 0.092 (0.086) 20 0.157 (0.194) 0.122 (0.137) 1.596 1.609

(3, 8) 0.081 (0.074) 0.061 (0.061) 24 0.140 (0.147) 0.126 (0.120) 1.964 2.989

(3, 10) 0.066 (0.058) 0.052 (0.048) 30 0.089 (0.087) 0.069 (0.068) 1.416 1.501

(4, 8) 0.068 (0.056) 0.055 (0.045) 32 0.085 (0.090) 0.074 (0.073) 1.542 1.616

(4, 10) 0.054 (0.039) 0.047 (0.034) 40 0.077 (0.068) 0.062 (0.055) 1.641 1.751

Table 3. The bias (MSE) and efficiency of the MLE parameters β and λ when β = 1.5 and λ = 1.

(k, s)
RSS

n
SRS Efficiency

β λ β λ β λ

(3, 3) 0.593 (2.496) 0.193 (0.243) 9 1.056 (3.094) 0.280 (0.417) 5.244 1.716

(4, 3) 0.345 (0.737) 0.128 (0.127) 12 0.620 (2.529) 0.206 (0.269) 2.121 3.432

(3, 5) 0.278 (0.624) 0.103 (0.102) 15 0.428 (0.426) 0.108 (0.092) 1.927 2.030

(4, 5) 0.204 (0.368) 0.079 (0.068) 20 0.277 (0.571) 0.105 (0.106) 1.558 1.551

(3, 8) 0.143 (0.210) 0.053 (0.048) 24 0.248 (0.426) 0.108 (0.092) 1.927 2.030

(3, 10) 0.117 (0.166) 0.046 (0.039) 30 0.155 (0.243) 0.060 (0.054) 1.384 1.463

(4, 8) 0.119 (0.161) 0.047 (0.035) 32 0.150 (0.262) 0.063 (0.058) 1.660 1.631

(4, 10) 0.095 (0.112) 0.041 (0.027) 40 0.133 (0.188) 0.054 (0.044) 1.637 1.686

From Tables 1–3, many conclusions can be made on the performance of both methods
of estimation based on RSS and SRS. Further, the sensitivity analysis of results is very
important [25] and Figures 1–3 show the effectiveness of the results. These conclusions are
summarized as follows:

1. Based on SRS, the bias and MSE for estimates of β and λ are more significant than
that based on RSS.

2. For both methods of estimations, it is clear that the bias and MSE decrease as set sizes
increase for fixed values of β.
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3. As the value of β increases, the bias and MSE increase in almost all cases.

Figure 1. The efficiency of the MLE parameters β (a) and λ (b) when β = 1 and λ = 1.

Figure 2. The efficiency of the MLE parameters β (a) and λ (b) when β = 1 and λ = 1.

Figure 3. The efficiency of the MLE parameters β (a) and λ (b) when β = 1.5 and λ = 1.

It is clear from Tables 1–3 and Figures 1–3 that the efficiency of estimators increases
as the sample sizes increase. The estimators based on RSS have a smaller MSE than the
corresponding ones based on SRS. The efficiency of RSS estimators with respect to SRS
estimators is greater than one and increases when the sample size increases.

5. Conclusions

This paper deals with the estimation problem of unknown parameters of an EP
distribution based on RSS. Maximum likelihood estimators (MLE) for the parameters of
EP distribution were investigated mathematically and numerically. It was found that the
MLEs were not in closed form, so simulation was conducted to study the behaviors of the
proposed estimators. The numerical results show that the bias and MSE of the estimates
for both shape parameters relative to RSS are smaller than the corresponding SRS. This
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study revealed that the estimators based on RSS are more efficient than those from SRS at
the same sample size.

It would be interesting to have a numerical application with real data to illustrate
its usefulness in future work. The addition of this section was the kind suggestion of an
anonymous referee of the journal.
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