
����������
�������

Citation: Tsoulos, I.G.; Tzallas, A.;

Karvounis, E. RbfDeSolver: A

Software Tool to Approximate

Differential Equations Using Radial

Basis Functions. Axioms 2022, 11, 294.

https://doi.org/10.3390/

axioms11060294

Academic Editor: Luigi Brugnano

Received: 17 May 2022

Accepted: 13 June 2022

Published: 16 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

RbfDeSolver: A Software Tool to Approximate Differential
Equations Using Radial Basis Functions
Ioannis G. Tsoulos *,†, Alexandros Tzallas † and Evangelos Karvounis †

Department of Informatics and Telecommunications, University of Ioannina, 47150 Ioannina, Greece;
tzallas@uoi.gr (A.T.); ekarvounis@uoi.gr (E.K.)
* Correspondence: itsoulos@uoi.gr
† These authors contributed equally to this work.

Abstract: A new method for solving differential equations is presented in this work. The solution of
the differential equations is done by adapting an artificial neural network, RBF, to the function under
study. The adaptation of the parameters of the network is done with a hybrid genetic algorithm. In
addition, this text presents in detail the software developed for the above method in ANSI C++. The
user can code the underlying differential equation either in C++ or in Fortran format. The method
was applied to a wide range of test functions of different types and the results are presented and
analyzed in detail.

Keywords: differential equations; neural networks; genetic algorithms

MSC: 65K05; 65L05

1. Introduction

A variety of problems in areas such as physics [1,2], chemistry [3–5], economics [6,7],
biology [8,9], etc., can be modeled using ordinary differential equations (ODEs), systems
of differential equations (SYSODEs) and partial differential equations (PDEs). Due to
the importance of differential equations, several methods have appeared in the relevant
literature, such as Runge–Kutta methods [10–12] or Predictor–Corrector methods [13,14].
Moreover, many methods based on machine learning models have appeared, such as
methods that utilize neural networks [15–17], methods based on differential evolution
techniques [18,19], genetic algorithms [20,21], etc. Furthermore, in recent years, a variety
of methods that take advantage of modern GPU architectures have been published for
the solution of differential equations [22–24]. In addition, a method based on Grammatical
Evolution [25] has been introduced to solve differential equations in analytical form by
Tsoulos and Lagaris [26], that creates solutions of differential equations in closed analytical
form. Le et al. recently proposed [27] a Radial Basis Neural Network Approximation with
extended precision for solving partial differential equations, and Wei et al. presented [28]
a MATLAB code to solve differential equations with a conjunction of finite elements
and Radial Basis Function network (RBF) neural networks. Additionally, a recent work
based on quintic B-splines is proposed [29] for solving second-order coupled nonlinear
Schrödinger equations. The current work proposes the incorporation of a modified genetic
algorithm [30–32] and utilizes an RBF [33] to tackle the problem of solving differential
equations. RBFs are usually expressed as:

r(x) =
k

∑
i=1

wiφ(‖x− ci‖) (1)

where the vector −→x is considered the input vector and the vector −→w is denoted as the
weight vector. In many cases the function φ(x) is a Gaussian function such as:

Axioms 2022, 11, 294. https://doi.org/10.3390/axioms11060294 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms11060294
https://doi.org/10.3390/axioms11060294
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0001-9043-1290
https://orcid.org/0000-0002-6243-3755
https://doi.org/10.3390/axioms11060294
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms11060294?type=check_update&version=1

Axioms 2022, 11, 294 2 of 21

φ(x) = exp

(
− (x− c)2

σ2

)
(2)

where the value φ(x) depends on the distance between the vectors −→x , −→c . The vector x is
considered the input to the artificial neural network and the vector c is called the centroid
for the corresponding function. The centroid is often calculated from the input vectors
using clustering techniques such as the KMeans [34] algorithm.

RBF networks have been used in many practical problems in various areas, such as
physics [35–38], chemistry [39–41], medicine [42–44], economics [45–47], etc. In the current
work, the RBF network is used as an estimator of the differential equations for the cases
of ODEs, SYSODEs, and PDEs. The enforcement of the initial and boundary conditions is
done through penalization. The parameters of the network are adapted through a hybrid
genetic algorithm. The proposed study aims to present an innovative methodology for
solving differential equations using RBF artificial neural networks, which are distinguished
for their ability to learn and adapt to complex computational problems. However, in order
to better adapt the parameters of these networks, their training is performed using an
extremely reliable global optimization method, such as genetic algorithms. However,
although network training with a genetic algorithms can achieve more accurate results, it is
a rather time-consuming technique and is demanding of computational resources. This
means that the use of modern parallel processing techniques is required, which will make
the most of modern computing structures such as those of multiple cores. In the case of the
proposed algorithm and the accompanying computing tool, the OpenMP programming
library [48] was chosen.

In addition, the used software tool is illustrated in detail and some examples of usage
are presented. The tool is designed for UNIX systems equipped with the GNU C++ and
Fortran 77 (g77) compilers. Furthermore, the software utilizes the qmake installation utility
of the QT software library, freely available from https://qt.io (accessed on 10 May 2022).

The rest of this article is organized as follows: in Section 2 the proposed method is
fully described; in Section 3 the software details are presented; in Section 4 the experi-
mental results for some differential equations are presented; and finally in Section 5 some
conclusions and guidelines for future improvements of the method and the accompanied
software are given.

2. Detailed Description

In the proposed method, an artificial RBF network with n weights is used as a func-
tion estimator that solves a differential equation. The initial and boundary conditions are
imposed by the use of punitive factors. The network parameters are estimated using a
hybrid genetic algorithm. The genetic algorithms are biologically inspired programming
tools that maintain and evolve a pool of candidate solutions to an optimization problem.
The members of this pool are usually called chromosomes or genetic population. The evo-
lution of the population is done through the operations of mutation and crossover. Among
other advantages, genetic algorithms are distinguished for their simplicity in implemen-
tation, for the ease of their parallelization, their tolerance for errors, etc. The size of each
chromosome in the used genetic algorithm is calculated as: d× n + n + n, where the value
d is 1 for ODEs and system of ODEs and 2 for PDEs. The first d× n values are used for the
centroid vectors ci of the Equation (1), the next n values are used for the σ values of every
Gaussian unit and the remaining n values of the chromosome are used for the weights wi
of Equation (1). In addition, in the proposed implementation, a local optimization method
is periodically applied to some randomly selected chromosomes of the population. This
approach is performed in order to improve the accuracy of the solution produced by the
genetic algorithm, but also to speed up the solution of the differential equation. The used
local search procedure for this work was a BFGS variant of Powell [49].

In the following subsections, the proposed method is outlined in detail as well as the
fitness calculation for every case of differential equation.

https://qt.io

Axioms 2022, 11, 294 3 of 21

2.1. Main Algorithm

The steps of main the algorithm are described below:

1. Initialization step

(a) Set iter = 0, as the current number of generations.
(b) Set Nc, as the total number of chromosomes.
(c) Set n, the number of weights in the RBF network.
(d) Initialize randomly the chromosomes Xi, i = 1 . . . Nc.
(e) Set ITERMAX as the maximum number of generations.
(f) Set ps as the selection rate and pm the mutation rate.
(g) Set fl = ∞, the best fitness in the population.
(h) Set LI , the number of generations to run before applying the local optimization

method
(i) Set Lc, the number of chromosomes that will involved in the local search proce-

dure.

2. Termination check. If iter >ITERMAX OR fl ≤ ε terminate.
3. Calculate the fitness fi for every chromosome xi. The calculation procedure is de-

scribed in Section 2.2.
4. Genetic Operators

(a) Selection procedure: During selection, the chromosomes are classified according
to their suitability. The best (1− ps)× Nc chromosomes are transferred without
changes to the next generation of the population. The rest will be replaced by
chromosomes that will be produced at the crossover.

(b) Crossover procedure: During this process, ps × Nc chromosomes will be created.
Firstly, for every pair of produced offspring, two distinct chromosomes (parents)
are selected from the current population using tournament selection: First, a sub-
set of K > 1 randomly selected chromosomes is created and the chromosome
with the best fitness value is selected as parent. For every pair (z, w) of parents,
two new offsprings z̃ and w̃ are created through the following:

z̃i = aizi + (1− ai)wi

w̃i = aiwi + (1− ai)zi (3)

where ai is a random number with the property ai ∈ [−0.5, 1.5] [50].
(c) Mutation procedure: For every element of each chromosome, select a random

number r ∈ [0, 1] and alter the corresponding chromosome if r ≤ pm.

5. Set iter = iter+1
6. Local Search Step

(a) If iters mod LI = 0 Then

i. Select a subset of LC randomly chosen chromosomes from the genetic popu-
lation. Denote this subset with LS.

ii. For every chromosome Xi in LS

A. Start a local search procedure y = L(xi)
B. Set fi = y

(b) Endif

7. Denote with fl the best fitness value for the corresponding chromosome xl
8. Goto step 2.

2.2. Fitness Evaluation

The evaluation of the fitness is different for every case of differential equations, al-
though in every case penalization is used to enforce the initial or the boundary conditions
of every case.

Axioms 2022, 11, 294 4 of 21

2.3. Ode Case

Consider an ODE in the following format:

ψ
(

x, y, y(1), . . . , y(n)
)
= 0, x ∈ [a, b] (4)

with y(i) the ith-order derivative of y(x). The initial conditions are expressed as:

hi

(
x, y, y(1), . . . , y(n)

)
|x=ti

, i = 1, . . . , n (5)

where ti could be a or b. The steps for the calculation of the fitness f (g) of a chromosome g
are the following for the ODE case:

1. Create T = {x1 = a, x2, x3, . . . , xN = b} a set of equidistant points.
2. Create the RBF r = r(g) network for the the chromosome g.

3. Calculate the value Er = ∑N
i=1 ψ

(
xi, r(xi), r(1)(xi), . . . , r(n)(xi)

)2

4. Calculate the penalty value for the initial conditions:

Pr = λ
n

∑
k=1

h2
k

(
x, r(x), r(1)(x), . . . , r(n)(x)

)
|x=tk

(6)

where λ > 0.
5. Return f (g) = Er + Pr

2.4. Systems of ODEs Case

The system of ODEs that should be solved is in the form:
ψ1

(
x, y1, y(1)1 , y2, y(1)2 , . . . , yk, y(1)k

)
= 0

ψ2

(
x, y1, y(1)1 , y2, y(1)2 , . . . , yk, y(1)k

)
= 0

...
...

...
ψk

(
x, y1, y(1)1 , y2, y(1)2 , . . . , yk, y(1)k

)
= 0

 (7)

with x ∈ [a, b] and the initial conditions are expressed as:
y1(a) = y1a
y2(a) = y2a

...
...

...
yk(a) = yka

 (8)

The fitness calculation f (g) for a given chromosome g has as follows:

1. Create T = {x1 = a, x2, x3, . . . , xN = b} a set of equidistant points.
2. Split the chromosome g into k parts and create the corresponding RBF networks

ri = r(gi)

3. Calculate the errors: Eri = ∑N
j=1

(
ψi

(
xj, r1, r(1)1 , r2, r(1)2 , . . . , rk, r(1)k

))2

4. Calculate the penalty values: Pri = λ(ri(a)− yia)
2

5. Calculate the total fitness value: f (g) = ∑k
i=1(Eri + Pri)

2.5. Pde Case

Consider a Pde in the following form:

h
(

x, y, Ψ(x, y),
∂

∂x
Ψ(x, y),

∂

∂y
Ψ(x, y),

∂2

∂x2 Ψ(x, y),
∂2

∂y2 Ψ(x, y)
)
= 0 (9)

Axioms 2022, 11, 294 5 of 21

with x ∈ [a, b], y ∈ [c, d]. For Dirichlet boundary conditions we have the following
condition functions:

1. Ψ(a, y) = f0(y)
2. Ψ(b, y) = f1(y)
3. Ψ(x, c) = g0(x)
4. Ψ(x, d) = g1(x)

The steps to calculate the fitness f (g) for any given chromosome are the following:

1. Construct the set T = {(x1, y1), (x2, y2), . . . , (xN , yN)} uniformly sampled points in
[a, b]× [c, d].

2. Construct the set xB = {xb1, xb2, . . . , xbM} equidistant points in [a, b].
3. Construct the set yB = {yb1, yb2, . . . , ybM} equidistant points in [c, d].
4. Set r = r(g) the RBF network for the chromosome g.
5. Calculate the quantity Er as

Er =
N

∑
i=1

h
(

xi, yi, r(xi, yi),
∂

∂x
r(xi, yi),

∂

∂y
r(xi, yi)

)2

6. Calculate the following penalty values:

P1r = λ ∑M
i=1(r(a, ybi)− f0(ybi))

2

P2r = λ ∑M
i=1(r(b, ybi)− f1(ybi))

2

P3r = λ ∑M
i=1(r(xbi, c)− g0(xbi))

2

P4r = λ ∑M
i=1(r(xbi, d)− g1(xbi))

2

7. Calculate the total fitness as f (g) = Er + P1r + P2r + P3r + P4r

3. Software Details
3.1. Installation

The package is distributed in a zip file from the relevant GitHub URL https://github.
com/itsoulos/RbfDeSolver (accessed on 10 May 2022) named RbfDeSolver-master.zip
and under UNIX systems the user must execute the following commands to compile
the software:

1. unzip RbfDeSolver-master.zip.
2. cd RbfDeSolver.
3. qmake.
4. make clean.
5. make.

The final outcome of the compilation is the software RbfDeSolver. The differential
equations should be compiled separately: every differential equation is a different file to
be compiled as a shared object using the qmake utility. For example, in order to compile
the ODE of the file ode1.so located under examples subdirectory, the user should create a
ode1.pro file with the following contents:

TEMPLATE=lib
SOURCES=ode1.cc

Afterwards, the compilation of the ode is done using the following commands:

1. qmake ode1.pro.
2. make.

The outcome of the compilation is the shared library ode1.so

https://github.com/itsoulos/RbfDeSolver
https://github.com/itsoulos/RbfDeSolver

Axioms 2022, 11, 294 6 of 21

3.2. Command Line Options

The software RbfDeSolver has the following command line options:

1. −−help. Prints a help screen and terminates.
2. −−kind = DE_KIND. The string value DE_KIND determines the kind of differential

equation to be used and the accepted values are: ode, sysode, pde.
3. −−problem = FILE, the string parameter file determines the path to the differential

equation to be solved.
4. −−count = K, set as K, the number of chromosomes in the genetic population. The

default value is 500.
5. −−random = R, set as R, the seed for the random number generation.
6. −−generations = G, set as G, the maximum number of generations allowed. The

default value is 2000.
7. −−epsilon = E, set as E, a small positive value used in the comparisons as well as the

termination criterion of the genetic algorithm. The default value is 10−7

8. −−weights = W, set as W, the number of weights for the RBF network. The default
value is 1.

9. −−srate = S, set as S, the selection rate (parameter ps) of the genetic algorithm.
The default value is 0.1

10. −−mrate = M, set as M, the mutation rate (parameter pm) of the genetic algorithm.
The default value is 0.05

11. −−lg = G, set as G, the number of generations that should be passed in the genetic
algorithm before the local search method is applied. The default value is 100.

12. −−li = I, set as I, the number of chromosomes that will participate in the local search
procedure. The default value is 20.

13. −−threads = T, set as T, the number of OpenMp threads. The default value is 1.

3.3. Format for ODEs

In Figures 1 and 2 we present the formulation for ODEs in the languages C++ and
Fortran correspondingly. The listed functions have the following meaning:

1. getx0(): Returns the lower boundary point, x0.
2. getx1(): Returns the upper boundary point, x1.
3. getkind(): Returns 1, 2 or 3:

(a) If the value is 1 then the ODE is of first order and the boundary condition is of
the form: y(x0) = y0.

(b) If the value is 2 then the ODE is of second order with boundary conditions of the
form: y(x0) = y0, y′(x0) = y′0.

(c) Code 3 indicates that the ODE is of second order with boundary conditions of the
form: y(x0) = y0, y(x1) = y1.

4. getnpoints(): Returns the number of equidistant training points (value N in
Section 2.3)

5. getf0(): Returns the boundary condition on the left, y0.
6. getf1(): Returns the boundary condition on the right, y1.
7. getff0(): Returns the left boundary condition for second order ODEs y′0.
8. ode1ff(x,y,yy): If the ODE is of first order, then the purpose of the tool is to mini-

mize the function ode1ff(x, r(x), r(1)(x)), for different values of x in the range [x0, x1].
The parameter y represents r(x) and the parameter yy represents r(1)(x).

9. ode2ff(x,y,yy,yyy): If the ODE is of second order, then the tool tries to mini-
mize the function ode2ff(x, r(x), r(1)(x), r(2)(x)), for different values of x in the range
[x0, x1]. The parameter y represents r(x), the parameter yy represents r(1)(x) and the
parameter yyy represents r(2)(x).

Axioms 2022, 11, 294 7 of 21

3.4. Format for System of ODEs

In Figures 3 and 4 we demonstrate the formulation of System of ODES in C++ and in
Fortran programming languages correspondingly. The functions used in those formulations
have the following meanings:

1. getx0(): returns the left boundary, x0.
2. getx1(): returns the right boundary, x1.
3. getnode(): returns the number of ODEs in the system (parameter k in

Section 2.4).
4. getnpoints(): R returns the number of equidistant training points (value N in

Section 2.4)
5. systemfun(k,x,y,yy): For the SYSODE case, the aim of the RbfDeSolver is to mini-

mize the function systemfun(k, x, Y, Y(1)) for values of x in the range [x0, x1], where
k is the total number of equations in the system, Y is the vector of Rbf networks
ri(x), i = 1 . . . k and Y′ is a vector with elements the first derivative of these k equa-
tions evaluated at x. The double precision array y stands for the vector Y and similar
the double precision array yy represents the vector Y′.

6. systemf0(node,f0): the argument node stands for the number of differential equa-
tions in the system and the double precision array f0 with node elements represents
the vector holding the boundary conditions for each equation in the system (vector of
Equation (8)).

extern "C"
{
double getx0 ()
{ }

double getx1 ()
{ }

i n t getkind ()
{ }

i n t getnpoints ()
{ }

double g e t f 0 ()
{ }

double g e t f 1 ()
{ }

double g e t f f 0 ()
{ }

double ode1f f (double x , double y , double yy)
{ }

double ode2f f (double x , double y , double yy , double yyy)
{ }
}

Figure 1. Ode format in C++.

Axioms 2022, 11, 294 8 of 21

double precis ion function getx0 ()
end

double precis ion function getx1 ()
end

integer function getkind ()
end

integer function getnpoints ()
end

double precis ion function g e t f 0 ()
end

double precis ion function g e t f 1 ()
end

double precis ion function g e t f f 0 ()
end

double precis ion function ode1f f (x , y , yy)
double precis ion x , y , yy
end

double precis ion function ode2f f (x , y , yy , yyy)
double precis ion x , y , yy , yyy
end

Figure 2. Ode format in Fortran.

extern "C" {
double getx0 ()
{ }

double getx1 ()
{ }

i n t getnode ()
{ }

i n t getnpoints ()
{ }

double systemfun (i n t node , double x , double *y , double * yy)
{ }

void systemf0 (i n t node , double * f0)
{ }
}

Figure 3. Format for SYSODEs in C++.

Axioms 2022, 11, 294 9 of 21

double precis ion function getx0 ()
end

double precis ion function getx1 ()
end

integer function getnode ()
end

integer function getnpoints ()
end

double precis ion function systemfun (node , x , y , yy)
in teger node
double precis ion x
double precis ion y (node)
double precis ion yy (node)
end

integer function systemf0 (node , f0)
in teger node
double precis ion f0 (node)
end

Figure 4. Format for SYSODEs in Fortran.

3.5. PDE Format

The system is capable of solving elliptic PDEs in two dimensions in a box [x0, x1]× [y0, y1]
with the Dirichlet boundary conditions Ψ(x0, y) = f0(y), Ψ(x1, y) = f1(y), Ψ(x, y0) = g0(x)
and Ψ(x, y1) = g1(x). In Figures 5 and 6 we can see the formulation of PDE’s in C++ and
Fortran programming languages. The presented functions have the following representation:

1. getx0(): returns the left boundary x0.
2. getx1(): returns the right boundary x1.
3. gety0(): returns the left boundary y0.
4. gety1(): returns the right boundary y1.
5. getnpoints(): returns the amount of interior training points for the PDE.
6. getbpoints(): returns the amount of training points across each boundary of the

PDE.
7. f0(y): returns the boundary condition f0(y) across x = x0.
8. f1(y): returns the boundary condition f1(y) across x = x1.
9. g0(x): returns the boundary condition g0(x) across y = y0.
10. g1(x): the function returns the boundary condition g1(x) across y = y1.
11. pde(x,y,v,x1,y1,x2,y2): For the PDE case RbfDeSolver minimizes the function

pde
(

x, y, r(x, y), ∂r(x,y)
∂x , ∂r(x,y)

∂y , ∂2r(x,y)
∂x2 , ∂2r(x,y)

∂y2

)
, where x ∈ [x0, x1] and y ∈ [y0, y1].

The argument v corresponds to r(x, y). The argument x1 corresponds to the first
derivative of r(x, y) with respect to x, y1 corresponds to the first derivative of r(x, y)
with respect to y, x2 corresponds to the second derivative of r(x, y) with respect to x
and the y2 corresponds to the second derivative of r(x, y) with respect to y.

Axioms 2022, 11, 294 10 of 21

extern "C" {
double getx0 ()
{ }

double getx1 ()
{ }

double gety0 ()
{ }

double gety1 ()
{
}

i n t getnpoints ()
{ }
i n t getbpoints ()
{
}

double f0 (double y)
{ }

double f1 (double y)
{ }
double g0 (double x)
{ }

double g1 (double x)
{ }

double pde (double x , double y , double v , double x1 , double y1 ,
double x2 , double y2)
{ }
}

Figure 5. Format for PDEs in C++.

Axioms 2022, 11, 294 11 of 21

double precis ion function getx0 ()
end

double precis ion function getx1 ()
end

double precis ion function gety0 ()
end

double precis ion function gety1 ()
end

integer function getnpoints ()
end

integer function getbpoints ()
end

double precis ion function f0 (y)
double precis ion y
end

double precis ion function f1 (y)
double precis ion y
end

double precis ion function g0 (x)
double precis ion x
end

double precis ion function g1 (x)
double precis ion x
end

double precis ion function pde (x , y , v , x1 , y1 , x2 , y2)
double precis ion x , y , v , x1 , y1 , x2 , y2
end

Figure 6. Format for PDEs in Fortran.

4. Experiments

A series of test functions used in various research papers [15,26] have been used here
for testing purposes. All the problems have been coded in ANSI C++ and the execution was
performed on a Intel i7-10700T running at 2.00 GHz with 16 GB of RAM, and the operating
system was Debian Linux.

4.1. Linear ODEs

1. ODE1

y′ =
2x− y

x

with y(1) = 3, x ∈ [1, 2]. The solution is y(x) = x + 2
x

Axioms 2022, 11, 294 12 of 21

2. ODE2

y′ =
1− y cos(x)

sin(x)

with y(1) = 3
sin(1) , x ∈ [1, 2]. The solution is y(x) = x+2

sin(x)
3. ODE3

y′′ = 6y′ − 9y

with y(0) = 0, y′(0) = 2, x ∈ [0, 1] and solution y(x) = 2x exp(3x)
4. ODE4

y′′ = −1
5

y′ − y− 1
5

exp
(
− x

5

)
cos(x)

with y(0) = 0, y(1) = sin(0.1)
exp(0.2) , x ∈ [0, 1] and solution y(x) = exp

(
− x

5
)

sin(x)

5. ODE5

y′′ = −100y

with y(0) = 0, y′(0) = 10, x ∈ [0, 1] and the solution is

y(x) = sin(10x)

4.2. Non-Linear ODEs

1. LODE1

y′′ =
1

2y

with y(1) = 1, y(4) = 2, x ∈ [1, 4]. The solution is y(x) =
√

x
2. NLODE2

(y′)2 + log(y)− cos2(x)− 2 cos(x)− 1− log(x + sin(x)) = 0

with y(1) = 1 + sin(1), x ∈ [1, 2]. The solution is y(x) = x + sin(x)
3. NLODE3

y′′y′ = − 4
x3

with y(1) = 0, y(2) = log(4), x ∈ [1, 2] and solution y(x) = log
(
x2)

4. NLODE4

x2y′′ +
(
xy′
)2

+
1

log(x)
= 0

with y(e) = 0, y′(e) = 1
e , x ∈ [e, 2e] and solution y(x) = log(log(x))

4.3. Systems of ODEs

1. SYSODE1

y′1 = cos(x) + y2
1 + y2 −

(
x2 + sin2(x)

)
y′2 = 2x− x2 sin(x) + y1y2

with y1(0) = 0, y2(0) = 0, x ∈ [0, 1]. The analytical solutions are y1(x) = sin(x),
y2(x) = x2.

Axioms 2022, 11, 294 13 of 21

2. SYSODE2

y′1 =
cos(x)− sin(x)

y2

y′2 = y1y2 + exp(x)− sin(x)

with y1(0) = 0, y2(0) = 1, x ∈ [0, 1] and solutions y1(x) = sin(x)
exp(x) , y2 = exp(x)

3. SYSODE3

y′1 = cos(x)

y′2 = −y1

y′3 = y2

y′4 = −y3

y′5 = y4

with y1(0) = 0, y2(0) = 1, y3(0) = 0, y4(0) = 1, y5(0) = 0, x ∈ [0, 1] and solutions
y1(x) = sin(x), y2(x) = cos(x), y3(x) = sin(x), y4(x) = cos(x), y5(x) = sin(x).

4. SYSODE4

y′1 = − 1
y2

sin(exp(x))

y′2 = −y2

with y1(0) = cos(1.0), y2(0) = 1.0, x ∈ [0, 1] and solutions y1(x) = cos(exp(x)),
y2(x) = exp(−x).

4.4. PDEs

1. PDE1

∇2Ψ(x, y) = exp(−x)
(

x− 2 + y3 + 6y
)

with x ∈ [0, 1], y ∈ [0, 1] and boundary conditions: Ψ(0, y) = y3,
Ψ(1, y) =

(
1 + y3) exp(−1), Ψ(x, 0) = x exp(−x), Ψ(x, 1) = (x + 1) exp(−x) The

solution is given by: Ψ(x, y) =
(
x + y3) exp(−x)

2. PDE2

∇2Ψ(x, y) = −2Ψ(x, y)

with x ∈ [0, 1], y ∈ [0, 1] and boundary conditions: Ψ(0, y) = 0, Ψ(1, y) = sin(1) cos(y),
Ψ(x, 0) = sin(x), Ψ(x, 1) = sin(x) cos(1). The analytical solution is Ψ(x, y) =
sin(x) cos(y).

3. PDE3

∇2Ψ(x, y) = 4

with x ∈ [0, 1], y ∈ [0, 1] and boundary conditions: Ψ(0, y) = y2 + y + 1, Ψ(1, y) =
y2 + y + 3, Ψ(x, 0) = x2 + x + 1, Ψ(x, 1) = x2 + x + 3. The solution is: Ψ(x, y) =
x2 + y2 + x + y + 1.

4. PDE4

∇2Ψ(x, y) = (x− 2) exp(−x) + x exp(−y)

with x ∈ [0, 1], y ∈ [0, 1] and boundary conditions: Ψ(0, y) = 0, Ψ(1, y) = sin(y),
Ψ(x, 0) = 0, Ψ(x, 1) = sin(x). The solution is: Ψ(x, y) = sin(xy).

4.5. Experimental Results

To validate the ability of the proposed method to tackle differential equations, a series
of experiments were made using the following values for the weight number of the Rbf
network: w = 5, w = 10, w = 15. The values for the parameters of the experiments

Axioms 2022, 11, 294 14 of 21

are listed in Table 1. All the experiments were conducted 30 times using different seeds
for the random number generator and the average error was measured. The random
number generator used was the drand48() function of the C programming language.
The experimental results are listed in Table 2.

Table 1. Experimental parameters.

Parameter Value

Nc 1000
ITERMAX 5000

ps 0.1
pm 0.05
ε 10−7

LI 100
LC 20
λ 100

Table 2. Experimental results.

Equation w = 5 w = 10 w = 15

ODE1 3.9× 10−6 2.2× 10−6 3.4× 10−6

ODE2 2.1× 10−5 1.4× 10−5 1.5× 10−5

ODE3 6.6× 10−2 7.7× 10−2 9.4× 10−2

ODE4 8.8× 10−7 3.8× 10−6 8.7× 10−7

ODE5 9.4× 10−1 1.1× 10−1 5.9× 10−2

NLODE1 7.2× 10−4 1.6× 10−5 1.9× 10−4

NLODE2 4.6× 10−4 5.3× 10−4 1.1× 10−4

NLODE3 5.7× 10−6 7.9× 10−6 5.4× 10−6

NLODE4 1.2× 10−4 7.9× 10−6 2.6× 10−5

SYSODE1 2.8× 10−6 1.9× 10−6 3.2× 10−6

SYSODE2 1.4× 10−5 3.2× 10−6 3.9× 10−6

SYSODE3 3.1× 10−5 8.1× 10−5 1.1× 10−5

SYSODE4 1.4× 10−4 4.4× 10−6 6.4× 10−6

PDE1 3.7× 10−2 6.8× 10−3 1.1× 10−2

PDE2 3.2× 10−3 2.1× 10−5 2.2× 10−5

PDE3 7.9× 10−2 4.9× 10−4 7.4× 10−4

PDE4 8.0× 10−2 7.8× 10−3 3.4× 10−3

As the experimental results show, the proposed method solves the vast majority of
differential equations even when the number of weights is relatively small. However,
adding weights seems to have more positive effects on difficult problems especially in the
case of partial differential equations. Of course, increasing the number of weights implies
increased execution times and, for this reason, the use of parallel processing techniques
is necessary. In the application, there is the possibility of using more processing threads
through the OpenMP library.

In addition, the graphical representation of the produced solutions as well as the
absolute error between the estimated RBF networks is also plotted. For example, in Figure 7
the solution of ODE1 and the estimated RBF network are plotted and in Figure 8 the
absolute difference of these functions is plotted. Additionally, the absolute error between
the solutions y1(x) = sin(x), y(2) = x2 and the estimated RBF networks for the SYSODE1
case is also plotted in Figure 9. Moreover, the absolute error between the solution of the
PDE1 case and the estimated RBF network is plotted in Figure 10. All graphs show the
ability of the proposed method to approach to a large extent the solution of the differential
equation which is under study.

Axioms 2022, 11, 294 15 of 21

 2.82

 2.84

 2.86

 2.88

 2.9

 2.92

 2.94

 2.96

 2.98

 3

 1 1.2 1.4 1.6 1.8 2

Y

X

x+2/x
RBF(x)

Figure 7. Graphical comparison between the solution of ODE1 and the estimated neural network.

 0

 1x10-6

 2x10-6

 3x10-6

 4x10-6

 5x10-6

 6x10-6

 7x10-6

 1 1.2 1.4 1.6 1.8 2

A
B

S
(E

R
R

O
R

)

X

ABS(RBF(x)-y(x))

Figure 8. The absolute difference between the real solution of ODE1 and the produced RBF network.

 0

 2x10-6

 4x10-6

 6x10-6

 8x10-6

 1x10-5

 1.2x10-5

 1.4x10-5

 1.6x10-5

 0 0.2 0.4 0.6 0.8 1

A
B

S
(E

R
R

O
R

)

X

ABS(RBF1(x)-y1(x))
ABS(RBF2(x)-y2(x))

Figure 9. The difference between the functions y1(x) = sin(x), y(2) = x2 and the estimated RBF
solutions for the case of System of ODE’s SYSODE1.

Axioms 2022, 11, 294 16 of 21

 0
 0.2

 0.4
 0.6

 0.8
 1 0

 0.2
 0.4

 0.6
 0.8

 1

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07

ABS(RBF(x,y) - f(x,y))

X

Y

ERROR

Figure 10. Absolute error between f (x, y) =
(

x + y3) exp(−x) and the estimated solution of PDE1.

Additionally, a plot was made to demonstrate the speed of the algorithm and the
effectiveness of using more threads. In this test, the method was tested in ODE1 function
for different values for the number of the threads and the desired accuracy (the value
− log 10(ε) for the parameter ε in Table 2). The plot is shown in Figure 11. Execution times
are significantly reduced as the number of threads increases and this makes the method
able to be applied to more complex problems if there is enough computing power and
several computing units available, which is possible in modern multi-core computers.

 0

 10

 20

 30

 40

 50

 60

 70

 4 4.5 5 5.5 6

C
P
U

 T
IM

E
 (

S
E
C

S
)

ACCURACY (-LOG10(EPS))

ODE1 1 THREAD
ODE1 2 THREADS
ODE1 4 THREADS
ODE1 8 THREADS

Figure 11. Computational cost and desired accuracy for different number of threads.

4.6. Some Practical Problems

The proposed method was also applied on a series of systems of ODEs available from
https://archimede.uniba.it/~testset/ (accessed on 10 May 2022) and more specific the
Hires problem, the Rober problem, and the Orego problem.

4.6.1. Hires Problem

This is a system of eight non-linear ODEs proposed by Schäfer in 1975 [51] and it
describes how light is involved in morphogenesis. The problem is defined as

dy
dt

= f (y), y(0) = y0

 https://archimede.uniba.it/~testset/

Axioms 2022, 11, 294 17 of 21

with t ∈ [0, 321.8122] and the function f (y) defined as

f (y) =



−1.71y1 + 0.43y2 + 8.32y3 + 0.0007
1.71y1 − 8.75y2

−10.03y3 + 0.43y4 + 0.035y5
8.32y2 + 1.71y3 − 1.12y4
−1.745y5 + 0.43y6 + 0.43y7

−280y6y8 + 0.69y4 + 1.71y5 − 0.43y6 + 0.69y7
280y6y8 − 1.81y7
−280y6y8 + 1.81y7


and the initial conditions y0 = (1, 0, 0, 0, 0, 0, 0, 0.0057)

4.6.2. Rober Problem

The Rober problem [52] describes the kinetics of an autocatalytic reaction and it
is defined a system of three non-linear ordinary differential equations. The problem is
defined as

dy
dt

= f (y), y(0) = y0

with t ∈ [0, T] and the function f (y) is

f (y) =

 −0.04y1 + 104y2y3
0.04y1 − 104y2y3 − 3× 107y2

2
3× 107y2

2


and the initial conditions y0 = (1, 0, 0) and the value of T was set 10.

4.6.3. Orego Problem

The Orego problem [53] is a system of three non-linear ordinary differential equations
and refers to the Oregonator model. The problem is defined as

dy
dt

= f (y), y(0) = y0

with t ∈ [0, 360] The function f (y) is given by:

f (y) =

 s
(
y2 − y1y2 + y1 − qy2

1
)

1
s (−y2 − y1y2 + y3)

w(y1 − y3)


with y0 = (1, 2, 3) and s = 77.27, w = 0.161, q = 8.375× 10−6.

The results from the application of the proposed method with the parameters of Table 1
and w = 10 are listed in Table 3. The proposed method achieved low learning error even
in the above examples. The column MEM denotes the application of the MEBDF [54]
method to these problems. Furthermore, in Figures 12–14, the average execution time of
the proposed method for different number of processing threads is plotted for the previous
three test cases. In these plots logarithmic scale was used.

Table 3. Experimental results for the real life problems.

Problem w = 10 MEM

Hires 2.8× 10−5 6.1× 10−1

Rober 2.1× 10−6 1.2× 10−3

Orego 2.7× 10−5 2.5× 10−2

Axioms 2022, 11, 294 18 of 21

 0.01

 0.1

 1

 10

 100

 1000

 4 4.5 5 5.5 6
C

P
U

 T
IM

E
 (

 S
E
C

S
)

ACCURACY (-LOG10(EPS))

HIRES 1 THREAD
HIRES 2 THREADS
HIRES 4 THREADS
HIRES 8 THREADS

MEBDF

Figure 12. Computational cost and desired accuracy for different number of threads for the case of
Hires problem.

 0.01

 0.1

 1

 10

 100

 4 4.5 5 5.5 6

C
P
U

 T
IM

E
 (

 S
E
C

S
)

ACCURACY (-LOG10(EPS))

ROBER 1 THREAD
ROBER 2 THREADS
ROBER 4 THREADS
ROBER 8 THREADS

MEBDF

Figure 13. Computational cost and desired accuracy for different number of threads for the case of
Rober problem.

 0.01

 0.1

 1

 10

 100

 1000

 4 4.5 5 5.5 6

C
P
U

 T
IM

E
 (

 S
E
C

S
)

ACCURACY (-LOG10(EPS))

OREGO 1 THREAD
OREGO 2 THREADS
OREGO 4 THREADS
OREGO 8 THREADS

MEBDF

Figure 14. Computational cost and desired accuracy for different number of threads for the case of
Orego problem.

Axioms 2022, 11, 294 19 of 21

5. Conclusions

A method for solving differential equations is presented here, accompanied by the
corresponding software. The method utilizes gra networks to solve differential equations
and the enforcement of initial and boundary conditions was done using penalty factors.
The network configuration was adapted using a hybrid genetic algorithm, in which a local
optimization method is applied to a randomly selected set of chromosomes per distinct
number of generations.

The software developed in the context of this work was also presented. The software
was written in C++ using the open source library QT, so that it can be run on most operating
systems. The user can encode the differential equation in either C++ or Fortran by writing
a series of functions. Future extensions of the method may include more efficient methods
of initializing network weights as well as more advanced methods of terminating the
genetic algorithm.

Author Contributions: I.G.T., A.T. and E.K. conceived the idea and methodology and supervised the
technical part regarding the software. I.G.T. conducted the experiments, employing several datasets,
and provided the comparative experiments. A.T. performed the statistical analysis. E.K. and all other
authors prepared the manuscript. E.K. and I.G.T. organized the research team and A.T. supervised
the project. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The used software and the experimental functions and data are avail-
able from https://github.com/itsoulos/RbfDeSolver (accessed on 10 May 2022).

Acknowledgments: The experiments of this research work was performed at the high performance
computing system established at Knowledge and Intelligent Computing Laboratory, Dept of Infor-
matics and Telecommunications, University of Ioannina, acquired with the project “Educational
Laboratory equipment of TEI of Epirus” with MIS 5007094 funded by the Operational Programme
“Epirus” 2014–2020, by ERDF and national finds.

Conflicts of Interest: The authors declare no conflict of interest.

Sample Availability: Not applicable.

References
1. Raissi, M.; Karniadakis, G.E. Hidden physics models: Machine learning of nonlinear partial differential equations. J. Comput.

Phys. 2018, 357, 125–141. [CrossRef]
2. Lelièvre, T.; Stoltz, G. Partial differential equations and stochastic methods in molecular dynamics. Acta Numer. 2016, 25, 681–880.

[CrossRef]
3. Scholz, G.; Scholz, F. First-order differential equations in chemistr. ChemTexts 2015, 1, 1. [CrossRef]
4. Padgett, J.L.; Geldiyev, Y.; Gautam, S.; Peng, W.; Mechref, Y.; Ibraguimov, A. Object classification in analytical chemistry via

data-driven discovery of partial differential equations. Comp. Math. Methods 2021, 3, e1164. [CrossRef]
5. Owoyele, O.; Pal, P. ChemNODE: A neural ordinary differential equations framework for efficient chemical kinetic solvers. Energy

2022, 7, 100118. [CrossRef]
6. Wang, Z.; Huang, X.; Shen, H. Control of an uncertain fractional order economic system via adaptive sliding mode. Neurocomputing

2012, 83, 83–88. [CrossRef]
7. Achdou, Y.; Buera, F.J.; Lasry, J.M.; Lions, P.L.; Moll, B. Partial differential equation models in macroeconomics. Phil. Philos. Trans.

R. Soc. A Math. Phys. Eng. Sci. 2012, 372, 20130397. [CrossRef]
8. Hattaf, K.; Yousfi, N. Global stability for reaction—Diffusion equations in biology. Comput. Math. Appl. 2013, 66, 1488–1497.
9. Getto, P.; Waurick, M. A differential equation with state-dependent delay from cell population biology. J. Differ. 2016, 260,

6176–6200. [CrossRef]
10. Tang, W.; Sun, Y. Construction of Runge—Kutta type methods for solving ordinary differential equations. Appl. Math. Comput.

2014, 234, 179–191. [CrossRef]
11. Kennedy, C.A.; Carpenter, M.H. Higher-order additive Runge–Kutta schemes for ordinary differential equations. Appl. Numer.

Math. 2019, 136, 183–205. [CrossRef]

https://github.com/itsoulos/RbfDeSolver
http://doi.org/10.1016/j.jcp.2017.11.039
http://dx.doi.org/10.1017/S0962492916000039
http://dx.doi.org/10.1007/s40828-014-0001-x
http://dx.doi.org/10.1002/cmm4.1164
http://dx.doi.org/10.1016/j.egyai.2021.100118
http://dx.doi.org/10.1016/j.neucom.2011.11.018
http://dx.doi.org/10.1098/rsta.2013.0397
http://dx.doi.org/10.1016/j.jde.2015.12.038
http://dx.doi.org/10.1016/j.amc.2014.02.042
http://dx.doi.org/10.1016/j.apnum.2018.10.007

Axioms 2022, 11, 294 20 of 21

12. Yang, X.; Shen, Y. Runge-Kutta Method for Solving Uncertain Differential Equations. J. Uncertain. Anal. Appl. 2015, 3, 17.
[CrossRef]

13. Kim, H.; Sakthivel, R. Numerical solution of hybrid fuzzy differential equations using improved predictor—Corrector method.
Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 3788–3794. [CrossRef]

14. Daftardar-Gejji, V.; Sukale, Y.; Bhalekar, S. A new predictor–corrector method for fractional differential equations. Appl. Math.
Comput. 2014, 244, 158–182. [CrossRef]

15. Lagaris, I.E.; Likas, A.; Fotiadis, D.I. Artificial neural networks for solving ordinary and partial differential equations. IEEE Trans.
Neural Netw. 1998, 9, 987–1000. [CrossRef] [PubMed]

16. Mall, S.; Chakraverty, S. Application of Legendre Neural Network for solving ordinary differential equations. Appl. Soft Comput.
2016, 43, 347–356. [CrossRef]

17. Pakdaman, M.; Ahmadian, A.; Effati, S.; Salahshour, S.; Baleanue, D. Solving differential equations of fractional order using an
optimization technique based on training artificial neural network. Appl. Math. Comput. 2017, 293, 81–95. [CrossRef]

18. Chang, W.D. Parameter identification of Chen and Lü systems: A differential evolution approach. Chaos Solitons Fractals 2007, 32,
1469–1476. [CrossRef]

19. Biswas, A.; Das, S.; Abraham, A.; Dasgupta, S. Design of fractional-order PIλDµ controllers with an improved differential
evolution. Eng. Appl. Artif. Intell. 2009, 22, 343–350. [CrossRef]

20. Arqub, O.A.; Hammour, Z.A. Numerical solution of systems of second-order boundary value problems using continuous genetic
algorithm. Inf. Sci. 2014, 279, 396–415. [CrossRef]

21. Gutierrez-Navarro, D.; Lopez-Aguayo, S. Solving ordinary differential equations using genetic algorithms and the Taylor series
matrix method. J. Phys. Commun. 2018, 2, 115010. [CrossRef]

22. Januszewski, M.; Kostur, M. Accelerating numerical solution of stochastic differential equations with CUDA. Comput. Commun.
2010, 181, 183–188. [CrossRef]

23. Murray, L. GPU Acceleration of Runge-Kutta Integrators. IEEE Trans. Parallel Distrib. Syst. 2012, 23, 94–101. [CrossRef]
24. Riesinger, C.; Neckel, T.; Rupp, F. Solving Random Ordinary Differential Equations on GPU Clusters using Multiple Levels of

Parallelism. Siam J. Sci. Comput. 2016, 38, C372–C402. [CrossRef]
25. O’Neill, M.; Ryan, C. Grammatical evolution. IEEE Trans. Evol. Comput. 2001, 5, 349–358. [CrossRef]
26. Tsoulos, I.G.; Lagaris, I.E. Solving differential equations with genetic programming. Genet. Program Evolvable Mach 2006, 7, 33–54.

[CrossRef]
27. Le, T.T.V.; Le-Cao, K.; Duc-Tran, H. A Radial Basis Neural Network Approximation with Extended Precision for Solving Partial

Differential Equations. In Soft Computing: Biomedical and Related Applications. Studies in Computational Intelligence; Phuong, N.H.,
Kreinovich, V., Eds.; Springer: Berlin/Heidelberg, Germany, 2021; Volume 981.

28. Wei, P.; Li, Z.; Li, X. An 88-line MATLAB code for the parameterized level set method based topology optimization using radial
basis functions. Struct. Multidisc. Optim. 2018, 58, 831–849. [CrossRef]

29. Iqbal, A.; Hamid, N.N.A.; Ismail, A.I.M.; Abbas, M. Galerkin approximation with quintic B-spline as basis and weight functions
for solving second order coupled nonlinear Schrödinger equations. Math. Comput. Simul. 2021, 187, 1–16. [CrossRef]

30. Goldberg, D. Genetic Algorithms in Search, Optimization and Machine Learning; Addison-Wesley Publishing Company: Boston, MA,
USA, 1989.

31. Michaelewicz, Z. Genetic Algorithms + Data Structures = Evolution Programs; Springer: Berlin/Heidelberg, Germany, 1996.
32. Grady, S.A.; Hussaini, M.Y.; Abdullah, M.M. Placement of wind turbines using genetic algorithms. Renew. Energy 2005, 30,

259–270. [CrossRef]
33. Park, J.; Sandberg, I.W. Universal Approximation Using Radial-Basis-Function Networks. Neural Comput. 1991, 3, 246–257.

[CrossRef]
34. MacQueen, J. Some methods for classification and analysis of multivariate observations. In Proceedings of the Fifth Berkeley

Symposium on Mathematical Statistics and Probability, Los Angeles, CA, USA, 1 January 1967; Volume 1, pp. 281–297.
35. Teng, P. Machine-learning quantum mechanics: Solving quantum mechanics problems using radial basis function networks. Phys.

Rev. E 2018, 98, 033305. [CrossRef]
36. Jovanović, R.; Sretenovic, A. Ensemble of radial basis neural networks with K-means clustering for heating energy consumption

prediction. Fme Trans. 2017, 45, 51–57. [CrossRef]
37. Alexandridis, A.; Chondrodima, E.; Efthimiou, E.; Papadakis, G.; Vallianatos, F.; Triantis, D. Large Earthquake Occurrence

Estimation Based on Radial Basis Function Neural Networks. IEEE Trans. Geosci. Remote. Sens. 2014, 52, 5443–5453. [CrossRef]
38. Gorbachenko, V.I.; Zhukov, M.V. Solving boundary value problems of mathematical physics using radial basis function networks.

Comput. Math. Math. Phys. 2017, 57, 145–155. [CrossRef]
39. Wan, C.; Harrington, P. Self-Configuring Radial Basis Function Neural Networks for Chemical Pattern Recognition. J. Chem. Inf.

Comput. Sci. 1999, 39, 1049–1056. [CrossRef]
40. Yao, X.; Zhang, X.; Zhang, R.; Liu, M.; Hu, Z.; Fan, B. Prediction of enthalpy of alkanes by the use of radial basis function neural

networks. Comput. Chem. 2001, 25, 475–482. [CrossRef]
41. Shahsavand, A.; Ahmadpour, A. Application of optimal RBF neural networks for optimization and characterization of porous

materials. Comput. Chem. Eng. 2005, 29, 2134–2143. [CrossRef]

http://dx.doi.org/10.1186/s40467-015-0038-4
http://dx.doi.org/10.1016/j.cnsns.2012.02.003
http://dx.doi.org/10.1016/j.amc.2014.06.097
http://dx.doi.org/10.1109/72.712178
http://www.ncbi.nlm.nih.gov/pubmed/18255782
http://dx.doi.org/10.1016/j.asoc.2015.10.069
http://dx.doi.org/10.1016/j.amc.2016.07.021
http://dx.doi.org/10.1016/j.chaos.2005.11.067
http://dx.doi.org/10.1016/j.engappai.2008.06.003
http://dx.doi.org/10.1016/j.ins.2014.03.128
http://dx.doi.org/10.1088/2399-6528/aaedd2
http://dx.doi.org/10.1016/j.cpc.2009.09.009
http://dx.doi.org/10.1109/TPDS.2011.61
http://dx.doi.org/10.1137/15M1036014
http://dx.doi.org/10.1109/4235.942529
http://dx.doi.org/10.1007/s10710-006-7009-y
http://dx.doi.org/10.1007/s00158-018-1904-8
http://dx.doi.org/10.1016/j.matcom.2021.02.012
http://dx.doi.org/10.1016/j.renene.2004.05.007
http://dx.doi.org/10.1162/neco.1991.3.2.246
http://dx.doi.org/10.1103/PhysRevE.98.033305
http://dx.doi.org/10.5937/fmet1701051J
http://dx.doi.org/10.1109/TGRS.2013.2288979
http://dx.doi.org/10.1134/S0965542517010079
http://dx.doi.org/10.1021/ci990306t
http://dx.doi.org/10.1016/S0097-8485(00)00110-8
http://dx.doi.org/10.1016/j.compchemeng.2005.07.002

Axioms 2022, 11, 294 21 of 21

42. Wang, Y.P.; Dang, J.W.; Li, Q.; Li, S. Multimodal medical image fusion using fuzzy radial basis function neural networks. In Pro-
ceedings of the 2007 International Conference on Wavelet Analysis and Pattern Recognition, Beijing, China, 2–4 November 2007;
pp. 778–782.

43. Mehrabi, S.; Maghsoudloo, M.; Arabalibeik, H.; Noormand, R.; Nozari, Y. Congestive heart failure, Chronic obstructive pulmonary
disease, Clinical decision support system, Multilayer perceptron neural network and radial basis function neural network. Expert
Syst. Appl. 2009, 36, 6956–6959. [CrossRef]

44. Veezhinathan, M.; Ramakrishnan, S. Detection of Obstructive Respiratory Abnormality Using Flow—Volume Spirometry and
Radial Basis Function Neural Networks. J. Med. Syst. 2007, 31, 461. [CrossRef]

45. Momoh, J.A.; Reddy, S.S. Combined Economic and Emission Dispatch using Radial Basis Function. In Proceedings of the 2014
IEEE PES General Meeting|Conference & Exposition, National Harbor, MD, USA, 27–31 July 2014; pp. 1–5. [CrossRef]

46. Guo, J.-J.; Luh, P.B. Selecting input factors for clusters of Gaussian radial basis function networks to improve market clearing
price prediction. IEEE Trans. Power Syst. 2003, 18, 665–672.

47. Falat, L.; Stanikova, Z.; Durisova, M.; Holkova, B.; Potkanova, T. Application of Neural Network Models in Modelling Economic
Time Series with Non-constant Volatility. Procedia Econ. Financ. 2015, 34, 600–607. [CrossRef]

48. Dagum, L.; Menon, R. OpenMP: An industry standard API for shared-memory programming. IEEE Comput. Sci. Eng. 1998, 5,
46–55. [CrossRef]

49. Powell, M.J.D. A Tolerant Algorithm for Linearly Constrained Optimization Calculations. Math. Program. 1989, 45, 547. [CrossRef]
50. Kaelo, P.; Ali, M.M. Integrated crossover rules in real coded genetic algorithms. Eur. J. Oper. 2007, 176, 60–76. [CrossRef]
51. Schäfer, E. A new approach to explain the “high irradiance responses” of photomorphogenesis on the basis of phytochrome.

J. Math. Biol. 1975, 2, 41–56. [CrossRef]
52. Robertson, H.H. The Solution of a Set of Reaction Rate Equations. In Numerical Analysis: An introduction; Walsh, J., Ed.; Academic

Press: Cambridge, MA, USA, 1967; pp. 178–182.
53. Hairer, E.; Wanner, G. Solving Ordinary Di Erential Equations II: Sti and Di Erential-Algebraic PROBLEMS, 2nd revised ed.; Springer:

Berlin/Heidelberg, Germany, 1996.
54. Cash, R.; Considine, S. An MEBDF code for stiff initial value problems. Acm Trans. Math. Softw. 1992, 18, 142–158. [CrossRef]

http://dx.doi.org/10.1016/j.eswa.2008.08.039
http://dx.doi.org/10.1007/s10916-007-9085-9
http://dx.doi.org/10.1109/PESGM.2014.6939506
http://dx.doi.org/10.1016/S2212-5671(15)01674-3
http://dx.doi.org/10.1109/99.660313
http://dx.doi.org/10.1007/BF01589118
http://dx.doi.org/10.1016/j.ejor.2005.07.025
http://dx.doi.org/10.1007/BF00276015
http://dx.doi.org/10.1145/146847.146922

	Introduction
	Detailed Description
	Main Algorithm
	Fitness Evaluation
	Ode Case
	Systems of ODEs Case
	Pde Case

	Software Details
	Installation
	Command Line Options
	Format for ODEs
	Format for System of ODEs
	PDE Format

	Experiments
	Linear ODEs
	Non-Linear ODEs
	Systems of ODEs
	PDEs
	Experimental Results
	Some Practical Problems
	Hires Problem
	Rober Problem
	Orego Problem

	Conclusions
	References

