Improved Chen’s Inequalities for Submanifolds of Generalized Sasakian-Space-Forms
Abstract
:1. Introduction
2. Preliminaries
3. B. Y. Chen Inequalities
- 1.
- If the structure vector field ξ is tangent to M, we have
- 2.
- If the structure vector field ξ is normal to M, we have
4. Some Applications
- 1.
- 2.
- and .
- 3.
- For the distribution is slant with slant angle .
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, B.Y. Some pinching and classification theorems for minimal submanifolds. Arch. Math. 1993, 60, 568–578. [Google Scholar] [CrossRef]
- Chern, S.S. Minimal Submanifolds in a Riemannian Manifold; University of Kansas Press: Lawrence, KS, USA, 1968. [Google Scholar]
- Chen, B.Y. A general inequality for submanifolds in complex-space-forms and its applications. Arch. Math. 1996, 67, 519–528. [Google Scholar] [CrossRef]
- Kumar, P.K.; Gupta, R.S.; Sharfuddin, A.B.Y. Chen’s inequalities for bi-slant submanifolds in Kenmotsu space forms. Demonstr. Math. 2010, 4, 887–898. [Google Scholar]
- Cioroboiu, D.B.Y. Chen inequalities for semislant submanifolds in Sasakian-space-forms. Int. J. Math. Math. Sci. 2003, 2003, 354806. [Google Scholar] [CrossRef] [Green Version]
- Gupta, R.S.B.Y. Chen’s inequalities for Bi-slant submanifolds in cosympletic space forms. Sarajevo J. Math. 2013, 9, 117–128. [Google Scholar] [CrossRef]
- Özgür, C.B.Y. Chen inequalities for submanifolds of a Riemannian manifold of a quasi-constant curvature. Turk. J. Math. 2011, 35, 501–509. [Google Scholar]
- Alegre, P.; Carriazo, A.; Kim, Y.H.; Yoon, D.W.B.Y. Chen’s inequality for submanifolds of generalized space forms. Indian J. Pure Appl. Math. 2007, 38, 185–201. [Google Scholar]
- Mihai, A.B.Y. Chen inequalities for slant submanifolds in generalized complex space forms. Rad. Math. 2004, 12, 215–231. [Google Scholar]
- Decu, S.; Haesen, S. Chen Inequalities for Spacelike Submanifolds in Statistical Manifolds of type Para-Kähler Space Forms. Mathematics 2022, 10, 330. [Google Scholar] [CrossRef]
- Aytimur, H.; Kon, M.; Mihai, A.; Özgür, C.; Takano, K. Chen Inequalities for Statistical Submanifolds of Kähler-Like Statistical Manifolds. Mathematics 2019, 7, 1202. [Google Scholar] [CrossRef] [Green Version]
- Lone, M.S.; Bahadir, O.; Park, C.; Hwang, I. Basic inequalities for statistical submanifolds in Golden-like statistical manifolds. Open Math. 2022, 20, 153–166. [Google Scholar] [CrossRef]
- Vilcu, G.E. On Chen invariants and inequalities in quaternionic geometry. J. Inequal. Appl. 2013, 2013, 66. [Google Scholar] [CrossRef] [Green Version]
- Poyraz, N. Ö. Chen inequalities on lightlike hypersurfaces of GRW spacetime. Int. J. Geom. Methods Mod. Phys. 2022, 19, 2250011. [Google Scholar] [CrossRef]
- Qu, Q.; Wang, Y. Multiply warped products with a quarter-symmetric connection. J. Math. Anal. Appl. 2015, 431, 955–987. [Google Scholar] [CrossRef]
- Hayden, H.A. Subspaces of a space with torsion. Proc. London Math. Soc. 1932, 34, 27–50. [Google Scholar] [CrossRef]
- Agashe, N.S.; Chafle, M.R. A semi-symmetric non-metric connection on a Riemannian manifold. Indian J. Pure Appl. Math. 1992, 23, 399–409. [Google Scholar]
- Wang, Y.; Zhang, P. Chen inequalities for submanifolds of real space forms with a quarter-symmetric connection. Taiwanese J. Math. 2010, 14, 1465–1477. [Google Scholar]
- Mihai, A.; Özgür, C. Chen inequalities for submanifolds of complex space forms and Sasakian-space-forms endowed with semi-symmetric metric connections. Rocky Mountain J. Math. 2011, 41, 1653–1673. [Google Scholar] [CrossRef]
- Wang, Y. Chen inequalities for submanifolds of complex space forms and Sasakian-space-forms with quarter-symmetric connections. Int. J. Geom. Methods Modern Phys. 2019, 16, 1950118. [Google Scholar] [CrossRef]
- Sular, S. Chen inequalities for submanifolds of generalized space forms with a semi-symmetric metric connection. Hacettepe J. Math. Stat. 2016, 45, 811–825. [Google Scholar] [CrossRef]
- Al-Khaldi, A.H.; Aquib, M.; Aslam, M.; Khan, M.A. Chen-Ricci Inequalities with a Quarter Symmetric Connection in Generalized Space Forms. Adv. Math. Phys. 2021, 2021, 3221643. [Google Scholar] [CrossRef]
- Chen, B.Y. A Riemannian invariant and its applications to submanifold theorey. Results Math. 1995, 27, 17–26. [Google Scholar] [CrossRef]
- Blair, D.E. Riemannian Geometry of Contact and Sympletic Manifolds; Birkhauser: Boston, MA, USA, 2002. [Google Scholar]
- Alegre, P.; Blair, D.E.; Carriazo, A. Generalized Sasakian-space-forms. Israel J. Math. 2004, 141, 157–183. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, L.; Song, W. Chen’s inequalities for submanifolds of a Riemannian manifold of quasi-constant curvature with a semi-symmetric metric connection. Taiwanese J. Math. 2014, 18, 1841–1862. [Google Scholar] [CrossRef]
- Lotta, A. Slant submanifolds in contact geometry. Bull. Math. Soc. Roum. 1996, 39, 183–198. [Google Scholar]
- Alqahtani, L.S.; Stankovic, M.S.; Uddin, S. Warped product bi-slant submanifolds of cosympletic manifolds. Filomat 2017, 17, 5065–5071. [Google Scholar] [CrossRef]
- Abedi, E.; Ziabari, R.B. Slant submanifolds of a conformal Sasakian manifold. Acta Universitatis Apulensis 2014, 40, 35–49. [Google Scholar]
- Abedi, E.; Ziabari, R.B.; Tripathi, M.M. Ricci and scalar curvatures of submanifolds of a conformal Sasakian space form. Arch. Math. 2016, 52, 113–130. [Google Scholar] [CrossRef] [Green Version]
- Akram, A.; Piscoran, L.I. Geometric classification of warped products isometrically immersed into Sasakian space form. Math. Nachr. 2019, 292, 234–251. [Google Scholar] [CrossRef]
- Akram, A.; Piscoran, L.I. Geometry of warped product immersions of Kenmotsu space forms and its applications to slant immersions. J. Geom. Phys. 2017, 114, 276–290. [Google Scholar]
- Akram, A.; Uddin, S.; Othman, W.A.M. Geometry of warped product pointwise semi-slant submanifolds of Kahler manifolds. Filomat 2017, 12, 3771–3778. [Google Scholar]
- Al-Solamy, F.R.; Khan, V.A. Warped product semi-slant submanifolds of a Sasakian manifold. Serdica Math. J. 2008, 34, 597–606. [Google Scholar]
- Li, Y.L.; Ali, A.; Ali, R. A general inequality for CR-warped products in generalized Sasakian-space-form and its applications. Adv. Math. Phys. 2021, 2021, 5777554. [Google Scholar] [CrossRef]
- Li, Y.L.; Alkhaldi, A.H.; Ali, A.; Laurian-Ioan, P. On the Topology of Warped Product Pointwise Semi-Slant Submanifolds with Positive Curvature. Mathematics 2021, 9, 3156. [Google Scholar] [CrossRef]
- Li, Y.L.; Abolarinwa, A.; Azami, S.; Ali, A. Yamabe constant evolution and monotonicity along the conformal Ricci flow. AIMS Math. 2022, 7, 12077–12090. [Google Scholar] [CrossRef]
- Li, Y.L.; Ganguly, D.; Dey, S.; Bhattacharyya, A. Conformal η-Ricci solitons within the framework of indefinite Kenmotsu manifolds. AIMS Math. 2022, 7, 5408–5430. [Google Scholar] [CrossRef]
- Li, Y.L.; Zhu, Y.S.; Sun, Q.Y. Singularities and dualities of pedal curves in pseudo-hyperbolic and de Sitter space. Int. J. Geom. Methods Mod. Phys. 2021, 18, 1–31. [Google Scholar] [CrossRef]
- Li, Y.L.; Ali, A.; Mofarreh, F.; Alluhaibi, N. Homology groups in warped product submanifolds in hyperbolic spaces. J. Math. 2021, 2021, 8554738. [Google Scholar] [CrossRef]
- Li, Y.L.; Lone, M.A.; Wani, U.A. Biharmonic submanifolds of Kähler product manifolds. AIMS Math. 2021, 6, 9309–9321. [Google Scholar] [CrossRef]
- Li, Y.L.; Dey, S.; Pahan, S.; Ali, A. Geometry of conformal η-Ricci solitons and conformal η-Ricci almost solitons on Paracontact geometry. Open Math. 2022, 20, 1–20. [Google Scholar] [CrossRef]
- Li, Y.L.; Ali, A.; Mofarreh, F.; Abolarinwa, A.; Ali, R. Some eigenvalues estimate for the ϕ-Laplace operator on slant submanifolds of Sasakian space forms. J. Funct. Space 2021, 2021, 6195939. [Google Scholar]
- Yang, Z.C.; Li, Y.L.; Erdoǧdub, M.; Zhu, Y.S. Evolving evolutoids and pedaloids from viewpoints of envelope and singularity theory in Minkowski plane. J. Geom. Phys. 2022, 176, 104513. [Google Scholar] [CrossRef]
- Todorčević, V. Subharmonic behavior and quasiconformal mappings. Anal. Math. Phys. 2019, 9, 1211–1225. [Google Scholar] [CrossRef]
- Todorčević, V. Harmonic Quasiconformal Mappings and Hyperbolic Type Metrics; Springer International Publishing: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Kojić, V. Quasi-nearly subharmonic functions and conformal mappings. Filomat 2007, 21, 243–249. [Google Scholar] [CrossRef] [Green Version]
- Kojić, V.; Pavlović, M. Subharmonicity of |f|p for quasiregular harmonic functions, with applications. J. Math. Anal. Appl. 2008, 342, 742–746. [Google Scholar] [CrossRef] [Green Version]
- Manojlović, V.; Vuorinen, M. On quasiconformal maps with identity boundary values. Trans. Am. Math. Soc. 2011, 363, 2367–2479. [Google Scholar] [CrossRef] [Green Version]
- Manojlović, V. Bilipschitz mappings between sectors in planes and quasi-conformality. Funct. Anal. Approx. Comput. 2009, 1, 1–6. [Google Scholar]
- Manojlović, V. On bilipschicity of quasiconformal harmonic mappings. Novi Sad J. Math. 2015, 45, 105–109. [Google Scholar] [CrossRef]
- Manojlović, V. On conformally invariant extremal problems. Appl. Anal. Discret. Math. 2009, 3, 97–119. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Khatri, M.; Singh, J.P.; Chaubey, S.K. Improved Chen’s Inequalities for Submanifolds of Generalized Sasakian-Space-Forms. Axioms 2022, 11, 324. https://doi.org/10.3390/axioms11070324
Li Y, Khatri M, Singh JP, Chaubey SK. Improved Chen’s Inequalities for Submanifolds of Generalized Sasakian-Space-Forms. Axioms. 2022; 11(7):324. https://doi.org/10.3390/axioms11070324
Chicago/Turabian StyleLi, Yanlin, Mohan Khatri, Jay Prakash Singh, and Sudhakar K. Chaubey. 2022. "Improved Chen’s Inequalities for Submanifolds of Generalized Sasakian-Space-Forms" Axioms 11, no. 7: 324. https://doi.org/10.3390/axioms11070324
APA StyleLi, Y., Khatri, M., Singh, J. P., & Chaubey, S. K. (2022). Improved Chen’s Inequalities for Submanifolds of Generalized Sasakian-Space-Forms. Axioms, 11(7), 324. https://doi.org/10.3390/axioms11070324