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Abstract: In this article, we prove that the 〈p, q〉 condition holds, first by using the Fuchs index of the
complex Kawahara equation, and then proving that all meromorphic solutions of complex Kawahara
equations belong to the class W. Moreover, the complex method is employed to get all meromorphic
solutions of complex Kawahara equation and all traveling wave exact solutions of Kawahara equation.
Our results reveal that all rational solutions ur(x + νt) and simply periodic solutions us,1(x + νt) of
Kawahara equation are solitary wave solutions, while simply periodic solutions us,2(x + νt) are not
real-valued. Finally, computer simulations are given to demonstrate the main results of this paper.
At the same time, we believe that this method is a very effective and powerful method of looking
for exact solutions to the mathematical physics equations, and the search process is simpler than
other methods.
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1. Introduction and Main Results

In this article, we study all traveling wave exact solutions of the Kawahara equation [1]:

ut + auux + cuxxx − duxxxxx = 0, (1)

where a, c, d are constants, x and t represent spatial and time variables, uux is the nonlinear dis-
turbance term, and uxxx and uxxxxx are the dispersion terms of order three and five, respectively.
The solutions of Equation (1) could be used to analyze and interpret a lot of nonlinear dispersive
phenomena that can arise in optical fiber, ocean, plasma physics, etc. [2,3]. Given the impor-
tance of this equation, it remains the subject of study for many researchers. Many different
techniques were devoted to studying various solutions of Equation (1) and its family [4–13]. For
example, Kudryashov [14], obtained exact meromorphic solutions of the Kawahara equation
using the Laurent series. Wazwaz [15], found some different solutions (compacton and solitons)
to Equation (1) in terms of trigonometric functions. Khan [16], analyzed the Kawahara equa-
tion using the variational approach and derived new conditions for obtaining solitary wave
solutions. Using the traveling wave ansatz, Baiswas [17], studied the generalized Kawahara
equation and derived a solitary wave solution for the family of the Kawahara equation. A lot
of effective methods are applied to study the exact solutions, which makes the research more
abundant [18–23]. Wang [24] used ansatz method to derive the exact solitary wave solution
for the generalized Korteweg–de Vries–Kawahara (GKdV-K) equation. Aiman Zara [25] studied
numerical approximation of the modified Kawahara equation using the Kernel smoothing
method. El-Tantawy [26] derived a set of novel exact and approximate analytic solutions
to the family of the forced damped Kawahara equation (KE) using the ansatz method.
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In recent years, Yuan et al. [27,28] introduced the 〈p, q〉 condition to study a class
of constant-coefficient complex algebraic differential equations with dominant terms, and
obtained all possible meromorphic solutions which belong to the class W.
That is to say, the general representation of rational function solutions, finitely grow-
ing simply periodic solutions and elliptic solutions, and both rational function solutions
and simply periodic solutions can be obtained by degenerating elliptic general solutions.
Futhermore, a complex method for obtaining exact solutions in the mathematical physics is
presented. Using the complex method [27,28], we prove that all meromorphic solutions
of complex Kawahara equation belong to the class W, and then get all meromorphic solu-
tions of complex Kawahara equation and all traveling wave exact solutions of Equation (1).
This method is simpler than other methods in the process of finding solutions, and can also
be applied to the solution of other nonlinear differential equations.

Substitute the traveling wave transform

u = u(x, t) = w(z), z = x + νt (2)

into Equation (1); integrate it to get

C0 + νw +
1
2

aw2 + cw′′ − dw(4) = 0, (3)

where C0 is an integral constant.
Multiply Equation (3) by w′, and integrate it; thus, we get the complex ordinary

differential Kawahara equation

w′w′′′ − 1
2
(w′′)2 − Aw3 + B(w′)2 + Cw2 + Dw + E = 0, (4)

where A = a
6d , B = − c

2d , C = − ν
2d , D = −C0

d , E = −C1
d , C0 and C1 are integral constants.

Now, we give the main results in our paper.

Theorem 1. Let A 6= 0, then all meromorphic solutions w(z) of Equation (4) belong to the class W.
Here, class W consists of elliptic functions and their degenerations with the form R(z) or R(eαz),
α ∈ C, where R is a rational function.

In addition, the solutions of Equation (4) have the forms:
(1) All elliptic function solutions

wd(z) =
35
2A

[
℘′(z) + M
℘(z)− N

]4 − [
140(℘(z) + N)

A
− 70B

39A
][
℘′(z) + M
℘(z)− N

]2

+
280
A

[℘(z) + N]2 − 280B
39A

[℘(z) + N] +
C

3A
− 62B2

1521A
− 28

A
g2, (5)

where g3 = 31B3

593190 −
7B
390 g2, M2 = 4N3 − g2N − g3,

g2
2 −

2B2

507
g2 +

1457
41384889

B4 − AD
1932

− C2

5796
= 0,

E =
1

A2 [(
1148

69
AD +

1148
207

C2 − 661248
656903

B4)g2 +
23808

4826809
B6

+(
20

1521
AD +

20
4563

C2)B2 − 1
3

ACD− 2
27

C3],

D and N are constants.
(2) All simply periodic solutions
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ws,1(z) =
2B2

169A
[35 coth4

√
26Bi
26

(z− z0)− 70 coth2
√

26Bi
26

(z− z0) + 23] +
C

3A
, (6)

and

ws,2(z) =
B2

507Aγ2 [210 coth4

√
B

26γ
(z− z0)− (140γ + 560) coth2

√
B

26γ
(z− z0)

+ 166γ + 352] +
C

3A
, (7)

where z0 ∈ C; D =
1

85683
5184B4 − 28561C2

A
,

E =
1

130323843
746496B6 − 2628288B4C + 4826809C3

A2

in ws,1(z), and

D =
1

23905557
(217620γ− 59724)B4

γ4 A
− C2

3A
,

E =
1

A2 [
16B6

448893237
3001− 7007γ

γ6 − B4C
71716671

217620γ− 59724
γ4 +

C3

27
],

γ is a root of 31z2 − 31z + 10 = 0 in ws,2(z).
(3) All rational function solutions

wr(z) =
280
A

1
(z− z0)4 +

C
3A

, (8)

where B = 0, D = − C2

3A , E = C3

27A2 and z0 ∈ C.

All traveling wave exact solutions of Equation (1) are obtained by substituting (2) into
meromorphic solutions w of Equation (4). So, we get the following Theorem.

Theorem 2. Let ad 6= 0, all traveling wave exact solutions u(x, t) of Equation (1) have the follow-
ing forms:

(1) All elliptic function solutions

ud(x + νt) = 105d
a [℘

′(x+νt)+M
℘(x+νt)−N ]4 − ( 840d(℘(x+νt)+N)

a + 70c
13a )[

℘′(x+νt)+M
℘(x+νt)−N ]2+

1680d
a [℘(x + νt) + N]2 + 280c

13a [℘(x + νt] + N)− 168d
a g2 − 31c2

507ad −
ν
a ,

(9)

where M3 = 4N3 − g2N − g3, g3 = − 31c3

4745520d3 +
7c

780d g2,

g2
2 −

c2

1014d2 g2 +
1457c4

662158224d4 +
aC0

11592d2 −
ν2

23184d2 = 0,

and C0, N are constants.
(2) All simply periodic solutions

us,1(x + νt) = 3c2

169ad [35 coth4( 1
2

√
c

13d (x− x0 + ν(t− t0)))

−70 coth2( 1
2

√
c

13d (x− x0 + ν(t− t0))) + 23]− ν
a ,

(10)
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and
us,2(x + νt) = c2

338adγ2 [210 coth4( 1
2

√
− c

13dγ (x− x0 + ν(t− t0)))

−(140γ + 560) coth2( 1
2

√
− c

13dγ (x− x0 + ν(t− t0)))

+166γ + 352]− ν
a ,

(11)

where γ is a root of 31z2 − 31z + 10 = 0.
(3) All rational function solutions

ur(x + νt) =
1680d

a
1

(x− x0 + ν(t− t0))4 −
ν

a
, (12)

where c = 0, x0 and t0 are arbitrary real constants.

The rest of the article is organized in the following order: In Section 2, we will
present the relevant lemmas and methodology. Section 3 gives the detailed proof process
of Theorem 1 and concise proof method of Theorem 2. Section 4 illustrates our main results
using computer simulations. In the last section, some conclusions are given.

2. Preliminary Lemmas and the Complex Method

We need some definitions and lemmas in order to prove Theorem 1 and present
the complex method.

Set k, n ∈ N := {1, 2, 3, . . . }, rj ∈ N0 = N ∪ {0}, r = (r0, r1, . . . , rk), j = 0, 1, . . . , k.

Mr[w](z) := [w(z)]r0 [w′(z)]r1 [w′′(z)]r2 · · · [w(k)(z)]rk . (13)

The degree of Mr[w] defined by d(r) := r0 + r1 + · · ·+ rk.

Definition 1 ([28]). A differential polynomial is defined by

P[w] := ∑
r∈Λ

br Mr[w], (14)

where Λ is a finite index set, and br are constants. deg P[w] := maxr∈Λ{d(r)} is called the degree
of P[w].

Consider the differential equation

E(z, w) := P[w]− awn = 0, (15)

where a 6= 0 is a constant.
The dominant part of E(z, w) composes all dominant terms which can determine the multi-

plicity q of w in E(z, w), and is denoted by Ê(z, w). D(q) and Dr(q) represent the multiplicity
of pole of each term in Ê(z, w) and the multiplicity of pole of each monomial in E(z, w)− Ê(z, w),
respectively.

Obviously
Dr(q) = qd(r) + r1 + 2r2 + · · ·+ krk < D(q). (16)

Definition 2 ([28]). The derivative of Ê(z, w) with respect to w can be calculated by the following
formula, for any χ,

Ê′(z, w)χ = lim
λ→0

Ê(z, w + λχ)− Ê(z, w)

λ
. (17)

Definition 3 ([28]). Substituting Laurent series

w(z) =
∞

∑
l=−q

clzl , (18)
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into Equation (15), where c−q 6= 0, q > 0. Then, we can get p different principle

−1

∑
l=−q

clzl

with pole of multiplicity q at z = 0, Equation (15) is said to satisfy weak 〈p, q〉 condition.
If Equation (15) has p different meromorphic solutions with pole of multiplicity q at z = 0,
Equation (15) satisfies 〈p, q〉 condition.

Definition 4 ([28]). Let T1, T2 be two given complex numbers, such that Im T1
T2

> 0, L =

L[2T1, 2T2] is discrete subset L[2T1, 2T2] = {T|T = 2mT1 + 2nT2, m, n ∈ Z}, which is iso-
morphic to Z×Z. The discriminant ∆ = ∆(c1, c2) := c3

1 − 27c2
2 and

sn = sn(L) := ∑
T∈L\{0}

1
Tn . (19)

Weierstrass elliptic function ℘(z) := ℘(z, g2, g3) is a meromorphic function with double
periods 2T1, 2T2, which satisfies the following formula

(℘′(z))2 = 4℘(z)3 − g2℘(z)− g3, (20)

where g2 = 60s4, g3 = 140s6 and ∆(g2, g3) 6= 0.

Definition 5 ([29]). The Fuchs index of Equation (15) can be defined as the root of the equation

P(i) = lim
z→0

z−i+D(q)Ê′(z, c−qz−q)zi−q = 0 (21)

Lemma 1 ([28,30–32]). Set p, q, m, n ∈ N, deg P[w] < n. If Equation (15) satisfies 〈p, q〉
condition, all meromorphic solutions w(z) of Equation (15) belong to class W.

Any elliptic function solution with pole at z = 0 is given in the form

w(z) =
m−1

∑
i=1

q

∑
j=2

(−1)jc−ij

(j− 1)!
dj−2

dzj−2 (
1
4
[
℘′(z) + Mi
℘(z)− Ni

]2 − ℘(z))

+
m−1

∑
i=1

c−i1
2

℘′(z) + Mi
℘(z)− Ni

+
q

∑
j=2

(−1)jc−mj

(j− 1)!
dj−2

dzj−2 ℘(z) + k0, (22)

where c−ij can be determined by (18) , c−ij and k0 are constants. M2
i = 4N3

i − g2Ni − g3

and
m

∑
i=1

c−i1 = 0.

Any rational function solution w := R(z) is expressed as

R(z) =
m

∑
i=1

q

∑
j=1

cij

(z− zi)j + k0, (23)

which has m(≤ p) different poles of multiplicity q.
Any simply periodic solution w := R(ξ) is a rational function of ξ = eαz(α ∈ C) and can be

given in the form

R(ξ) =
m

∑
i=1

q

∑
j=1

cij

(ξ − ξi)j + k0, (24)

which has m(≤ p) different poles of multiplicity q.
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Lemma 2 ([33,34]). Weierstrass elliptic functions ℘(z) have the addition formula and two succes-
sive degeneracies, as shown below:

(I) Addition formula

℘(z− z0) = −℘(z)− ℘(z0) +
1
4
[
℘′(z) + ℘′(z0)

℘(z)− ℘(z0)
]2. (25)

(II) If ∆(g2, g3) = 0, Weierstrass elliptic functions degenerate to simply periodic func-
tions, which can be expressed as

℘(z, 3δ2,−δ3) = 2δ− 3δ

2
coth2

√
3δ

2
z. (26)

(III) If g2 = g3 = 0, Weierstrass elliptic functions degenerate to rational functions of z,
which can be expressed as

℘(z, 0, 0) =
1
z2 . (27)

Next, we give the complex method.

1. Substituting the transform T : u(x, t) → w(z), (x, t) → z into a given PDE yields
a nonlinear ODE: Equation (4) here.

2. Insert (18) into Equation (4) here to determine that weak 〈p, q〉 condition holds.
3. By (22)–(24), we obtain all meromorphic solutions w(z) of Equation (4) here with pole

at z = 0.
4. Get all meromorphic solutions w(z− z0) by Lemmas 1 and 2.
5. Inserting the inverse transform T−1 into w(z− z0), we obtain all exact solutions u(x, t)

of the given partial differential equation.

3. Proof of Theorem 1

From balance the order of the poles in Equation (4), yields

(q + 1) + (q + 3) = 2(q + 2) = 3q,

and we get q = 4.
Substitute (18) into Equation (4),and set the cofficients to zero, we have

c−4 =
280
A

, c−3 = 0, c−2 =
280B
39A

, c−1 = 0,

c0 = −62B2 − 507C
1521A

, c1 = 0, c2 =
62B3

59319A
, c3 = 0,

c4 =
1

425673144
−11780B4 + 257049AD + 85683C2

A
, · · · . (28)

and then determine p = 1. Therefore, Equation (4) is said to satisfy weak 〈1, 4〉 condition.
We also get that all meromorphic solutions of Equation (4) belong to W if Equation (4)
satisfies 〈1, 4〉 condition by Lemma 1.

In fact, since (17) and Ê(z, w) = w′w′′′ − 1
2 (w

′′)2 − Aw3 of Equation (4), we have
D(4) = 12,

Dr(4) < 12, Ac−4 = 280, (29)

and

Ê′(x, c−4x−4)xi−4 =
(
(c−4x−4)′

d3

dx3 + (c−4x−4)′′′
d

dx
− (c−4x−4)′′

d2

dx2

−3A(c−4x−4)2)xi−4
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= −
(
4(i− 1)(i− 4)(i− 5) + 120i + 360

)
c−4xi−12. (30)

Thus, from (29), (30) and (21), we infer that the Fuchs index of Equation (4) are zeros
of the function

P(i) = −
(
4(i− 1)(i− 4)(i− 5) + 120i + 360

)
c−4. (31)

It is easy to prove that f (x) := 4(x − 1)(x − 4)(x − 5) + 120x + 360 > 0 if x > −1.
Hence, if i ∈ N, then P(i) 6= 0. That is to say, the Fuchs index of Equation (4) cannot be
a positive integer. This implies that (ref. [29], p. 90): The principle part of the Laurent series
of w(z) determines the whole Laurent series of w(z). Therefore, weak 〈1, 4〉 condition
implies that 〈1, 4〉 condition holds.

From, (23), we get the indeterminant form of rational function solutions of Equation (4)
at pole z = 0

R1(z) =
c−4

z4 +
c−2

z2 + k0 =
280
A

1
z4 +

280B
39A

1
z2 + k0. (32)

Inserting (32) into Equation (4), and then setting the coefficients to zero, we get the sys-
tem of Equations (1) which are given in Appendix A. Computing the system of Equations (1),
we get

k0 =
C

3A
, B = 0, D = − C2

3A
, E =

C3

27A2 .

So we find that the rational function solutions of Equation (4) are

wr0(z) =
280
A

1
z4 +

C
3A

, (33)

at pole z = 0, here B = 0, D = − C2

3A , E = C3

27A2 .
Hence, all rational function solutions of Equation (4) are

wr(z) =
280
A

1
(z− z0)4 +

C
3A

, (34)

where B = 0, D = − C2

3A , E = C3

27A2 and z0 ∈ C.
By (22) and (26), we get the indeterminant form of simply periodic solutions of

Equation (4) at pole z = 0

ws0(z) =
1
6

c−4℘
′′(z, 3δ2,−δ3) + c−2℘(z, 3δ2,−δ3) + k0

=
280
6A

℘′′(z, 3δ2,−δ3) +
280B
39A

℘(z, 3δ2,−δ3) + k0, (35)

where ℘(z, 3δ2,−δ3) = 2δ− 3
2 δ coth2

√
3δ
2 z.

Expanding ℘(z, 3δ2,−δ3) at z0 = 0, we have

℘(z, 3δ2,−δ3) =
1
z2 +

3δ2

20
z2 − δ3

28
z4 + o(z4) (36)

Substituting (36) into (35), we get

w(z) =
280
A

1
z4 +

280B
39A

1
z2 +

14δ2

A
+ k0 + (

14Bδ2

13A
− 20δ3

A
)z2

+(−10Bδ3

39A
+

21δ4

2A
)z4 + o(z4)

(37)
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Comparing coefficients of (37) and (28), we obtain the system of Equations (2) which
are showed in Appendix A. Solving the system of Equations (2), we have

δ = − B
39

, k0 = − 76B2

1521A
+

C
3A

, D =
1

85683
5184B4 − 28561C2

A
, (38)

and

δ =
B

39γ
, k0 =

B2

1521A
6− 62γ

γ2 +
C

3A
,

D =
1

23905557
(217620γ− 59724)B4

γ4 A
− C2

3A
. (39).

Substituting (35), (38) and (39) into Equation (4), from the correlation of coefficients
we can obtain, respectively,

E =
1

130323843
746496B6 − 2628288B4C + 4826809C3

A2

and

E =
1

A2 [
16B6

448893237
3001− 7007γ

γ6 − B4C
71716671

217620γ− 59724
γ4 +

C3

27
],

where γ is a root of 31z2 − 31z + 10 = 0.
Hence, we obtain the simply periodic solutions of Equation (4) at pole z = 0 are

ws,1(z) =
2B2

169A
[35 coth4

√
26Bi
26

z− 70 coth2
√

26Bi
26

z + 23] +
C

3A
, (40)

and

ws,2(z) =
B2

507Aγ2 [210 coth4

√
B

26γ
z− (140γ + 560) coth2

√
B

26γ
z

+ 166γ + 352] + C
3A ,

(41)

where δ = − B
39 , k0 = − 76B2

1521A + C
3A , D = 1

85683
5184B4−28561C2

A ,

E =
1

130323843
746496B6 − 2628288B4C + 4826809C3

A2

in ws,1(z), and D = 1
23905557

(217620γ−59724)B4

γ4 A − C2

3A ,

E =
1

A2 [
16B6

448893237
3001− 7007γ

γ6 − B4C
71716671

217620γ− 59724
γ4 +

C3

27
],

γ is a root of 31z2 − 31z + 10 = 0 in ws,2(z).
Furthermore, all simply periodic solutions of Equation (4) are given by

ws,1(z) =
2B2

169A
[35 coth4

√
26Bi
26

(z− z0)− 70 coth2
√

26Bi
26

(z− z0) + 23] +
C

3A
, (42)

and

ws,2(z) =
B2

507Aγ2 [210 coth4

√
B

26γ
(z− z0)− (140γ + 560) coth2

√
B

26γ
(z− z0)

+166γ + 352] + C
3A ,

(43)

where z0 ∈ C, D = 1
85683

5184B4−28561C2

A ,

E =
1

130323843
746496B6 − 2628288B4C + 4826809C3

A2
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in ws,1(z), and D = 1
23905557

(217620γ−59724)B4

γ4 A − C2

3A ,

E =
1

A2 [
16B6

448893237
3001− 7007γ

γ6 − B4C
71716671

217620γ− 59724
γ4 +

C3

27
],

γ is a root of 31z2 − 31z + 10 = 0 in ws,2(z).
From (22), we infer the indeterminant forms of elliptic function solutions of

Equation (4) are

wd0(z) =
c−4

6
℘′′(z) + c−2℘(z) + k0

=
280
6A

℘′′ +
280B
39A

℘+ k0. (44)

with pole at z = 0.
Expanding ℘(z, g2, g3) at z = 0, we have

℘(z, g2, g3) =
1
z2 +

g2

20
z2 +

g3

28
z4 + o(z4). (45)

Put (45) into (44) and apply (20), we get

w(z) =
280
A

1
z4 +

280B
39A

1
z2 +

14g2

3A
+ k0 + (

14Bg2

39A
+

20g3

A
)z2

+(
10Bg3

39A
+

7g2
2

6A
)z4 + o(z4).

(46)

Comparing coefficients of w(z) and (28), we obtain the system of Equations (3). which
are shown in the Appendix. Computing the system of Equations (3), we derive

k0 =
C

3A
− 14

3A
g2 −

62B2

1521A
, g3 =

31B3

593190
− 7B

390
g2. (47)

and g2 satisfies

g2
2 −

2B2

507
g2 +

1457B4

41384889
− AD

1932
− C2

5796
= 0.

Substituting (44) and (47) into Equation (4), from the correlation of coefficients, we
can get

E =
1

A2 {(
1148

69
AD +

1148
207

C2 − 661248
656903

B4)g2 +
23808

4826809
B6

+(
20

1521
AD +

20
4563

C2)B2 − 1
3

ACD− 2
27

C3},

then we have

wd0(z) =
280
A

℘2(z) +
280B
39A

℘(z) +
C

3A
− 62B2

1521A
− 28

A
g2. (48)

Thus, all elliptic function solutions of Equation (4) are

wd(z) =
280
A

℘2(z− z0) +
280B
39A

℘(z− z0) +
C

3A
− 62B2

1521A
− 28

A
g2, (49)

where z0 ∈ C, g3 = 31B3

593190 −
7B
390 g2,

E =
1

A2 {(
1148

69
AD +

1148
207

C2 − 661248
656903

B4)g2 +
23808

4826809
B6

+(
20

1521
AD +

20
4563

C2)B2 − 1
3

ACD− 2
27

C3},
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and g2 satisfies

g2
2 −

2B2

507
g2 +

1457B4

41384889
− AD

1932
− C2

5796
= 0.

By using the addition formula, we can get another representation of it as

wd(z) =
35
2A

[
℘′(z) + M
℘(z)− N

]4 − [
140(℘(z) + N)

A
− 70B

39A
][
℘′(z) + M
℘(z)− N

]2

+
280
A

[℘(z) + N]2 − 280B
39A

[℘(z) + N] +
C

3A
− 62B2

1521A
− 28

A
g2,

(50)

where

M2 = 4N3 − g2N − g3, g3 =
31B3

593190
− 7B

390
g2,

g2
2 −

2B2

507
g2 +

1457
41384889

B4 − AD
1932

− C2

5796
= 0,

E =
1

A2 [(
1148

69
AD +

1148
207

C2 − 661248
656903

B4)g2 +
23808

4826809
B6

+(
20

1521
AD +

20
4563

C2)B2 − 1
3

ACD− 2
27

C3],

D and N are constants.
So far, we have completed the proof of Theorem 1.
Substituting (2) into all meromorphic solutions w(z) of Equation (4), we obtained

Theorem 2. According to the theorem in ref. [35], we can get the following corollary.
Corollary. All rational solutions ur(x + νt) and simply periodic solutions us,1(x + νt)

of Equation (1) are real valued, while simply periodic solutions us,2(x + νt) are not real
valued.

4. Computer Simulations

This subsection will show our results through computer simulations of ur(x + νt) and
us,1(x + νt), as demonstrated in the following figures.

1. By applying the complex method, we are able to achieve the rational solution ur(x +
νt) of Equation (4). Figure 1 describes the 3D graphs of solution ur(x + νt) for a = 1,
ν = 1, and d = 1

1680 within the interval −5 ≤ x, t ≤ 5. Figure 2 shows the 2D graphs
of solution ur(x + νt) for a = 1, ν = 1, and d = 1

1680 within the interval −10 ≤ x ≤ 10
when t = 0. It could be observed that they have one generation pole, which is shown
by Figures 1 and 2.
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Figure 1. The 3D profiles of solution ur(x + νt) of Equation (1) corresponding to (i) x0 = 5, t0 = 3,
(ii) x0 = 0, t0 = 0, (iii) x0 = −5, t0 = −3.

Figure 2. The 2D profiles of solution ur(x + νt) of Equation (1) corresponding to (i) x0 = 5, t0 = 0,
(ii) x0 = 0, t0 = 0, (iii) x0 = −5, t0 = 0.

2. By employing the complex method, we are able to obtain the simply periodic solutions
us,1(x + νt) and us,2(x + νt) of Equation (4). Figure 3 shows the 3D graphs of solution
us,1(x + νt) for a = 3, c = 13, d = 1, and ν = 3 within the interval −2π ≤ x, t ≤ 2π.
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Figure 4 describes the 2D graphs of solution us,1(x + νt) for a = 3, c = 13, d = 1, and
ν = 3 within the interval −2π ≤ x ≤ 2π when t = 0.

Figure 3. The 3D profiles of solution us,1(x + νt) of Equation (1) corresponding to (i) x0 = 1, t0 = 1,
(ii) x0 = 0, t0 = 0, (iii) x0 = −1, t0 = −1.

Figure 4. The 2D profiles of solution us,1(x + νt) of Equation (1) corresponding to (i) x0 = 1, t0 = 0,
(ii) x0 = 0, t0 = 0, (iii) x0 = −1, t0 = 0.
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5. Conclusions

In this paper, we are the first to utilize the complex method to prove that all mero-
morphic solutions of complex Kawahara equation belong to the class W, and then we get
all meromorphic solutions of complex Kawahara equation and all traveling wave exact
solutions of Equation (1). In addition, we find that all rational solutions ur(x + νt) and
simply periodic solutions us,1(x + νt) of Equation (1) are solitary wave solutions, which
could be used to analyze and interpret a lot of nonlinear dispersive phenomena. This
research enriches the methods of solving differential equations. Our results also reveal that
the complex method of looking for traveling wave exact solutions is general and feasible,
and can be applied to other nonlinear partial differential equations.
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Appendix A

1. The system of Equations (1):

−Ak3
0 + Ck2

0 + Dk0 + E = 0,

−280
13

Bk2
0 +

560
39

BC
A

k0 +
280BD

39A
= 0,

−840k2
0 + (

560C
A
− 78400B2

507A
)k0 +

78400B2C
1521A2 +

280D
A

= 0,

−156800B
13A

k0 −
9721600B3

59319A2 +
156800BC

39A2 = 0,

−235200
A

k0 −
4860800B2

507A2 +
78400C

A2 = 0.

2. The system of Equations (2):

14δ2

A
+ k0 = −62B2 − 507C

1521A
,

14Bδ2

13A
− 20δ3

A
=

62B3

59319A
,

−10Bδ3

39A
+

21δ4

2A
=
−11780B4 + 257049AD + 85683C2

425673144
.
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3. The system of Equations (3):

14g2

3A
+ k0 = −62B2 − 507C

1521A
,

14Bg2

39A
+

20g3

A
=

62B3

59319A
,

10Bg3

39A
+

7g2
2

6A
=
−11780B4 + 257049AD + 85683C2

425673144
.
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