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Abstract: In the present paper, we prove some new reverse type dynamic inequalities on T. Our
main inequalities are proved by using the chain rule and Fubini’s theorem on time scales T. Our
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inequalities, quantum inequalities and integral inequalities.
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1. Introduction

In 1920, the renowned English mathematician Godfrey Harold Hardy [1] proved the
following result.

Theorem 1. Assume that {f,,}>_; is a sequence of nonnegative real numbers. If r > 1, then

EL(EA) < (5 Em »

=1

Inequality (1) is known in the literature as discrete Hardy’ inequality.
In 1925, Hardy himself [2] gave the integral analogous of inequality (1) in the
following form.

Theorem 2. Suppose that f is a nonnegative continuous function defined on [0, 00). If r > 1, then

[ @) o< (L) [ o o

In 1927, Littlewood and Hardy [3] proved the reversed version of inequality (2) in the
following manner:

Theorem 3. Let f be a nonnegative function on [0,00). If 0 < r < 1, then

./()m%((/;f(é)dé)rmz (1ir)r./(;°°ff()\)d)t. 3)

In 1928, Hardy [4] established a generalization of inequality (2). He proved that:

Theorem 4. Suppose that f is a nonnegative continuous function defined on [0, 00). Then,

I+ ( /OAf@)dé)rdA < (-

_1)’/0002\?*%?(;\)01)\, for r>29>1, @
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and

/Ow%(/;f(g)d@'d)\g (117)r/000/\’*7f’(/\)d/\, for r>1>9>0. (5

In 1928, Copson [5] gave the next two discrete inequalities as generalizations of
inequality (1).

Theorem 5. Let {f,}5 , and {6} be sequences of nonnegative real numbers. Then,

o Oy ( ZZzl kak) '
n=1 ( Yiq Gk) !

S(yi1>r§9”f’z<:219k>w’ for r>9>1, (6

and

§<117>ri19”ﬂ1<:2%9k>77’ for r>1>92>0. (7)
n— —

In 1970, Leindler [6] explored some discrete Hardy inequality versions (1) and was
able to demonstrate that:

Theorem 6. Let {f,,}5> | and {0,}5° , be sequences of real numbers that are not negative and
r > 1, then

é%(éﬁc)r < r’ﬂi%"ﬁi(é Gk)r, 8)
and

éen(kifk)r < rrﬁez—rf;(éek)r. ©)

In 1976, Copson [7] gave the inequalities’ continuous versions (6) and (7). He arrived
at the following conclusion specifically:.

Theorem 7. Let f and 6 be continuous functions that are not negative on [0, c0). Then,

r o) (o 0@f 1)
° (o)’

A< (ryi1)’/0°°9(A)f’()\)(/()Ae(g)dg>rWd)\, for r=q>1,  (10)

and

r o) (5 0@F@)
o (frea)

A< (ﬁ)r/om e(A)fr(A)</OA9(g)dg) i for r>1>9>0. (11

In 1982, Lyon [8] discovered a reverse version of the discrete Hardy inequality (1) for
the special case when r = 2. According to his conclusion:

Theorem 8. Let {f,}5 be a nonincreasing sequence of real numbers that are nonnegative. Then,
00 1 n 2 7'[2 )
)3 Y H) =LA (12)
(n +15 6 ="

n=0

In 1986, Renaud [9] proved the following two results.
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Theorem 9. Assume that {f,}{°_, is a nonincreasing sequence of nonnegative real numbers. If
r > 1, then,

2( nfk) Zn;nrfﬁ- (13)

n=1 k=

Theorem 10. Assume that f is a nonincreasing nonnegative function defined on [0, c0). Ifr > 1,

then,
A ( /;Of(é)dé> x> | g ya. (14)

In 1990, the reverses of inequalities (8) and (9) were demonstrated by Leindler in [10]
as the following:

Theorem 11. If {f,}° , and {6, }5°_, are sequences of nonnegative real numbers and 0 < r <1,
then,

nign(kéfk)r > r’égl—’(n)f,Z(ki Qk)r, (15)

and

éen(kéfk)r > rrgez—rf;(éek)r. (16)

Hilger, in his Ph.D. thesis [11], was the first one to accomplish the unification and
extension of differential equations, difference equations, g-difference equations, and so on
to the encompassing theory of dynamic equations on time scales.

Throughout this work, a knowledge and understanding of time scales and time-scale
notation is assumed; for an excellent introduction to the calculus on time scales, see Bohner
and Peterson [12,13].

In 2005, Rehédk [14] was a forerunner in extending Hardy-type inequalities to time
scales. He expanded the original Hardy inequalities (1) and (2) to a time scale of our
choosing, and so, he combined them into a single form, as illustrated below.

Theorem 12. Suppose T is a time scale, and f € C,4([a, 00)T,[0,00)). Ifr > 1, then,

/:0 <W>rA’7 < (ril)r/:ofr(ﬂ)Am (17)

unless f = 0.
In 2017, Agarwal et al. [15] presented the next dynamic inequality.

Theorem 13. Let T be a time scale such that 0 € T. Moreover, assume f is a nonincreasing
nonnegative function on [0, 00). If r > 1, then,

[e] 1 n r r [e]
— > r .
L () r@ne) s> g [ Frman (18)
Very recently, El-Deeb et al. [16] established the next dynamic inequalities.

Theorem 14. Suppose T is a time scale with a € [0, 00)y. Additionally, suppose that f > 0 and
6 > 0 are rd-continuous functions on [a, co)y and f is nonincreasing.



Axioms 2022, 11, 336

40f18

(i) Ifr > 1and v > 0, then

= 007) ( J;00)f(@)ng)
! (Fowae) )

(ii) Ifr > 1and v > 1, then

s o) (7 0)f(0)A7)
© (Sreag)

(iii) Ifr > 1and y > 1, then

r ot (J 0@ f(@)a7)
© o (Jre@ar)’

(iv) Ifr > 1and 0 < 7y < 1, then

/aw 007 ([ 6(2)£(2)A0) pys 7/u‘”@(ﬁ)(/;e(é)M)r1(/77009(@@)17}“(77)&7-

(fpewag)” 17

w 00 ( [ 6(0)AZ) ()

(7™ o@)ag)’

Ay.
A > 711 /:09(77)(/;9(§)A€)rVfr(n)An-

V> L [Toon( [ o@az) o

(20)

(21)

(22)

For more details on Hardy-type inequalities and other types on time scales, we sug-

gest [17-29] for the reader.

Theorem 15 (Fubini’s Theorem, see [Theorem 1.1, Page 300] [30]). Assume that (A, %1, up)
and (Y,Xp,vp) are two finite-dimensional time scales measure spaces. Moreover, suppose that

f 1 A XY — Ris adelta integrable function and define

the functions

O(y) = [ fpidus(h), yeY,

and

¥ = [ SO pdvs), Aer

Then, @ is delta integrable on Y and ¥ is delta integrable on A and

[ ana) [ fnava®) = [ dva(w) [ FOpduav).

The basic theorems that will be required in the proof of our results are presented next.

Theorem 16 (Chain rule on time scales, see [Theorem 1.87, Page 31] [12]). Assume g :
R — R, g: T — Ris delta differentiable on T*, and f : R — R is continuously differentiable.

Then, there exists ¢ € [i7,0(n)] with

(fog)*(n) = f(g(c

)% (1).

(23)
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) 5(77)g(17)‘1’< A é(é)f(C)Aé)

Theorem 17 (Chain rule on time scales, see [Theorem 1.90, Page 32] [12]). Let f : R —+ R
be continuously differentiable and suppose g : T — R is delta differentiable. Then, fog: T — R
is delta differentiable and the formula

(o) = { [ [/ + = migo]an b,
holds.

In this manuscript, we show and prove some new dynamic Hardy-type which are
reverse inequalities on time scales. The dynamic Hardy-type inequalities we obtained are
entirely original, and as a result, we could obtain some integral and discrete inequalities of
Hardy-type that are new. Furthermore, our findings generalize inequities (19)—(22). This
paper is organized in the following way: Some basic concepts of the calculus on time scales
and useful lemmas are introduced in Section 1. In Section 2, we state and prove the main
results. In Section 3, we state the conclusion.

2. Main Results

The version of inequality (14) on time scales is given as a special case of the following
theorem.

Theorem 18. Assume that T is a time scale with 0 < a € T. Additionally, let f, g, & and 6

be nonnegative functions defined on [0, o)y such that f and g are nonincreasing. Moreover, let
Y : Ry — R, beadifferentiable function such that ¥ is nondecreasing and ¥' (xy) = ¥'(x)¥' (y)

forall x,y € Ry. If vy > 0O, then
< Es¥ ([ €0sc) ¥ (ron) s

([ ewnc)’

(24)

i Z/H (/ﬂg'(}y) 9(§)A§>7

Proof. Owing to nonincreasity of f, we have for A > 5 > a
AL AL
| éor@az=f [0z,
n Ui

then, since ¥’ is nondecreasing,

A

~ ~

qf( /ﬂ ! f:(@)f(@)A@) > ¥ (f (A) /,;g(mg)

¥y ( [

Applying the chain rule (23), there exists ¢ € [A,0(A)] such that

() “Horag)| Yy ([ torn)( “iorae) "

Ay
Since ¢ > A, ¥’ is nondecreasing, and (/A 5(§)f(§)A§> =&(A)f(A) >0, we have
n
Ay

5(5)A§). (25)

A

() “torn)] = Emsay( [ tor@ac) (26)

Combining (25) with (26) yields

v

() Aé(g)f(@zsg)r" > e ([ TH0a0 ) ¥ () S,
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and so

onson ¥ ( / ' 5(C)f(€)A§>rA Ensnin® / ! 08 ) ¥ () F)
> .

([Mownc) (["e@ac)

() (1)
Considering that A > 5 implies: (i) 0(A) > (1) and hence /U 0(0)AC > /U ! 6(0)AL;
(ii) g(A) < g(n), we obtain

st ¥ / Aé(C)f(C)ACHAA EmEmsn / Aé(é)M)‘T”(f(/\))f(A)
> .

([ ewnc)’ ) ([ owa)
If we integrate both sides with respect to A over [, %0)r, we obtain
dnst¥( [ @) y Emems¥ ([ a0 ¥ s
([Tewar) ([ owac)
If we integrate both sides once more, but with respect to 7 over [a, o)y, we obtain
(f(n)g(ry)‘ig)ﬂ 5(6)f(f)A§) . /aoo - </oo é(A)g(A)‘i”</}ZT(A«‘Z)(C)M)‘?;(JI(A))J((M
([ o) ” ([ e@ar)

By Using Fubini’s theorem on time scales, (27) can be rewritten as

AA.

) A

AA) Ap.  (27)

r

< éongon®( [7dornr) SO¥ (FN) £(2) ( IRCAURGLS An)
)

([ e@ac) ([ ewns)

Now, from the chain rule (23), one can see that there exists ¢ € [y, 0(77)] with

@
Ay > / AL (28)

J

[o([re@nr)]” = v (([Ma0ne) ([ e0s)

AL Ay .
Since c > 7, ¥ is nondecreasing, r > 1 and (/ §(§)A§> = —¢(n) <0, we have
Ui

A

¥ / AE(@)A@)} iy / A5<§>A5). (29)



Axioms 2022, 11, 336 7 of 18

Substituting (29) into (28) leads to

) 5(77)g(17)‘?< A E(C)f(C)AZ;)

! (/ . 007 ) !

< Emg¥ ([ a@ae)¥ ()
= AA.

: (f ”W 9(C)A€>7

This shows the validity of (24). O

Remark 1. In Theorem 18, if we take ¥ () = n', r > 1, &) = 0(y) and g() = 1, then
inequality (24) reduces to inequality (19).

Corollary 1. In Theorem 18, if we take ¥ () =y, &(n) = g(y) = land a = v = 0, then
inequality (24) reduces to

[ ([ s@oe) sz ([ &) s

which is the time scales version of (14).

Corollary 2. If T = R in Theorem 18, then inequality (24) reduces to

. AL e -
r dst¥( [~ e ) > / em¥( | 6(6)%)‘}; s
C (o) ([ o)
Remark 2. In Corollary 2, if we take ¥ () = 41", () = §(n) = 1, a = v = 0, then we reclaim

inequality (14).

Corollary 3. If T = hZ in Theorem 18, then inequality (24) is reduced to

L]

Em >f<mh>) E(nh)g(nh (h26mh)‘1”(f(nh))f(nh)

>
1 ( > G(mh))ﬂr

Eln)g(on)¥ (i Y-

o m="

@l=

agk

Il
==
==

L ;
T (fe) |

—a =4
m= mfh

h

Corollary 4. In Corollary 3, if we take h = 1, then, inequality (24) will be reduced to
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£t ( A O(F08¢ )

Remark 3. In Corollary 4, if we take ¥ () = 0", &(n) = g(y) = 1,a = Land v = 0, then we
reclaim inequality (13).

Corollary 5. If T = 17Z in Theorem 18, then

o P DI g " E ) )

)y 7
n=(log, a) < Z;(:f(qlz;) a)l th(qm)>
nx(.n n\g§ (10811")71 mgE( m Y/ n n
o 1'CMEEY| (7 1) Ky liog, o "™ | (F(4M) f(4")
N _12 (log, qn)—1 T
n=(log, a) <Zm(qlog 2 q’"h(qm)>
q

Now, as a new result, we are interested in discussing the inequality (24) in the case of
the extrema of integration | a” 6(s)As being replaced to be from 7 to co. In fact, that is what
we will do in the following theorem.

Theorem 19. Assume that T is a time scale with 0 < a € T. Additionally, let f, g, 6 and (f be
nonnegative functions defined on [0, 00) such that f and g are nonincreasing. Furthermore, let
¥ : Ry — R, beadifferentiable function such that ¥ is nondecreasing and ¥' (xy) = ¥/ (x)¥' (y)
forall x,y € Ry. If vy > 1, then

w( / °°9<@>Ag)‘if’<f<n>>f<r;>

( / °°5(§>A€)7

0(17)g(n)
1 [o]
Mz g / Ay, (30)

Proof. Because of nonincreasity of f, we have fory > A >a
oo

[Te@r@az< s [ o@ag,

A A

therefore, because ¥’ is nondecreasing,

v( [Toor@ac) =¥ (s [Te@a) =¥ (

A

e}

G(C)AC)- (1)

From the chain rule (23), we see that there is ¢ € [A,0(A)] with

o [To@r@nd)] v ( [Toaron)( [Consn)

o A
Since ¢ > A, ¥/ is nondecreasing, r > 1 and (/A 9(§)f(C)A§> = —0(A)f(A) <0, we

have

v

o [To@r@ad)] = —esw ( [“eson) @)

Combining (31) with (32) yields

A

([To@r@nc)] = o ([ o@ar) ¥ s,



Axioms 2022, 11, 336 9of 18

which implies

A

[e.9)

snson|¥( [ o@r@ar)| gmsme¥ ([ ewag) ¥ (s

IS Y > o) Y
( / o) ( / o)

As g is nonincreasing and A < 7, we have g(A) > g(#) and hence,

A

e

dnson [¥( [Tewr@ac)| —memsr ([T e@a) ¥ (s s
>

( / mé(é)Aé)v . ( / mé(é)A@Y

Now, after both sides are integrated with respect to A over [, 7], we could have

st [¥( [Tewrnt) ¥( [Te@r@ac)]

( A o) !

, ~Ememgn¥ ([T e@ag) ¥ ()
([ e@ae)’

since ([~ 0@ @)a2) = ¥( [“ow0pr@az) ¥( [ o@A@AL ), wehave

AA.

2,

> —/a’7 5(17)9(A)g(A)‘?'(/;°9(g)Ag> (/);oé@)AC)_711:/(f(A))f(/\)A/\.

Afterwards, if both sides are integrated with respect to 17 over [a, o), we obtain
< émson®( [Teraz)

( / wé(cm&f

- [ ( / wé(C)Ag) - ( ["o A)gwqﬂ('/; m9(§)Aé>‘T”(f(/\)) f(A)AA) M. 33)

An

A%

Using Fubini’s theorem on time scales, (33) can be rewritten as

< Emsm¥( [ e@r@ar)
J Y
([ #@ar)

= 009()\)8()\)‘?’( / ”e(gm)\if’ (FA))F(A) ( | &) ( / °°5<g>Ag) YM> AL 34)

An
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If we take a look at the chain rule, (23), we could say that there exists ¢ € [17,0(77)] such that

- ([Caon) | = o ( [Taomt) N ([aom)”
.00 A
Since ¢ > 1,7 > 1 and (/}7 5(§)Ag) — () <0, we get

{— (/ﬂw é(é)M)Hr > —(7—1)5('7)(/1700 éf(g)Ag) - (35)

Substituting (35) into (34) leads to

5(17)g(17)‘?< / 0(0f (@07 )

vy
Ag)
> / v( [Towac)¥ s A))fm)(/:’[( /}fé(@)A@)PV]AAn)AA
/ °°9<A>g<A>\if'( [Toac) ([Ta@nd) v

from which inequality (30) follows. [

An

2
| —_
—_

~

Remark 4. In Theorem 19, if we take ¥ (1) = 5", &(n) = 0(n) and g(n) = 1, then inequality (30)
reduces to inequality (20).

Corollary 6. If T = R in Theorem 19, then, inequality (30) will be reduced to

<
..€<
/—\

s ( [~ e@az) ¥ (rm)sn)

[[—F 25, re
’ ( / ) = ([ t@az)

Corollary 7. If T = hZ in Theorem 19, then inequality (30) is reduced to

dn.

. E(nh (h ie (mh) f (mh) > s 0(nh)g(nh)¥’ <h miﬂé(mh))‘?’(f(nh))f(nh)
5 (hm;amh)) ik (n 5 é(m))“

o Eongm¥( X emm) o g (X o0m) ) ¥ (Fn)sn)
3 ST 2L NG -
n=a (mzng(m)) T 1i= ( ; §<m)>
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Corollary 9. If T = q7 in Theorem 19, then inequality (30) will be reduced to

PESE (6~ 1 g "4

)3 — 7
=og,0) (0= D g 7780 )
L = 1heMgenY <(q = 1) 200 (tog, ) q’”h(q’”))‘?’ (f(am)f ("
> .
=

y—1
1 ~
%) ((q — 1) o og, m 1"¢ (qm)>
In the next theorem, we make a broad popularization of Theorem 13.
Theorem 20. Let T be a time scale with 0 < a € T. Moreover, suppose that f, g, 0 and & are
nonnegative functions defined on [0,00)T such that f is nonincreasing and g is nondecreasing.

In addition, let ¥ : Ry — R be a differentiable function such that ¥' is nondecreasing and
Y (xy) =¥ (x)¥'(y) forall x,y € Ry. Ify > 1, then

)

U

"or0ac)
} 7
00

([ o) () s

([ e@ar) "~

Proof. As a result of of the nonincreasity of f, we have fory > A >0

0(11)g(n
1 o0
Mz g / Ay, (36)

¥
)
[ o@r@ag> s [ o@ag
0 - 0 ’

then, since ¥’ is nondecreasing,

v( [fo@r@ae) =¥ (5w [Co@ar) =¥ oy ( [Tooaz). @

Using the chain rule (23), there exists ¢ € [A, 0(A)] such that

o [fernd)] = ( [fowson) ( [ owswnc)

A A
Since ¢ > A, ¥ is nondecreasing, r > 1 and (/ 9(§)f(§)A§> =6(A)f(A) >0, we have
0

o( [fernc)] zewsay( [ aos@ac), @)

By using (37) and (38) together we could have

A

v ( [o@s@ac)] = o ( [ o@ac)¥ s

and thus
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As g is nondecreasing and A < 17, we have g(A) < g(#) and hence,
¥ N7 A A -4 g/ A g/
ctngon |¥( [ e@r@ac)| Emgoent( [Te@ac) ¥ 0)0)

([ 5(§>Ac)7 . (f 5(§>A§)7

Integrating both sides of the last inequality with respect to A over [0, 7] gives

gonson|¥( [ o@r@at) -2 ( ["e@r@ac)]

([ wnc)’

Enos¥ ([ 0@ag) ¥ (F0)F1)
(['&onc)’

since ¥ ["00)7(000¢) > ¥( ["o@@1a0) —¥( [ 0(@)7(0)¢ ), we abtain

AA.

>/
a

U

dnson¥ ([ eor@ac)

(f «f(@)Aéy

After integrating both sides with respect to 1 over [a, o),

> [Mames ([ o@ac) ([e@ac) ¥

r dnson®( [ o@s@ac)
: ([ onc)’

> [Ten( [ 5(€)A€>W< [Tosare ([ o)y <f<A>)f<A>AA> oy @)

An

Employing Fubini’s theorem on time scales, (39) can be rewritten as

r dmson¥ ([ eorr@a)
© (Jlaos)

> [Towse( [ o@ac) ¥ s ( [ ( [ e@at) JrAn) A, )

An

Additionally, by taking a look at the chain rule (23), we can say that there exists ¢ € [17,0(7)]
such that

[ ([la@nd) | = o [romn) ([ @n)”
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~

7 A
Since ¢ > #,v > 1 and (/0 Q(g)AC) =¢(n) >0, we get

-/ 5(C)AC>1_7]A <-vi ([ &@ac) N (a1)

Substituting (41) into (40) leads to

This concludes the proof. O

Remark 5. In Theorem 20, if we make ¥ (17) = ", &) = 0(y) and g(y) = 1, then inequal-
ity (36) reduces to inequality (21).

Remark 6. In Theorem 20, if we make ¥ (17) = 4", &(7) = 0(n) = g(y) =1, r = yanda =0,
then we reclaim Theorem 13.

Corollary 10. If T = R in Theorem 20, then, inequality (36) boils down to

o0 ( [ ) / ¥ ([ 0@ ) ¥ () s
a (/77 )7 - —1 (/O g(g)d§>vl

Corollary 11. If T = hZ in Theorem 20, then, inequality (36) boils down to

dn.

il il
. Z h) f (mh) o O(nm)g(nh)¥' (b Y 6(mh) |¥'(f (nh)) f (nh)
; ( mw m>>vllnza — <21vm)w —
h ( Z_: & mh) h (hmz_:og(mh)>

Corollary 12. In Corollary 11, if we take T = Z, and inequality (36) abbreviates to
n—1 n—1
o Ego¥ (L oo ) omg¥ (T 0 ) ¥ (7)1
Z 71711: v = Z - -1 '
n=a n v Y — 1 —a n—1 . 04
< )y é‘(m)) ( y g(m)>
m=0 m=0
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Corollary 13. If T = qfZ in Theorem 20, and inequality (36) abbreviates to

(logq n)—1 my,

o q”f(q”)g(q”)‘?((q—l)zmo q (q’")f(q’”)>

(log, n)—1

n=(log, a) q . v

* ((q—l) Y qmawm))

m=0

. i q"h(q")g(q")¥’ ((q -1 Ef,lffé W th(a’"))‘?’ (f(a")f(q")
>0
-1 _ og n)— . 71 '

n=(logy a) <(q—1)2253 ) 1(1’”@‘((1’”))

Now, as a new result, we are interested in discussing the results in Theorem (20) in the
case of the extrema of integration | 1;7 ¢As being replaced to be from # to co. In fact, that is
exactly what we shall accomplish in the next theorem.

Theorem 21. Suppose that T is a time scale with 0 < a € T. Moreover, assume that f, g, 0 and 5
are nonnegative functions defined on [0, 00)T such that f is nonincreasing and g is nondecreasing.
Moreover, let ¥ : R, — R, bea differentiable function such that ¥ is nondecreasing and
Y (xy) =¥ (x)¥'(y) forall x,y € R;. If0 < y < 1, then

cong¥( [lo@rnc) - ems¥( /O”e<§>Az)‘if’l(f<n>)f<n>

(/ N 5<§>Ag)7 e ( | “onc) "

Proof. Due to nonincreasity of f, we have fory > A >0

Ay. 42)

r

A

A
| e@r@as = s [ e@ag,

and thus,

v

¥ ( I 9(€)f(C)A€> > ¥ (f(A) I 9(€)A€) — ¥ (F()¥ (f(A) I 9(€)A€)- @3)

Applying the chain rule (23), there exists ¢ € [A, 0(A)] such that

o [fernd)] = ( [fowson) ([ owsonc)

A A
Since ¢ > A, ¥’ is nondecreasing, r > 1 and ( / 9(§)f(§)A§) =0(A)f(A) >0, we get
J0

o [o@rn)]

Combining (43) with (44) gives

A

A A

> o ([ o@s@ac). )

o( [Feo@r@nd)] 2 oo ([ o) ¥ s,
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and then

A

donstn [ [Lo@s@ac)] emsmont ([ o@a)¥ ()i
> .

(/ . 00 ! - (/ N JolYy !

Since g is nondecreasing and A < 1, we have g(A) < g(7) and thus,

cons[¥( [ o0sn)|”  aomsew( [ oac)¥ s
> .

(/ N 5@;@)” ) (/ N JlYy !

Therefore,

N v /\ v
EnengW¥ ([ 6@60) ¥ (7)) 5 )

(/ . 5(C)A€)7

dnson®( [ o@s@ac)

(/ . 5(C)A€)7

Hence,

AA.

>/
a

s ( ["e@r@ar)

! (/ ;«f@mg)w

> (e ([ a@ae) ( [owsare ( [Mo@ac) (f(A))f(A)M> o @)

An

Equation (45) can be reformulated as follows by using Fubini’s theorem on time scales:

dnsont ([ eor@ac)

N A
l ([ onc) ;7
> [Tomg# ([ ow@ag)¥ ()5 ( [Can( [ #@ar) 7A17> B (46)

By recalling the chain rule (23), we can say there exists ¢ € [i7,7(17)] such that

[ ([Cr0ne) ] = ([Caon) T ([aonr)”

- A
Sincec < 0(77),0 <y < land </}7 é(g)Aé) = —¢(n) <0, we get

- / “é(cmg)”r <-nio( [ doaz) N @)

Substituting (47) into (46) leads to
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>

> 1 [Towgy ([ o@ag)¥ o)) ( [S-(/ wé(é)A€>M]AM>M

~ 00

o ( [feadJriransn( [Taons) m

Il
=
3
=
=
=

which is our desired inequality (42). O

Remark 7. In Theorem 21, if we take ¥ (1) = y", &(17) = 0(y) and g(n) = 1, then inequality (42)
reduces to inequality (22).

Corollary 14. If T = R in Theorem 21, and by considering, inequality (42) abbreviates to

/méw)gw)‘?( fewrem)  ems®( o) ¥ )

( A 5(@)%)7 7! ( A £ "~

Corollary 15. If T = hZ in Theorem 21, and by considering, inequality (42) abbreviates to

dn.

g g
) 5<nh>g<nh>‘i’(h Ze<mh>f<mh>) . 9<nh>g<nh)qﬂ(h Ze<mh>)‘ff’(f<nh>>f<nh>
Zﬂ -~ miO . 2 : — Zﬂ n:o:O — )
"= (h )3 C(mh)) n=i (h y g(mh)>

m=j+1 m=1

Corollary 16. In Corollary 15, if we take h = 1, then, inequality (42) boils down to

. . n—1
¢<n>g<n>lf( y e<m>f<m>) 1
>

m=0

. . 9<n>g<n>‘if’(§9<m>)ﬁf’(f<n>>f<n>
= (% 5<m>)7 Tk (%5(@)71 |

m=n+1

Corollary 17. If T = LTZ in Theorem 21, and by considering, inequality (42) abbreviates to

. q”5<q">g<q”>‘¥(<q S i q’”h(qm)f(q’”)>

Z y Y
n=(log, a) ((q - 1) Zz:(logq n)+1 qmé'(qm))
L e ¥ (-0 ) () £
> L T '
n=(log, a) <(q =) L (1og, ) qmé(a'"))

3. Conclusions

In this paper, with the help of Fubini’s theorem as well as a straightforward outcome of
Keller’s chain rule on time scales, we generalized some reverse Hardy-type inequalities to
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a general time scale. Moreover, we generalized a number of other inequalities to a general
time scale. We obtained the discrete and the continuous inequalities as special cases of our
main results.
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